

Hands-On Neural Networks

Learn how to build and train your first neural network model
using Python

Leonardo De Marchi
Laura Mitchell

BIRMINGHAM - MUMBAI

Hands-On Neural Networks
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Devika Battike
Content Development Editor: Manorama Haridas
Technical Editor: Vibhuti Gawde
Copy Editor: Safis Editing
Project Coordinator: Kirti Pisat
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Nilesh Mohite

First published: May 2019

Production reference: 1290519

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-259-6

www.packtpub.com

http://www.packtpub.com

I would like to dedicate this book to my family, in particular my sister Linda, my grandmother
Elda, my uncle Marco and my mum Cristina. A big thank you also to my father, my other

uncles and my other grandparents. A special thank you to my wonderful wife Marina and our
baby, that she is expecting. Mandi!

 --Leonardo De Marchi

I would like to thank all of my friends and family who have supported me throughout my career
and the writing of this book. A special thanks to mum, dad, brother Stu, and best friend of 20
years, Gem. They have not tired of listening to my repeatedly saying how excited I am about
becoming a published author, something I am very proud of. Kudos to all at Packt Publishing

for making this possible!

I am especially grateful to Leo who has fully supported my learning, development and career
aspirations. Leo has been a true joy to work for and I am very grateful to him for everything.

Last but not least I would like to thank Badoo for all of the opportunities presented to me and for
facilitating an environment that has enabled me to flourish as a data scientist; something I will

be ever appreciative of.

I would like to dedicate this book to my grandad; a talented engineer and passionate scientist
with a curious mind who continued his university studies into his nineties!

 --Laura Mitchell

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Leonardo De Marchi is an international speaker, author and consultant. He holds a masters
in Artificial Intelligence (AI) and has worked as a data scientist in the sporting world, with
clients such as New York Knicks, Manchester United. He now works as a head of data
scientist at Badoo, the largest dating site with over 400 million users. He is also the lead
instructor at ideai.io, a company specialized in Machine Learning trainings. With Ideai he
provides technical and managerial training to large institutions and dynamic startups. He is
also a contractor for the European Commission.

First of all, I would like to thank my publisher, Packt, and in particular Devika and
Manorama. I would like to thank Badoo, my friends and co-workers for encouraging me, in
particular Ed, Candice and my boss Tema. A massive thanks to Laura for agreeing to write
this book together and for the amazing path we shared in Badoo. A special thanks to
Marina Mattos, for the great images she created for this book.

Laura Mitchell graduated with a degree in mathematics from the University of Edinburgh
and, since then, has gained over 12 years' experience in the tech and data science space. She
is currently lead data scientist at Badoo, which is the largest online dating site in the world
with over 400 million users worldwide. Laura has hands-on experience in the delivery of
projects such as NLP, image classification, and recommender systems, from initial
conception through to production. She has a passion for learning new technologies and
keeping up to date with industry trends.

About the reviewers
Alan Souza holds a degree in computer engineering from Instituto de Estudos Superiores
da Amazônia (IESAM), along with a postgraduate qualification in project management
software and a master's degree in industrial processes (applied computing) from
Universidade Federal do Pará (UFPA). He has worked with neural networks since 2009,
and has already written three books about them. Alan is passionate about programming
and applying machine learning techniques to real-world problems. Currently, he is the
coordinator of a computer science graduation course, a professor at Universidade da
Amazônia (UNAMA), and a PhD candidate at UFPA.

I'd like to thank my family members for supporting me throughout my projects. I would
also like to thank Packt for inviting me to review this book, which is a significant
contribution to the machine learning community. I wish all the readers of this book every
success in their individual projects.

Erhard Dinhobl holds a degree from the Wiener Neustadt higher technical education
institute, Austria, as well as two degrees from the Vienna University of Technology. He is
self employed and is CEO of a software development company focused on AI, data
analysis, and blockchain technologies. He has undertaken projects for telecommunication
providers, banks, start-ups, and media companies. Currently, he is working on his PhD
thesis about AI applied to graphs in a theoretical and practical way.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Getting Started
Chapter 1: Getting Started with Supervised Learning 7

History of AI 8
An overview of machine learning 9

Supervised learning 10
Unsupervised learning 10
Semi-supervised learning 11
Reinforcement learning 11

Environment setup 11
Understanding virtual environments 13
Anaconda 14
Docker 15

Supervised learning in practice with Python 16
Data cleaning 17

Feature engineering 18
How deep learning performs feature engineering 20

Feature scaling 20
Feature engineering in Keras 21

Supervised learning algorithms 22
Metrics 24

Regression metrics 24
Classification metrics 24

Evaluating the model 25
TensorBoard 27

Summary 29

Chapter 2: Neural Network Fundamentals 30
The perceptron 30

Implementing a perceptron 32
Keras 38

Implementing perceptron in Keras 39
Feedforward neural networks 41

Introducing backpropagation 43
Activation functions 46

Sigmoid 47
Softmax 47
Tanh 47

ReLU 48

Table of Contents

[ii]

Keras implementation 49
The chain rule 50
The XOR problem 52

FFNN in Python from scratch 54
FFNN Keras implementation 58
TensorBoard 59
TensorBoard on the XOR problem 60

Summary 63

Section 2: Deep Learning Applications
Chapter 3: Convolutional Neural Networks for Image Processing 65

Understanding CNNs 65
Input data 66

Convolutional layers 67
Pooling layers 71

Stride 71
Max pooling 71
Zero padding 72

Dropout layers 73
Normalization layers 73
Output layers 74

CNNs in Keras 75
Loading the data 75
Creating the model 76
Network configuration 77

Keras for expression recognition 80
Optimizing the network 86
Summary 88

Chapter 4: Exploiting Text Embedding 89
Machine learning for NLP 90

Rule-based methods 90
Understanding word embeddings 91

Applications of words embeddings 92
Word2vec 92

Word embedding in Keras 95
Pre-trained network 100

GloVe 100
Global matrix factorization 100
Using the GloVe model 103
Text classification with GloVe 107

Summary 108

Chapter 5: Working with RNNs 109
Understanding RNNs 110

Theory behind CNNs 112

Table of Contents

[iii]

Types of RNNs 113
One-to-one 115
One-to-many 115
Many-to-many 115

The same lag 116
A different lag 116
Loss functions 116

Long Short-Term Memory 117
LSTM architecture 118

LSTMs in Keras 121
PyTorch basics 125
Time series prediction 126

Summary 130

Chapter 6: Reusing Neural Networks with Transfer Learning 131
Transfer learning theory 131

Introducing multi-task learning 132
Reusing other networks as feature extractors 133

Implementing MTL 133
Feature extraction 135
Implementing TL in PyTorch 135
Summary 142

Section 3: Advanced Applications
Chapter 7: Working with Generative Algorithms 144

Discriminative versus generative algorithms 145
Understanding GANs 146

Training GANs 149
GAN challenges 150

GAN variations and timelines 152
Conditional GANs 153
DCGAN 153

ReLU versus Leaky ReLU 155
DCGAN – a coded example 156

Pix2Pix GAN 161
StackGAN 162
CycleGAN 163
ProGAN 165
StarGAN 167

StarGAN discriminator objectives 168
StarGAN generator functions 169

BigGAN 169
StyleGAN 170

Style modules 172
StyleGAN implementation 174

Deepfakes 175

Table of Contents

[iv]

RadialGAN 176
Summary 178
Further reading 178

Chapter 8: Implementing Autoencoders 180
Overview of autoencoders 180
Autoencoder applications 181
Bottleneck and loss functions 181
Standard types of autoencoder 182

Undercomplete autoencoders 182
Example 182
Visualizing with TensorBoard 184
Visualizing reconstructed images 185

Multilayer autoencoders 186
Example 186

Convolutional autoencoders 187
Example 187

Sparse autoencoders 190
Example 191

Denoising autoencoders 192
Example 192

Contractive autoencoder 193
Variational Autoencoders 193
Training VAEs 196

Example 198
Summary 202
Further reading 202

Chapter 9: Deep Belief Networks 203
Overview of DBNs 203

BBNs 204
Predictive propagation 205
Retrospective propagation 205

RBMs 206
RBM training 208
Example – RBM recommender system 209
Example – RBM recommender system using code 210

DBN architecture 215
Training DBNs 216
Fine-tuning 218
Datasets and libraries 219

Example – supervised DBN classification 220
Example – supervised DBN regression 221
Example – unsupervised DBN classification 222

Summary 223
Further reading 223

Table of Contents

[v]

Chapter 10: Reinforcement Learning 224
Basic definitions 224
Introducing Q-learning 227

Learning objectives 228
Policy optimization 229
Methods of Q-learning 229

Playing with OpenAI Gym 230
The frozen lake problem 232
Summary 241

Chapter 11: Whats Next? 242
Summarizing the book 242
Future of machine learning 243
Artificial general intelligence 245

Ethics in AI 246
Interpretability 246
Automation 246
AI safety 247
AI ethics 248
Accountability 248

Conclusions 248

Other Books You May Enjoy 249

Index 252

Preface
Neural Networks (NNs) play a very important role in deep learning and Artificial
Intelligence (AI), with applications in a wide variety of domains, from medical diagnosis to
financial forecasting, and even machine diagnostics.

