
1

Prolog, CS314 Fall 2007 © BGRyder/Borgida
1

Prolog

• Language constructs
– Facts, rules, queries through examples

• Horn clauses
– Goal-oriented semantics
– Procedural semantics

• How computation is performed?
• Comparison to logic programming

Prolog, CS314 Fall 2007 © BGRyder/Borgida
2

Logic Programming vs Prolog

• Logic programming languages are neither
procedural or functional.

• Based on predicate calculus -- represent using
predicates/relations:

class Student extends Person {int year; float gpa; major}

can be represented, among others, as
student(_), person(_), inYear(_,_), hasGpa(_,_),...

person(X):- student(X).

student(jane). %% jane = new Student();

inYear(jane,3). %% jane.year = 3;

2

Prolog, CS314 Fall 2007 © BGRyder/Borgida
3

Logic Programming vs Prolog
• Separate logic from control:

• Separate the What (logic) from the How
(control)

• Programmer declares what facts and relations
are true

• System determines how to use facts to solve
problems

• State relationships and query them as in logic

Prolog, CS314 Fall 2007 © BGRyder/Borgida
4

Logic Programming

• Computation engine: theorem-proving
– Uses unification, resolution, backward chaining,

backtracking

• Programming style: uses recursion, like
functional paradigm

• Problem description is higher-level than
imperative languages

3

Prolog, CS314 Fall 2007 © BGRyder/Borgida
5

Prolog
• As database management

– Start with program as a database of facts
– Simple queries with constants and variables

(“binding”), conjunctions and disjunctions
– Add to program rules to derive additional facts
– Two interpretations

• Declarative: based on logic
• Procedural: searching for answers to queries

– Search trees and rule firings can be traced

Prolog, CS314 Fall 2007 © BGRyder/Borgida
6

Facts
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

predicates constants

4

Prolog, CS314 Fall 2007 © BGRyder/Borgida
7

Queries (Asking Questions)
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

?-likes(al,eve). ?-likes(al,Who).
yes Who=eve
?-likes(al, pie) ?-likes(eve,W).
no W=pie ;
?-likes(eve,al). W=tom ;
no W=eve ;
?-likes(person,food). no
no

query

answer

variable

answer with
variable binding

force search for
more answers

Prolog, CS314 Fall 2007 © BGRyder/Borgida
8

Harder Queries
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

?-likes(A,B).
A=eve,B=pie ; A=al,B=eve ; …
?-likes(D,D).
D=eve ; no
?-likes(eve,W), person(W).
W=tom
?-likes(al,V), likes(eve,V).
V=eve ; no

and

5

Prolog, CS314 Fall 2007 © BGRyder/Borgida
9

Harder Queries
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

?-likes(eve,W),likes(W,V).
W=eve,V=pie ; W=eve,V=tom ; W=eve,V=eve
?-likes(eve,W),person(W),food(V).
W=tom,V=pie ; W=tom,V=apple
?-likes(eve,V),(person(V);food(V)).
V=pie ; V=tom ; no
?-likes(eve,W),\+likes(al,W).
W=pie ; W=tom ; no

or

not

same binding

Prolog, CS314 Fall 2007 © BGRyder/Borgida
10

Rules
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

What if you want to ask the same question
often? Add a rule to the database:

rule1:-likes(eve,V),person(V).

?-rule1.
yes

6

Prolog, CS314 Fall 2007 © BGRyder/Borgida
11

Rules
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

rule2(V):-likes(eve,V),person(V).

?-rule2(H).
H=tom ; no
?-rule2(pie).
no
Note rule1 and rule2 are just like any other predicate!

rule1:-likes(eve,V),person(V).