Hands-On Neural Networks is designed to guide you through learning about neural
networks in a practical way. The book will get you started by giving you a brief
introduction to perceptron networks. You will then gain insights into machine learning and
also understand what the future of AI could look like. Next, you will study how
embeddings can be used to process textual data, and the role of long short-term memory
(LSTMs) networks in helping you to solve common natural language processing (NLP)
problems. The later chapters will demonstrate how you can implement advanced concepts,
including transfer learning, Generative Adversarial Networks (GANs), autoencoders
(AEs), and reinforcement learning (RL). Finally, you can look forward to further content
on the latest advancements in the field of neural networks.

By the end of this book, you will have the skills you need to build, train, and optimize your
own neural network model that can be used to provide predictable solutions.

Who this book is for
If you are interested in AI and deep learning and want to further your skills, then this
intermediate-level book is for you. Some knowledge of statistics will help you get the most
out of this book.

What this book covers
Chapter 1, Getting Started with Supervised Learning, covers the big picture of AI and, in
particular, deep learning. This chapter introduces the main machine learning concepts,
from transforming data to evaluating results. These concepts will be useful in the following
chapters, where we will focus only on deep learning applications.

Chapter 2, Neural Network Fundamentals, introduces the building blocks of deep learning
and the math behind them. We will also explore concepts such as the perceptron and
gradient descent, and the math behind them. We will then see how it's possible to use them
to build neural networks with an example, to solve a classification task.

Preface

[2]

 Chapter 3, Convolutional Neural Networks for Image Processing, covers more complex
network architectures for solving domain-specific problems. In particular, we will look at
some techniques for solving some computer vision problems. We will also see how a pre-
trained network can reduce the time needed to create and train a neural network.

Chapter 4, Exploiting Text Embedding, shows how deep learning can be used for NLP tasks;
in particular, how we can use embeddings to process textual data, the theory behind them,
and some practical use cases.

Chapter 5, Working with RNNs, introduces a more sophisticated type of network, RNNs,
and the math and the concepts behind them. In particular, we will focus on LSTM and how
it can be used to solve an NLP problem.

Chapter 6, Reusing Neural Networks with Transfer Learning, introduces transfer learning,
which is the ability of a model to generalize its learning to different tasks than the one it
was trained to solve. We will also look at a concrete example of transfer learning using a
pre-trained network to solve our particular problem using Keras and the famous VGG
network.

Chapter 7, Working with Generative Algorithms, introduces one of the most innovative
concepts in machine learning in the past decade: GANs. We will see how they work and the
math behind them. We will also present an example of how to implement a GAN to
generate simple handwritten digits.

Chapter 8, Implementing Autoencoders, talks about autoencoders, what they are, the math
behind them, and which tasks they can solve. In particular, we will look at improvements
to the simple autoencoders algorithm and how it's possible to use autoencoders to generate
simple handwritten digits with Keras.

Chapter 9, Deep Belief Networks, talks about Deep Belief Networks (DBNs), what they are,
the math behind them, and which tasks they can solve.

Chapter 10, Reinforcement Learning, introduces RL, starting from the basic concepts, such as
the Monte Carlo and Markov chain methods. We will then explain traditional RL methods
and how deep learning has improved and revitalized the field.

Chapter 11, What’s Next?, introduces a quick summary of all the topics that we have
covered in the book. We will also provide readers with the details of other titles that could
be used as reference materials. Lastly, we will also include the latest advancements that
readers can look at in the field of neural networks.

Preface

[3]

To get the most out of this book
Some knowledge of statistics will help you get the most out of this book.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/​/​github.​com/
PacktPublishing/​Hands-​On-​Neural-​Networks. In case there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github.​com/​PacktPublishing/​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/​/​www.​packtpub.​com/​sites/​default/​files/
downloads/​9781788992596_​ColorImages.​pdf.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/Hands-On-Neural-Networks
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "As the activation function, we chose to use tanh."

A block of code is set as follows:

def step_function(self, z):
 if z >= 0:
 return 1
 else:
 return 0

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

wget -O moviedataset.zip

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Getting Started

This section introduces the main deep learning concepts and instructions to set up a
development environment.

The following chapters are included in this section:

Chapter 1, Getting Started with Supervised Learning
Chapter 2, Neural Network Fundamentals

1
Getting Started with Supervised

Learning
Artificial Intelligence (AI) is now a buzzword that is added to products and services to
make them more appealing, and more often than not, it's a marketing strategy rather than a
technical achievement. Most of the time, AI is used as an umbrella term to describe
anything from simple analytics to advanced learning algorithms. It's something that sells,
as most of the population does not have much knowledge about it, but intuitively everyone
now understands that it is something that will change the world we live in.

Luckily, it's not just hype, and we have seen many astonishing achievements made by AI,
such as Tesla's self-driving cars. Using recent research into deep neural networks, Tesla
managed to create a functionality and made it available to the masses much quicker than
most of the experts predicted.

In this book, we will try to steer away from the hype and focus on the actual value that AI
can provide, starting from the basics in order to rapidly ramp up to the most recent
algorithms.

This chapter will cover the following topics in detail:

History of AI
An overview of machine learning
Environment setup
Supervised learning in practice with Python
Feature engineering
Supervised learning algorithms

Getting Started with Supervised Learning Chapter 1

[8]

History of AI
The idea of AI, entailing machine that can think without human help, is surprisingly old. It
can be dated back to the Indian philosophies of Charvaka, from around 1,500 BC.

The basis of AI is the philosophical concept that human reasoning can be mapped into a
mechanical process. We can find this process in many civilizations in the first millennium
BC, in particular in Greek philosophers such as Aristotle and Euclid.

Philosophers and mathematicians, such as Leibniz and Hobbes, in the 17th century explored
the possibility that all of a human being's rational thoughts could be mapped into an
algebraic or geometric system.

Only at the beginning of the 20th century was the limits defined of what mathematics and
logic can accomplish and how far mathematical reasoning can be abstracted. It was at that
time that the mathematician Alan Turing defined the Turing machine, a mathematical
construct that captures the essence of symbolic manipulation.

Alan Turing, in 1950, published a paper speculating on the possibility of creating a machine
that can think. As thinking is a concept difficult to define, he defined a task to determine if
a machine was able to achieve a level of reasoning that can be called AI. The task that the
machine needs to accomplish consists of engaging in a conversation with a human in a way
that the human would not be able to tell if he was talking with a machine or another
human.

In the 50's we also see the creation of the first artificial neural network (ANN) that were
able to perform simple logical functions. Between the 1950s and the 1970s the world saw
the first new big era of discovery in AI, with applications in Algebra, Geometry, language,
and robotics. The results were so astonishing that created a big hype around the field, but
when these huge expectations were not met, we saw the first AI winter, where research
funding were cut off.

The 1950s also saw the creation of the first ANN that was able to perform simple logical
functions. Between the 1950s and the 1970s, the world saw the first new big era of discovery
in AI, with applications in algebra, geometry, language, and robotics. The results were so
astonishing that the field gained a lot of attention, but when these huge expectations were
not met, research funding was cut off and interest in AI dwindled.

Getting Started with Supervised Learning Chapter 1

[9]

Fast forwarding to recent years, when we started having access to a huge amount of data
and computational power and Machine Learning (ML) techniques became more and more
useful in business. In particular, the advent of the Graphic Processing Unit (GPU) made it
possible to train in an efficient way huge neural networks, usually known as Deep Neural
Networks (DNNs), on very big datasets. The trend seems now that we will collect more
and more data, for smart cities, vehicles, portable devices, the Internet of Things (IoT), and
so on. ML can be used to solve a rapidly increasing number of problems. It seems then that
we are just at the beginning of this huge revolution, as only very recently compared to
human history, we were able to have machines that can take decisions by themselves.

With algorithms, it is possible not only to automate mundane and repetitive tasks but also
to improve important fields such as finance and medicines where human biases and limited
cognitive power limit the growth of the field.

All this automation can be destabilizing to a large portion of the workforce and can focus
more and more wealth and power in the hands of a few select individuals and companies.
For this reason, companies such as Google and Facebook are financing long-term research
into this project. OpenAI (https:/​/​openai.​com/​), in particular, is a company that wants to
provide open source research in AI and easy access to its material for everyone.

If it will be proven that we can automatize any task, we might live in a society not bound
by resources. Such a society will not need money, as it's just a way to efficiently allocate
resources, and we might end up in a utopian society where people can pursue what makes
them happy.

At the moment, these are just futurist theories, but ML is becoming more and more
advanced by the day. We will now take an overview of the current state of the field.

An overview of machine learning
ML is a variegated field with many different types of algorithms that try to learn in slightly
different ways. We can divide them into the following different categories according to the
way the algorithm performs the learning:

Supervised learning
Unsupervised learning
Semi-supervised learning
Reinforcement learning

https://openai.com/
https://openai.com/
https://openai.com/
https://openai.com/
https://openai.com/
https://openai.com/
https://openai.com/
https://openai.com/

Getting Started with Supervised Learning Chapter 1

[10]

In this book, we are going to touch on each single category, but the main focus will be
supervised learning. We are going to briefly introduce these categories and the type of
problems that they help solve.

Supervised learning
Supervised learning is nowadays the most common form of ML applied to business
processes. These algorithms try to find a good approximation of the function that is
mapping inputs and outputs.

To accomplish that, it is necessary to provide both input values and output values to the
algorithm yourself, as the name suggests, and it will try to find a function that minimizes
the errors between the predictions and the actual output.

The learning phase is called training. After a model is trained, it can be used to predict the
output from unseen data. This phase is commonly regarded as scoring or predicting, which
is depicted in the following diagram:

Unsupervised learning
Unsupervised learning works with unlabeled data, so we don't need the actual output,
only the input. It tries to find patterns in the data and reacts based on those commonalities,
dividing the input into clusters:

Usually, unsupervised learning is often used in conjunction with supervised learning to
reduce the input space and focus the signal in the data on a smaller number of variables,
but it has other goals as well. From this point of view, it is more applicable than supervised
learning as sometimes tagging the data is expensive or not reliable.

Getting Started with Supervised Learning Chapter 1

[11]

Common unsupervised learning techniques are clustering and principal component
analysis (PCA), independent component analysis (ICA), and some neural networks such
as Generative Adversarial Networks (GANs) and Autoencoders (AEs). We will explore
the last two in more depth later on in this book.

Semi-supervised learning
Semi-supervised learning is a technique in between supervised and unsupervised
learning. Arguably, it should not be a category of machine learning but only a
generalization of supervised learning, but it's useful to introduce the concept separately.

Its aim is to reduce the cost of gathering labeled data by extending a few labels to similar
unlabeled data. Some generative models are classified semi-supervised approaches.

Semi-supervised learning can be divided into transductive and inductive learning.
Transductive learning is when we want to infer the labels for unlabeled data. The goal of
inductive learning is to infer the correct mapping from inputs to outputs.

We can see this process as similar to most of the learning we had at school. The teacher
shows the students a few examples and gives them some to take home; to solve those, they
need to generalize.

Reinforcement learning
Reinforcement learning (RL) is the most distinct category, with respect to the one we saw
so far. The concept is quite fascinating: the algorithm is trying to find a policy to maximize
the sum of rewards.

The policy is learned by an agent who uses it to take actions in an environment. The
environment then returns feedback, which the agent uses to improve its policy. The
feedback is the reward for the action taken and it can be a positive, null, or negative
number, as shown in the following diagram:

Getting Started with Supervised Learning Chapter 1

[12]

Environment setup
There are only a few viable programming language options when creating ML software.
The most popular ones are Python and R, but Scala is also quite popular. There are other
languages, but the better ones in terms of use in ML are Julia, JavaScript, Java, and a few
others. In this book, we will be using Python only. The motivation behind this choice is its
widespread adoption, its simplicity of use, and the vast ecosystem of libraries that are
possible to use.

In particular, we will be using Python 3.7 and a few of its following libraries:

numpy: For fast vectorized numerical computation
scipy: Built on top of numpy, with many mathematical functionalities
pandas: For data manipulation
scikit-learn: The main Python library for ML
tensorflow: The engine that powers our deep learning algorithms
keras: The library we are going to use to develop our deep learning algorithms,
which sits on top of TensorFlow

Let's focus on the last two libraries for the moment. There are a few libraries that are useful
nowadays for Neural Networks (NNs). The most widespread is TensorFlow. It is a
symbolic math library that uses a directed graph to model the dataflow between operations.

It's particularly suitable for matrix multiplications as it can use all the power of the GPU's
architecture, composed by many, but not particularly powerful, cores that can execute
many operations simultaneously. TensorFlow is also quite versatile as it works on a few
different platforms; it's possible to run models on mobile devices using TensorFlow Lite
and even on a browser using TensorFlow.js (https:/​/​www.​tensorflow.​org/​js).

One of the libraries we are going to use for most of this book will be Keras. It is a layer that
sits on the top of libraries such as TensorFlow to provide a more abstract interface to the
end users. In this regard, Keras is narrower than TensorFlow as it focuses on neural
networks, but it's also more generic as it can be used in conjunction with TensorFlow's
alternatives such as the Microsoft Cognitive Toolkit.

Now, these libraries don't guarantee backward compatibility. Because of this, when
working with Python, it's good practice to work in virtual environments. This allows us to
isolate the different projects we are working on, but also to distribute our setup to different
machines in an easy way and to avoid compatibility issues.

https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://www.tensorflow.org/js

Getting Started with Supervised Learning Chapter 1

[13]

There are a few ways we can create these environments; in this book, we will cover the
following:

Virtual environment
Anaconda
Docker

We will go through each one of them to show how they work and explain their advantages
and disadvantages.

Understanding virtual environments
While working with Python, you will probably use a multitude of libraries or packages.
The virtual environment called venv is the first and most immediate way of making a
working setup that is easy to reproduce.

From Python 3.3, the venv module is Python's built-in module, meaning you don't need to
install any external components.

To create an environment in an automated way, it's necessary to create a list with all the
libraries you want to install. Pip has a very simple way of defining this list, and it's enough
to create a .txt file and specify one library per line.

To create the environment, you will need to perform the following steps:

Install Python 3.7.1.
Create a new environment called dl_venv_pip by using the following2.
command:

python3.7 -m venv dl_venv_pip

Specify the required libraries in a file that we will call requirements.txt, with3.
the following content:

numpy==1.15.4
scipy==1.1.0
pandas==0.23.4
tensorboard==1.12.1
tensorflow==1.11.0
scipy==1.1.0
scikit-learn==0.20.1
Keras==2.2.4

Getting Started with Supervised Learning Chapter 1

[14]

It's possible to now install all the required libraries with this command:4.

pip install -r /path/to/requirements/requirements.txt

Now we can activate our environment by typing in the following command:5.

source dl_venv_pip/bin/activate

Once the environment is activated, all your calls to the Python interpreter will be redirected
to the environment's interpreter. It's a quick and easy way to distribute the requirements,
but it's still possible to have compatibility issues due to different operating systems, and
also it might require some time to install all libraries as many data science projects rely on
many of them.