Prolog, CS314 Fall 2007 © BGRyder/Borgida
12

Queen Victoria Example
male(albert). a fact
female(alice). Facts are put in a file.
male(edward).

 female(victoria).
parents(edward,victoria,albert).
parents(alice,victoria,albert).
?- [family]. loads file
yes
?- male(albert). a query
yes
?- male(alice).
no
?- parents(edward,victoria,albert).
yes
?- parents(bullwinkle,victoria,albert).
no

cf Clocksin
and Mellish

7

Prolog, CS314 Fall 2007 © BGRyder/Borgida
13

Queen Victoria Example, cont.
• Problem: facts alone do not make interesting

programs possible. Need variables and deductive
rules.

?-female(X). a query or proposed fact
X = alice ; ; asks for more answers
X = victoria ; if user types <return> then

no more answers given
no when no more answers left, return no
• Variable X has been unified to all possible values

that make female(X) true.
– Performed by pattern match search

• Variables are capitalized, predicates and constants
are lower case

Prolog, CS314 Fall 2007 © BGRyder/Borgida
14

Queen Victoria Example, cont.
sister_of(X,Y):-
female(X),parents(X,M,F),parents(Y,M,F).

a rule

?- sister_of(alice,Y).
Y = edward
?- sister_of(alice, victoria).
no

8

Prolog, CS314 Fall 2007 © BGRyder/Borgida
15

Horn Clauses (logical foundations)
• A Horn Clause is: c ← h1^ h2 ^ h3 ^ … ^hn

– Antecedents(h’s): conjunction of zero or more
conditions which are atomic formulae in predicate
logic

– Consequent(c): an atomic formula in predicate logic
• Meaning of a Horn clause:

– The consequent is true if the antecedents are all true
– c is true if h1, h2 , h3 , . . . , and hn are all true

likes(calvin,hobbes) ← tiger(hobbes), child(calvin).

Prolog, CS314 Fall 2007 © BGRyder/Borgida
16

Horn Clauses
• In Prolog, a Horn clause c ← h1 ^ … ^hn

is written c :- h1 , ... , hn.
• Horn Clause is a Clause
• Consequent is a Goal or a Head
• Antecedents are Subgoals or Tail
• Horn Clause with No Tail is a Fact

male(edward). dependent on no other conditions

• Horn Clause with Tail is a Rule
father(albert,edward) :-
male(edward),parents(edward,M,albert).

9

Prolog, CS314 Fall 2007 © BGRyder/Borgida
17

Horn Clauses
• Variables may appear in the antecedents and

consequent of a Horn clause:
– c(X1,. . . ,Xn) :- h(X1 ,.. . ,Xn,Y1 ,.. . ,Yk).

For all values of X1 ,.. . ,Xn , the formula
c(X1,. . . ,Xn) is true if there exist values
of Y1,. . . ,Yk such that the formula
h(X1 ,. . . ,Xn,Y1 ,.. . ,Yk) is true

– Call Yi an auxiliary variable. Its value will be
bound to make consequent true, but not reported
by Prolog, because it doesn’t appear in the
consequent.

Prolog, CS314 Fall 2007 © BGRyder/Borgida
18

Declarative Semantics

• Prolog program consists of facts and rules
• Rules like

sister_of(X,Y):-
female(X),parents(X,M,F),parents(Y,M,F).

correspond to logical formulas
∀X,Y . sister_of(X,Y) ←∃ M,F . female(X), parents(X,M,F), parents(Y,M,F).
/* X is the sister of Y, if X is female, and there are M and F who are X’s

parents, and Y’s parents */

– Note that variables not in head are existentially
quantified

10

Prolog, CS314 Fall 2007 © BGRyder/Borgida
19

Declarative Semantics

• A query is a conjunction of atoms, to
be proven
– If query has no variables and is provable,
answer is yes

– If query has variables, proof process
causes some variables to be bound to
values (called a substitution); these are
reported

Prolog, CS314 Fall 2007 © BGRyder/Borgida
20

Example
?-sister_of(X,Y):

female(X),parents(X,M,F),parents(Y,M,F).
?-sister_of(alice,Y).
Y = edward
?-sister_of(X,Y).
X = alice
Y = edward ;
X = alice
Y = alice ;
no

What’s wrong here?