Anaconda
One of the main drawbacks encountered while using Python for data science is the amount
of libraries that are necessary to install. Also, when provisioning instances for deploying
your models, you will need to install all the necessary libraries to run your program, which
might be problematic if you deploy to different platforms and operating systems.

Luckily, there are few alternatives to venv. One of them is Anaconda: a free and open
source Python distribution for data science and machine learning. It aims to simplify
package management and deployment. Anaconda's package manager is called conda and
it installs, runs, and updates packages and their dependencies.

It's possible to have a smaller version of conda with a subset of the main libraries, which is
called miniconda. This version is quite handy when only the main libraries are needed as it
reduces the size of the distribution and the time to install it.

To create an environment in an automated way, it's necessary to create a list of
dependencies, as we did with venv. Conda is compatible with the pip format, but it also
supports the more expressive YAML format. Let's see how this is done by performing the
following steps:

For example, let's create a dl.yaml file with the following content:1.

name: dl_env # default is root
channels:
 - conda
dependencies: # everything under this, installed by conda
 - numpy
 - scipy
 - pandas

Getting Started with Supervised Learning Chapter 1

[15]

 - Tensorflow
 - matplotlib
 - keras
 - pip: # everything under this, installed by pip
 - gym

Place dl.yaml in a directory of your choice, and from the terminal in the same2.
location of the file, enter the following command:

conda env create python=3.7 --file dl_env.yaml

It's also necessary to activate what. It's possible to do this at any point after3.
installation by typing activate:

conda activate dl_env

Now all the Python calls will be directed to the Python's in the conda environment that we
created.

Docker
Docker is something in between a virtual environment and a virtual machine. It performs
operating system-level virtualization, also known as containerization, that isolates
applications from the operating system to reduce compatibility problems because of
libraries or system versions.

As the name suggests, a good analogy for Docker is shipping containers. They solve the
following two problems:

Transporting different goods, that are sometimes incompatible with each
other—for example, food and chemicals
Standardizing the dimension of packages of different sizes

Docker works in a similar way by isolating applications from each other and makes use of a
standard layer to allow the spinning up of containers rapidly without much overhead.

One of the main advantages of data science is that it will (almost) solve the it was working
on my machine problem and will make it easier and faster to distribute the environment to
other people or to production systems.

Getting Started with Supervised Learning Chapter 1

[16]

To install Docker, please visit https:/​/​www.​docker.​com/​get-​started,
where you can find the appropriate installer for your system. Then it's
possible to install the libraries we installed before.

Supervised learning in practice with Python
As we said earlier, supervised learning algorithms learn to approximate a function by
mapping inputs and outputs to create a model that is able to predict future outputs given
unseen inputs.

It's conventional to denote inputs as x and outputs as y; both can be numerical or
categorical.

We can distinguish them as two different types of supervised learning:

Classification
Regression

Classification is a task where the output variable can assume a finite amount of elements,
called categories. An example of classification would be classifying different types of
flowers (output) given the sepal length (input). Classification can be further categorized in
more sub types:

Binary classification: The task of predicting whether an instance belongs either
to one class or the other
Multiclass classification: The task (also known as multinomial) of predicting the
most probable label (class) for each single instance
Multilabel classification: When multiple labels can be assigned to each input

Regression is a task where the output variable is continuous. Here are some common
regression algorithms:

Linear regression: This finds linear relationships between inputs and outputs
Logistic regression: This finds the probability of a binary output

https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started

Getting Started with Supervised Learning Chapter 1

[17]

In general, the supervised learning problem is solved in a standard way by performing the
following steps:

Performing data cleaning to make sure the data we are using is as accurate and1.
descriptive as possible.
Executing the feature engineering process, which involves the creation of new2.
features out of the existing ones for improving the algorithm's performance.
Transforming input data into something that our algorithm can understand,3.
which is known as data transformation. Some algorithms, such as neural
networks, don't work well with data that is not scaled as they would naturally
give more importance to inputs with a larger magnitude.
Choosing an appropriate model (or a few of them) for the problem.4.
Choosing an appropriate metric to measure the effectiveness of our algorithm.5.
Train the model using a subset of the available data, called the training set. On6.
this training set, we calibrate the data transformations.
Testing the model.7.

Data cleaning
Data cleaning is a fundamental process to make sure we are able to produce good results at
the end. It is task-specific, as in the cleaning you will have to perform on audio data will be
different for images, text, or a time series data.

We will need to make sure there is no missing data, and if that's the case we can decide
how to deal with it. In the case of missing data—for example, an instance missing a few
variables, it's possible to fill them with the average for that variable, fill it with a value that
the input cannot assume, such as -1 if the variable is between 0 and 1 or disregard the
instance if we have a lot of data.

Also, it's good to check whether the data respects the limitations of the values we are
measuring. For example, a temperature in Celsius cannot be lower than 273.15 degrees, if
that's the case, we know straight away that the data point is unreliable.

Other checks include the format, the data types, and the variance in the dataset.

Getting Started with Supervised Learning Chapter 1

[18]

It's possible to load some clean data directly from scikit-learn. There are a lot of
datasets for all sort of tasks—for example, if we want to load some image data, we can use
the following Python code:

from sklearn.datasets import fetch_lfw_people
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

This data is known as Labeled Faces in the Wild, a dataset for face recognition.

Feature engineering
Feature engineering is the process of creating new features by transforming existing ones.
It is very important in traditional ML but is less important in deep learning.

Traditionally, the data scientists or the researchers would apply their domain knowledge
and come up with a smart representation of the input that would highlight the relevant
feature and make the prediction task more accurate.

For example, before the advent of deep learning, traditional computer vision required
custom algorithms that were extracting the most relevant features, such as edge detection
or Scale-Invariant Feature Transform (SIFT).

To understand this concept, let's look at an example. Here, we see an original photo:

Getting Started with Supervised Learning Chapter 1

[19]

And, after some feature engineering—in particular, after running an edge detection
algorithm, we get the following result:

One of the great advantages of using deep learning is that is not necessary to hand craft
these features, but the network will do the job:

Getting Started with Supervised Learning Chapter 1

[20]

How deep learning performs feature engineering
The theoretical advantage of neural networks is that they are universal approximators. The
Universal Approximation Theorem states that a feed-forward network with a single
hidden layer, a finite number of neurons, and some assumptions regarding the activation
function can approximate any continuous functions. However, this theorem does not
specify whether the parameters of the network are learnable algorithmically.

In practice, layers are added to the network to increase the non-linearity of the
approximated function, and there is a lot of empirical evidence that the deeper the network
is and the more the data we feed into the network, the better the results will be. There are
some caveats on this statement that we will see later on in this book.

Nevertheless, there are some deep learning tasks that still require feature engineering—for
example, natural Language processing (NLP). In this case, feature engineering can be
anything from dividing the text into small subsets, called n-grams, to a vectorized
representation using, for example, word embedding.

Feature scaling
A very important engineering technique that is necessary to perform even with neural
networks is feature scaling. It's necessary to scale the numerical input to have all the
features on the same scale; otherwise, the network will give more importance to features
with larger numerical values.

A very simple transformation is re-scaling the input between 0 and 1, also known as
MinMax scaling. Other common operations are standardization and zero-mean translation,
which makes sure the standard deviation of the input is 1 and the mean is 0, which in the
scikit-learn library are implemented in the scale method:

from sklearn import preprocessing
import numpy as np
X_train = np.array([[-3., 1., 2.],
 [2., 0., 0.],
 [1., 2., 3.]])
X_scaled = preprocessing.scale(X_train)

Getting Started with Supervised Learning Chapter 1

[21]

The preceding command generates the following result:

Out[2]:
array([[-1.38873015, 0. , 0.26726124],
 [0.9258201 , -1.22474487, -1.33630621],
 [0.46291005, 1.22474487, 1.06904497]])

You can find many other numerical transformations already available in scikit-learn.
Some other important transformations from its documentation are as follows:

PowerTransformer: This transformation applies a power transformation to each
feature in order to transform the data to follow a Gaussian-like distribution. It
will find the optimal scaling factor to stabilize the variance and at the same time
minimize skewness. The PowerTransformer transformation of scikit-learn
will force the mean to be zero and force the variance to 1.
QuantileTransformer: This transformation has an additional
output_distribution parameter that allows us to force a Gaussian
distribution to the features instead of a uniform distribution. It will introduce
saturation for our inputs' extreme values.

Feature engineering in Keras
Keras provides a nice and simple interface to do feature engineering. A task that we will
study in particular in this book is image classification. For this task, Keras provides
the ImageDataGenerator class, which allows us to easily pre-process and augment the
data.

The augmentation we are going to perform is aimed at generating more images using some
random transformations such as zooming, flipping, shearing, and shifting. These
transformations help prevent overfitting and make the model more robust to different
image conditions, such as brightness.

We will see the code first and then explain what it does. Following Keras' documentation
(https:/​/​keras.​io/​), it's possible to create a generator with the mentioned transformations
with the code:

from keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(
 rotation_range=45,
 width_shift_range=0.25,
 height_shift_range=0.25,
 rescale=1./255,

https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/

Getting Started with Supervised Learning Chapter 1

[22]

 shear_range=0.3,
 zoom_range=0.3,
 horizontal_flip=True,
 fill_mode='nearest')

For the generator, it's possible to set a few parameters:

The rotation_range parameter represents value in degrees (0-180), which will
be used to randomly find a value to rotate the inputs.
width_shift and height_shift are ranges (as a fraction of total width or
height) within which it randomly translates pictures vertically or horizontally.
Scale is a common operation used to re-scale a raw image. In this case, we have
RGB images, in which each pixel is represented by a value between 0 and 255.
Because of this, we use a scaling factor of 1/255 so our values now will be
between 0 and 1. We do this as otherwise the numbers would be too high given
the typical learning rate, one of the parameters of our network.
shear_range is used for randomly applying shearing transformations.
zoom_range is used to create additional pictures by randomly zooming inside
pictures.
horizontal_flip is a Boolean value used to create additional pictures by
randomly flipping half of the image horizontally. This is useful when there are
no assumptions of horizontal asymmetry.
fill_model is the strategy used for filling in new components

In this way, from one image, we can create many to feed to our model. Notice that we only
initialized the object so far, so no instruction has being executed as the generator will
perform the action only when it's called; it will be done later on.

Supervised learning algorithms
There are a lot of algorithms at our disposal for supervised learning. We choose the
algorithm based on the task and the data we have at our disposal. If we don't have much
data and there is already some knowledge around our problem, deep learning is probably
not the best approach to start with. We should rather try simpler algorithms and come up
with relevant features based on the knowledge we have.

Getting Started with Supervised Learning Chapter 1

[23]

Starting simple is always a good practice; for example, for categorization, a good starting
point can be a decision tree. A simple decision tree algorithm that is difficult to overfit is
random forest. It also gives good results out of the box. For regression problems, linear
regression is still very popular, especially in domains, where it's necessary to justify the
decision taken. For other problems, such as recommender systems, a good starting point
can be Matrix Factorization. Each domain has a standard algorithm that is better to start
with.

A simple example of a task could be to predict the price of a house for sale, given the
location and some information about the house. This is a regression problem, and there are
a set of algorithms in scikit-learn that can perform the task. If we want to use a liner
regression, we can do the following:

from sklearn.datasets.california_housing import fetch_california_housing
from sklearn.linear_model import LinearRegression

Using a standard dataset that we can find in scikit-learn
cal_house = fetch_california_housing()

cal_house_X_train = cal_house.data[:-20]
cal_house_X_test = cal_house.data[-20:]

Split the targets into training/testing sets
cal_house_y_train = cal_house.target[:-20]
cal_house_y_test = cal_house.target[-20:]

Create linear regression object
regr = linear_model.LinearRegression()

Train the model using the training sets
regr.fit(cal_house_X_train, cal_house_y_train)
Calculating the predictions
predictions = regr.predict(cal_house_X_test)
Calculating the loss
print('MSE: {:.2f}'.format(mean_squared_error(cal_house_y_test,
predictions)))

It's possible to run the file after activated our virtual environment (or conda environment)
and saved the code in a file named house_LR.py. Then from where you placed your file
run the following command line:

 python house_LR.py

Getting Started with Supervised Learning Chapter 1

[24]

The interesting part about NNs is that they can be used instead of any of the tasks
mentioned previously, provided that enough data is available. Moreover, when a neural
network is trained it means that we have a way to do feature engineering, and part of the
network itself can be used to do the feature engineering for similar tasks. This method is
called transfer learning (TL), and we will dedicate a chapter to it later on.

Metrics
The metric chosen to evaluate the algorithm is another extremely important step in the
machine learning process. You can also choose one particular metric as the loss of the
algorithm aims to minimize. The loss is a measure of the error that our algorithm produces
if we compare its predictions to our ground truth. The loss is very important as it
determines how the algorithm will evaluate its mistakes and therefore how it will learn the
function that maps the inputs with the outputs.

We can divide again the metrics by the type of problems we have, metrics for classification,
or regression.

Regression metrics
In Keras, we can see the following few important metrics:

Mean Squared Error: mean_squared_error, MSE, or mse
Mean Absolute Error: mean_absolute_error, MAE, or mae
Mean Absolute Percentage Error: mean_absolute_percentage_error, MAPE, or
mape
Cosine Proximity: cosine_proximity, cosine

In Keras, you can specify the metric you are optimizing for, the loss, only after a model is
already instantiated. We will see later in the book how to choose the metrics we are
interested in.

Classification metrics
In Keras, we can find the following classification metrics:

Binary accuracy: This measures the accuracy of the result of a binary
classification problem. In keras, it's possible to use the
functions binary_accuracy and acc.

Getting Started with Supervised Learning Chapter 1

[25]

ROC AUC: It measures the AUC of a binary classification problem. In keras, it's
possible to use the functions categorical_accuracy and acc.
Categorical accuracy: It measures the accuracy of the result of a multiclass
classification problem. In keras, it's possible to use
the categorical_accuracy and acc functions.
Sparse categorical accuracy: It has the same functionality of categorical accuracy
but for a sparse problem, sparse_categorical_accuracy.
Top k categorical accuracy: It returns the accuracy of the top k elements. In
keras, it's possible to use the top_k_categorical_accuracy functions (this
requires you to specify a k parameter).
Sparse top k categorical accuracy: It returns the accuracy of the top k elements.
In keras, it's possible to use the
sparse_top_k_categorical_accuracy function (requires you to specify a k
parameter).

The first thing we need to determine is whether the dataset in is either balanced or
unbalanced, regarding the classes we need to predict. If the dataset is unbalanced (for
example, 99% if the instances belong to only one class), metrics such as precision and
accuracy can be misleading. In that case, if our system always predicts the most common
class, both precision and recall will look very good, but the system will be totally useless.
That's why it's important to choose metrics that are useful for the system we are modeling.
In this case, for example, ROC AUC will be better as it's looking at the misclassifications
our algorithm does and how bad the error is.

Evaluating the model
To evaluate an algorithm, it's necessary to judge the performance of the algorithm on data
that was not used to train the model. For this reason, it's common to split the data in the
training and test set. The training set is used to train the model, which means that it's used
to find the parameters of our algorithm. For example, training a decision tree will
determine the values and variables that will create the split of the branches of the tree. The
test set must remain totally hidden from the training. That means that all operations such as
features engineering or feature scaling must be trained on the training set only and applied
to the test set, as in the following example.