Example shows
-subgoal order of evaluation
-argument invertability
-backtracking
-computation in rule order

(1)male(albert).
(2)female(alice).
(3)male(edward).
(4)female(victoria).
(5)parents(edward,victoria,albert).
(6)parents(alice,victoria,albert).

11

Prolog, CS314 Fall 2007 © BGRyder/Borgida
21

Procedural Semantics
?-sister_of(X,Y):

female(X),parents(X,M,F),parents(Y,M,F).

• First find an X to make female(X) true
• Second find an M and F to make parents(X,M,F)

true for that X.
• Third find a Y to make parents(Y,M,F) true for

those M,F
• This algorithm is recursive; each find works on a new

“copy” of the facts+rules. eventually, each find must
be resolved by appealing to facts.

• Process is called backward chaining.
• Variables are local;

• (every time rule is used, new names for X,Y,M,F)

Prolog, CS314 Fall 2007 © BGRyder/Borgida
22

Prolog Rule Ordering and Unification
• Rule ordering (from first to last) used in

search
• Unification requires all instances of the same

variable in a rule to get the same value
• Unification does not require differently

named variables to get different values:
sister_of(alice, alice)

• All rules searched if requested by
successive typing of ;

12

Prolog, CS314 Fall 2007 © BGRyder/Borgida
23

Example
sis(X,Y):-female(X),parents(X,M,F),

parents(Y,M,F),\+(X==Y).

?-sis(X,Y). last subgoal disallows X,Y to have same
value

X=alice
Y=edward ;
no

= means unifies with
== means same in value

Prolog, CS314 Fall 2007 © BGRyder/Borgida
24

Negation as Failure

• \+(P) succeeds when P fails
– Called negation by failure, defined:
not(X):-X,!,fail.
not(_).

• Which means
– if X succeeds in first rule, then the rule is

forced to fail by the last subgoal (fail).we
cannot backtrack over the cut (!) in the first
rule, and the cut prevents us from accessing the
second rule.

– if X fails, then the second rule succeeds,
because “_” (or don’t_care) unifies with anything.

13

Prolog, CS314 Fall 2007 © BGRyder/Borgida
25

Negation by Failure

• Not equivalent to logical not in Prolog
– Prolog can only assert that something is
true

– Prolog cannot assert that something is
false, but only that it cannot be proven
with the given rules

Prolog, CS314 Fall 2007 © BGRyder/Borgida
26

Transitive Relations
parents(jane,bob,sally).
parents(john,bob,sally).
parents(sally,al,mary).
parents(bob,mike,ann).
parents(mary,joe,lee).
ancestor(X,Y) :- parents(X,Y,_).
ancestor(X,Y) :- parents(X,_,Y).
ancestor(X,Y) :- parents(X,W,_),ancestor(W,Y).
ancestor(X,Y) :- parents(X,_,W), ancestor(W,Y).

?- ancestor(jane,X).
X = bob ;
X = sally ;
X = mike ;
X = ann ;

X= al ;
X = mary ;
X = joe ;
X = lee ;
No

sally bob

jane john

mary al

lee joe
Family tree

ann mike

14

Prolog, CS314 Fall 2007 © BGRyder/Borgida
27

Logic Programming vs Prolog
• Logic Programming: Nondeterministic

– Arbitrarily choose rule to expand first
– Arbitrarily choose subgoal to explore first
– Results don't depend on rule and subgoal ordering

• Prolog: Deterministic
– Expand first rule first
– Explore first(leftmost) subgoal first
– Results may depend on rule and subgoal ordering

Prolog, CS314 Fall 2007 © BGRyder/Borgida
28

Minimal Prolog Syntax

<rule> ::= (<head> :- <body> .) | <fact> .
<head> ::= <predicate>
<fact> ::= <predicate>
<body> ::= <predicate> { , <predicate> }
<predicate> ::= <functor> (<term> {
,<term>})
<term> ::= <integer> | <atom> | <variable>|

 <predicate>
<query> ::= ?- <predicate>