Usually, the training set will be 70-80% of the dataset, while the test set will be the rest:

from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.linear_model import LinearRegression

Getting Started with Supervised Learning Chapter 1

[26]

from sklearn import datasets

import some data
iris = datasets.load_iris()

X_train, X_test, y_train, y_test = train_test_split(
 iris.data, iris.target, test_size=0.3, random_state=0)

scaler = preprocessing.StandardScaler().fit(X_train)
X_train_transformed = scaler.transform(X_train)
X_test_transformed = scaler.transform(X_train)

clf = LinearRegression().fit(X_train_transformed, y_train)

predictions = clf.predict(X_test_transformed)

print('Predictions: ', predictions)

The most common way to evaluate a supervised learning algorithm offline is cross-
validation. This technique consists of dividing the dataset into test and training multiple
times and use one part for training and one for testing.

This allows to not only check for overfitting but also to evaluate the variance in our loss

For problems where it's not possible to randomly divide the data, such as in a time series,
scikit-learn has other splitting methods, such as the TimeSeriesSplit class.

In Keras, it's possible to specify a simple way to split in train/test directly during fit:

hist = model.fit(x, y, validation_split=0.2)

If the data does not fit in memory, it's also possible to use train_on_batch and
test_on_batch.

For image data, in Keras, it is also possible to use the folder structure to create train and test
and specify the labels. To accomplish this, it is important to use
the flow_from_directory function, which will load the data with the labels and train/test
split as specified. We will need to have the following directory structure:

data/
 train/
 category1/
 001.jpg
 002.jpg
 ...
 category2/
 003.jpg

Getting Started with Supervised Learning Chapter 1

[27]

 004.jpg
 ...
 validation/
 category1/
 0011.jpg
 0022.jpg
 ...
 category2/
 0033.jpg
 0044.jpg
 ...

Use the following function:

flow_from_directory(directory, target_size=(96, 96), color_mode='rgb',
classes=None, class_mode='categorical', batch_size=128, shuffle=True,
seed=11, save_to_dir=None, save_prefix='output', save_format='jpg',
follow_links=False, subset=None, interpolation='nearest')

TensorBoard
TensorFlow provides a handy way to visualize a variety of important aspects of our
network. To be able to use this useful tool, Keras will need to create some log files that
TensorBoard will read.

A way to do this is to use callbacks. A callback is a set of functions that is applied at a
specified stage during the model's training. It is possible to use these functions to get a view
on the internal states and statistics of the model while it's training. Is it possible to pass a list
of callbacks to the .fit() method of a Keras model. The relevant methods of the callbacks
will then be called at each stage of the training.

Here is an example of callbacks:

keras.callbacks.TensorBoard(log_dir='./Graph', histogram_freq=0,
 write_graph=True, write_images=True)

Then it's possible to launch the TensorBoard interface to visualize the graph in this case, but
it's also possible to visualize the metrics, the loss, or even the words embedding.

To launch TensorBoard from a terminal window, simply type in the following:

tensorboard --logdir=path/to/log-directory

Getting Started with Supervised Learning Chapter 1

[28]

This command will start a server and it will be possible to access it
from http://localhost:6006. With TensorBoard, it will be possible to easily compare
the performances of different network architectures or parameters:

This is the screenshot of a running TensorBoard

Getting Started with Supervised Learning Chapter 1

[29]

Summary
In this chapter, we learned about AI and deep learning. We also dived deep into
understanding the various types of machine learning. Then, we learned how to set up our
working environment and executed a supervised learning practice in Python. We also
looked into feature engineering and supervised learning algorithms and how to use the
right metrics to evaluate a model.

In the next chapter, we will learn the building blocks of deep learning and the math behind
it.

2
Neural Network Fundamentals

Artificial neural networks (ANNs) are a set of bio-inspired algorithms. In particular, they
are loosely inspired by biological brains; exactly like animal brains, ANNs consist of simple
units (neurons) connected to each other. In biology, these units are called neurons. They
receive, process, and transmit a signal to other neurons, acting like a switch.

The elements of a neural network are quite simple on their own; the complexity and the
power of these systems come from the interaction between the elements. A human brain
has more than 100 billion neurons and 100 trillion connections.

In the previous chapter, we introduced a supervised learning problem. In this chapter, we
will cover the main building blocks to create Neural Networks (NNs) to solve such a
problem. We will cover all of the elements to create a feedforward neural network, and
we'll explain how to train it, implementing it from scratch and using Keras.

Following are some important topics that we will be covering in this chapter:

The Perceptron
A simple Feed forward Neural Network
FFNN in Python from scratch

The perceptron
As we anticipated before, the concept of the perceptron is inspired by the biological neuron,
and its main function is to decide to block or let a signal pass. Neurons receive a set of
binary input, created by electrical signals. If the total signal surpasses a certain threshold,
the neuron fires an output.

Neural Network Fundamentals Chapter 2

[31]

A perceptron does the same, as we can see in the following diagram:

It can receive multiple pieces of input, and this input is then multiplied by a set of weights.
The sum of the weighted signal will then pass through an activation function—in this case,
a step function. If the total signal is greater than a certain threshold, the perceptron will
either let the signal pass, or not. We can represent this mathematically with the following
formula:

This is the mathematical model for a neuron, represented as an explicit sum and as a matrix
operation. The term WTx is the vectorized representation of the formula, where W is the
weight matrix that is first transposed and is then multiplied by the vector of inputs, x.

To get a complete mathematical description, we should add a constant term, b, called the
bias:

Now, we have the generic expression of a linear equation, which is the whole process that
happened before the step function.

Next, the linear combination of the input and the weight, z, goes through the activation
function, which will determine whether the perceptron will let the signal pass.

The most simple activation function is the step function. The output of the neuron can be
approximated by a step function, which can be represented with the following equation:

Neural Network Fundamentals Chapter 2

[32]

This can be visualized by the following plot:

Plot of the step function

There are many types of activation functions; we will describe them later on.

Implementing a perceptron
We will now look at how to build a perceptron from scratch ,in order to make sure we
understand the concepts as we will use them to build complex networks.

Single-layer perceptrons are only capable of learning patterns that are linearly separable.
The learning part is the process of finding the weights that minimize the error of the
output.

First of all, let's create a dataset. We will do so by sampling from two distinct normal
distributions that we created, labeling the data according to the distribution. After that, we
will train our perceptron to distinguish them:

import numpy as np
import pandas as pd
import seaborn as sns; sns.set()
from sklearn.metrics import confusion_matrix

initiating random number
np.random.seed(11)

Creating the dataset

Neural Network Fundamentals Chapter 2

[33]

mean and standard deviation for the x belonging to the first class
mu_x1, sigma_x1 = 0, 0.1

constat to make the second distribution different from the first
x2_mu_diff = 0.35

creating the first distribution
d1 = pd.DataFrame({'x1': np.random.normal(mu_x1, sigma_x1 , 1000),
 'x2': np.random.normal(mu_x1, sigma_x1 , 1000),
 'type': 0})

creating the second distribution
d2 = pd.DataFrame({'x1': np.random.normal(mu_x1, sigma_x1 , 1000) +
x2_mu_diff,
 'x2': np.random.normal(mu_x1, sigma_x1 , 1000) +
x2_mu_diff,
 'type': 1})

data = pd.concat([d1, d2], ignore_index=True)

ax = sns.scatterplot(x="x1", y="x2", hue="type",
 data=data)

To visualize the preceding code, we can run it in a Jupyter Notebook with the
%matplotlib inline option set, obtaining the following plot:

The two distributions, colored according to their type labels

Neural Network Fundamentals Chapter 2

[34]

As we can observe, the two distributions are linearly separable, so it's an appropriate task
for our model.

Now, let's create a simple class to implement the perceptron. We know that our input data
has two pieces of input (the coordinates in our graph) and a binary output (the type of the
data point), distinguished by different colors:

class Perceptron(object):
 """
 Simple implementation of the perceptron algorithm
 """

 def __init__(self, w0=1, w1=0.1, w2=0.1):

 # weights
 self.w0 = w0 # bias
 self.w1 = w1
 self.w2 = w2

We need two weights, one for each input, plus an extra one to represent the bias term of
our equation. We will represent the bias as a weight that always receives an input equal to
1. This will make optimization easier.

We now need to add the methods to calculate the prediction to our class, which refers to the
part that implements the mathematical formula. Of course, at the beginning, we don't know
what the weights are (that's actually why we train the model), but we need some values to
start, so we initialize them to an arbitrary value.

We will use the step function as our activation function for the artificial neuron, which will
be the filter that decides whether the signal should pass:

 def step_function(self, z):
 if z >= 0:
 return 1
 else:
 return 0

The input will be then summed and multiplied by the weights, so we will need to
implement a method that will take two pieces of input and return their weighted sum. The
bias term is indicated by the term self.w0, which is always multiplied by the unit:

 def weighted_sum_inputs(self, x1, x2):
 return sum([1 * self.w0, x1 * self.w1, x2 * self.w2])

Neural Network Fundamentals Chapter 2

[35]

Now, we need to implement the predict function, which uses the functions we defined in
the preceding code block to calculate the output of the neuron:

 def predict(self, x1, x2):
 """
 Uses the step function to determine the output
 """
 z = self.weighted_sum_inputs(x1, x2)

 return self.step_function(z)

Later on in this book, you will see that it is better to choose activation functions that are
easily derivable, as gradient descent is the more convenient way to train a network.

The training phase, where we calculate the weights, is a simple process that is implemented
with the following fit method. We need to provide this method with the input, the output,
and two more parameters: the number of epochs and the step size.

An epoch is a single step in training our model, and it ends when all training samples are
used to update the weights. For DNNs, it's often required to train with hundreds of epochs,
if not more, but in our example, one will be fine.

The step size (or learning rate) is a parameter that helps to control the effect of new updates
on the current weights. The perceptron convergence theorem states that a perceptron will
converge if the classes are linearly separable, regardless of the learning rate. On the other
hand, for NNs, the learning rate is quite important. When using gradient descent, it
determines the speed of convergence and might determine how close to the minima of the
error function you will be able to get. A large step size might make the training jump
around the local minima, while a too small step size will make the training too slow.

In the following code block, it's possible to find the code for the method that we need to
add to the perceptron's class to do the training:

def predict_boundary(self, x):
 """
 Used to predict the boundaries of our classifier
 """
 return -(self.w1 * x + self.w0) / self.w2

 def fit(self, X, y, epochs=1, step=0.1, verbose=True):
 """
 Train the model given the dataset
 """
 errors = []

 for epoch in range(epochs):

Neural Network Fundamentals Chapter 2

[36]

 error = 0
 for i in range(0, len(X.index)):
 x1, x2, target = X.values[i][0], X.values[i][1],
 y.values[i]
 # The update is proportional to the step size and
 the error
 update = step * (target - self.predict(x1, x2))
 self.w1 += update * x1
 self.w2 += update * x2
 self.w0 += update
 error += int(update != 0.0)
 errors.append(error)
 if verbose:
 print('Epochs: {} - Error: {} - Errors from all epochs:
 {}'\.format(epoch, error, errors))

The training process calculates the weight update by multiplying the step size (or learning
rate) by the difference between the real output and the prediction. This weighted error is
then multiplied by each input and added to the corresponding weight. It's a simple update
strategy that will allow us to divide the region in two and classify our data. This learning
strategy is known as the Perceptron Learning Rule, and it's possible to demonstrate that if
the problem is linearly separable, then the Perceptron Learning Rule will find a set of
weights that solves the problem in a finite number of iterations.

We also added some error log functionality, so it's possible to test it with more epochs and
see how the error is affected by it.

The perceptron class is now complete; we need to create a training and a test set to train the
network and validate its results. It's best practice to also use a validation set, but in this
example, we will skip it, as we want to focus on the training process. It's also a good
practice to use cross-validation, but we will skip that, as well, as we will only use one
training and one test set, for simplicity:

Splitting the dataset in training and test set
msk = np.random.rand(len(data)) < 0.8

Roughly 80% of data will go in the training set
train_x, train_y = data[['x1','x2']][msk], data.type[msk]
Everything else will go into the valitation set
test_x, test_y = data[['x1','x2']][~msk], data.type[~msk]

Neural Network Fundamentals Chapter 2

[37]

Now that we have everything we need for the training, we will initialize the weights to a
number close to zero and perform the training:

my_perceptron = Perceptron(0.1,0.1)

my_perceptron.fit(train_x, train_y, epochs=1, step=0.005)

To check the algorithm's performance, we can use the confusion matrix, which shows all of
the correct predictions and the misclassifications. As it's a binary task, we will have three
possible options for the result—correct, false positive, or false negative:

pred_y = test_x.apply(lambda x: my_perceptron.predict(x.x1, x.x2), axis=1)

cm = confusion_matrix(test_y, pred_y, labels=[0, 1])

print(pd.DataFrame(cm,
 index=['True 0', 'True 1'],
 columns=['Predicted 0', 'Predicted 1']))

The preceding code block will produce the following output:

 Predicted 0 Predicted 1

True 0 190 5

True 1 0 201

We can also visualize these results on the input space by drawing the linear decision
boundary. To accomplish that, we need to add the following method in our perceptron
class:

 def predict_boundary(self, x):
 """
 Used to predict the boundaries of our classifier
 """
 return -(self.w1 * x + self.w0) / self.w2

To find the boundary, we need to find the points that satisfy the equation: x2*w2 + x1*w1 +
w0 = 0.

Neural Network Fundamentals Chapter 2

[38]

Now, we can plot the decision line and the data with the code:

Adds decision boundary line to the scatterplot

ax = sns.scatterplot(x="x1", y="x2", hue="type",
 data=data[~msk])
ax.autoscale(False)
x_vals = np.array(ax.get_xlim())
y_vals = my_perceptron.predict_boundary(x_vals)
ax.plot(x_vals, y_vals, '--', c="red")

Now, you should see the following diagram:

It's also possible to compute continuous output, not just binary; it's sufficient to use a
continuous activation function, such as, for example, the logistic function. With this choice,
our perceptron becomes a logistic regression model.

Keras
Now that you have seen how to implement a perceptron from scratch in Python and have
understood the concept, we can use a library to avoid re-implementing all of these
algorithms. Luckily, there are plenty of libraries that make it possible for us to focus on the
architecture and the composition of the network without having to lose time in too many
implementation issues.

Neural Network Fundamentals Chapter 2

[39]

In particular, the main breakthrough of the last decade, and what has made the deep
learning evolution so rapid, is the use of graphics cards. In particular, NVIDIA created
CUDA, a programming interface that made it possible to use all of the power of modern
Graphical Processing Unit (GPU) for general programming. A GPU is a piece of hardware
primarily designed to render images; it contains a much higher number of cores compared
to a CPU, but these cores are only capable of performing simple operations. They are ideal
for matrix multiplication, and that's why they are able to speed up the computational time,
even by 100, compared to a CPU.

TensorFlow is a library that uses CUDA to interact with the GPU, but it can also run on a
normal CPU. Having a GPU is not necessary to run the examples in this book.

We will use Keras on top of TensorFlow, as it provides a high-level, Pythonic API that will
allow us to quickly build even complex architectures.

Implementing perceptron in Keras
Let's look at how we can implement a perceptron in Keras, introducing some simple
concepts.

The main objective of Keras is to make the model creation more Pythonic and model-
centric.

There are two ways to create a model, using either the Sequential or Model class. The
easiest way to create a Keras model is by using the Sequential API. There are some
limitations that come with using that class; for example, it is not straightforward to define
models that may have multiple different input or output sources, but it fits our purpose.

We can start by initializing the sequential class:

my_perceptron = Sequential()

Then, we will have to add our input layer and specify the dimensions and a few other
parameters. In our case, we will add a Dense layer, which means that all of the neurons
have a connection with all of the neurons from the next layer.

This Dense layer is fully connected, meaning that all of the neurons have one connection
with the neurons from the next layer. It performs the product between the input and our set
of weights, which is also called the kernel, of course, adding the bias if specified. Then, the
result will pass through the activation function.

Neural Network Fundamentals Chapter 2

[40]

To initialize it, we need to specify the number of neurons (1), the input dimension (2, as we
have two variables), the activation function (linear), and the initial weight value (zero).
To add the layer to the model, it's possible to use the add () method, like in the in/out
example:

input_layer = Dense(1, input_dim=2, activation="sigmoid",
kernel_initializer="zero")
my_perceptron.add(input_layer)

Now, it's necessary to compile our model. In this phase, we will simply define the loss
function and the way we want to explore the gradient, our optimizer. Keras does not
supply the step function that we used before, as it's not differentiable and therefore will not
work with backpropagation. If we want to use it, it's possible to define custom functions
using keras.backend, and in this case, we will also have to define the derivative
ourselves, but we will leave this as an exercise for the reader.

We will use the MSE instead, for simplicity. Also, as a gradient descent strategy, we are
going to use Stochastic Gradient Descent (SGD), which is an iterative method to optimize
a differentiable function. When defining the SGD, we can also specify a learning rate, which
we will set as 0.01:

my_perceptron.compile(loss="mse", optimizer=SGD(lr=0.01))

After this, we only need to train our network with the fit method. For this phase, we need
to provide the training data and its labels.

We can also provide the number of epochs that we want. An epoch is a pass forward and
backward through the network of the entire dataset. In this simple case, one is enough, but
for more complex neural networks, we will need many more.

We also specify the batch size, which is the portion of our training set that will be used for
one gradient iteration. To make the gradient process less noisy, it's common to batch the
data before updating the weights. The size will depend on how much memory is required,
but, in general, it will be between 32 and 512 data points. There are a lot of variables that
play into that batch size, but in general, a large batch size tends to converse to a pretty
sharp minimizer and lose the ability to generalize the learnings outside the training set. To
help avoid being stuck in a local minima, we also want to shuffle the data. In this case,
every iteration will change the batches, and it will make being stuck in a local minima more
difficult:

my_perceptron.fit(train_x.values, train_y, nb_epoch=2, batch_size=32,
shuffle=True)

Neural Network Fundamentals Chapter 2

[41]

Now, we can easily compute the AUC score, as follows:

from sklearn.metrics import roc_auc_score

pred_y = my_perceptron.predict(test_x)

print(roc_auc_score(test_y, pred_y))

While the model is training, we will see some information printed on the screen. Keras
shows the progress of the model, giving us an ETA for each epoch while running. It also
has an indication about the loss that we can use to see whether the model is actually
improving its performance:

Epoch 1/30
1618/1618 [==============================] - 1s 751us/step - loss: 0.1194
Epoch 2/30 1618/1618

[==============================] - 1s 640us/step - loss: 0.0444 Epoch 3/30
1618/1618

Feedforward neural networks
One of the main drawbacks of the perceptron algorithm is that it's only able to capture
linear relationships. An example of a simple task that it's not able to solve is the logic XOR.
The logic XOR is a very simple function in which the output is true only when its two
pieces of binary input are different from each other. It can be described with the
following table:

X2 = 0 X2 = 1

X1 = 0 False True

X1 = 1 True False

The preceding table can be also represented with the following plot:

Neural Network Fundamentals Chapter 2

[42]

The XOR problem visualized

In the XOR problem, it's not possible to find a line that correctly divides the prediction
space in two.

It's not possible to separate this problem using a linear function, so our previous perceptron
would not help here. Now, the decision boundary in the previous example was a single
line, so it's easy to note that in this case, two lines would be sufficient to classify our input.

But now, we have a problem: if we feed the output of our previous perceptron to another
one, we will still only have a linear combination of the input, so in this way, we will not be
able to add any non-linearity.

You can easily see that if you add more and more, you will be able to separate the space in
a more complex way. That's what we want to achieve with Multilayer Neural Networks:

It's possible to correctly separate the space with two distinct linear functions

Neural Network Fundamentals Chapter 2

[43]

Another way to introduce non-linearity is by changing the activation function. As we
mentioned before, the step function is just one of our options; there are also non-linear
ones, such as Rectified Linear Unit (ReLU) and the sigmoid. In this way, it's possible to
compute continuous output and combine more neurons into something that divides the
solution space.

This intuitive concept is mathematically formulated in the universal approximation
theorem, which states that an arbitrary continuous function can be approximated using a
multilayer perceptron with only one hidden layer. A hidden layer is a layer of neurons in
between the input and output. This result is true for a variety of activation functions, for
example, RELU and sigmoid.

A Multilayer Neural Network is a particular case of a feedforward neural network
(FFNN), which is a network that has only one direction, from the input to the output.

One of the main differences is how you train an FFNN; the most common way is through
backpropagation.

Introducing backpropagation
Before going into the math, it will be useful to develop an intuitive sense of what the
training does. If we look back at our perceptron class, we simply measure the error by
using the difference between the real output and our prediction. If we wanted to predict a
continuous output rather than just a binary one, we would have to use a different way to
measure the error, as positive and negative errors might cancel each other out.

A common way to avoid this kind of problem is by measuring the error by using the root
mean square error (RMSE), which is defined as follows:

Neural Network Fundamentals Chapter 2

[44]

If we plot the square error and we let our prediction vary, we will obtain a parabolic curve:

The error surface for a single neuron

In reality, our prediction is controlled by the weights and the bias, which is what we are
changing to decrease the error. By varying the weights and the bias, we obtain a more
complex curve; its complexity will depend on the number of weights and biases we have.
For a generic neuron with n weights, we will have an elliptic paraboloid of an n+1
dimension, as we need to vary the bias, as well:

Error surface for a linear perceptron

Neural Network Fundamentals Chapter 2

[45]

The lowest point of the curve is known as the global minima, and it's where we have the
lowest possible loss, which means that we can't have less of an error than that. In this
simple case, the global minima is also the only minima we have, but in complex functions,
we can also have a few local minima. A local minima is defined as the lowest point in an
arbitrary small interval around, so it's not necessarily the lowest overall.

In this way, we can see the training process as an optimization problem that is looking for
the lowest point of the curve in an efficient way. A convenient way to explore the error
surface is by using gradient descent. The gradient descent method uses the derivative of the
squared error function with respect to the weights of the network, and it follows the
downward direction. The direction is given by the gradient. As we will look at the
derivative of the function, for convenience, we will consider a slightly different way of
measuring the square error, compared to what we saw before:

We decided to divide the square error by two, just to cancel out the coefficient that the
derivation will add. This will not affect our error surface, even more so because later on, we
will multiply the error function by another coefficient called the learning rate.

The training of the network is normally done using backpropagation, which is used to
calculate the steepest descent direction. If we look at each neuron individually, we can see
the same formula that we saw for the perceptron; the only difference is that now, the input
of one neuron is the output of an another one. Let's take the neuron j; it will run through its
activation function and the result of all of the networks before it:

If the neuron is in the first layer after the input layer, then the input layers are simply the
input to the network. With n, we denote the number of input units of the neuron j. With

, we denote the weight between the output of the neuron k and our neuron j.

The activation function, which we want to be non-linear and differentiable, is denoted by
the Greek letter . We want it to be non-linear because otherwise, the combination of a
series of linear neurons will still be linear, and we want it to be differentiable, because we
want to calculate the gradient.

Neural Network Fundamentals Chapter 2

[46]

A very common activation function is the logistic function, also known as the sigmoid
function, defined by the following formula:

This has a convenient derivative of the following formula:

The peculiar part of backpropagation is that not only does the inputs go to the output to
adjust the weights, but the output also goes back to the input:

A simple FFNN for binary classification

Activation functions
So far, you have seen two different activation functions: a step function and a sigmoid. But
there are many others that, depending on the task, can be more or less useful.

Activation functions are usually used to introduce non-linearity. Without it, we will only
have a linear combination of input going through another linear function.

We will now look at a few activation functions and their code in Keras, in detail.

Neural Network Fundamentals Chapter 2

[47]

Sigmoid
As you have already seen, the sigmoid function is a particular case of the logistic function,
and it gives us something similar to a step function; therefore, it's useful for binary
classifications, indicating a probability as a result. The function is differentiable; therefore,
we can run gradient descent for every point. It's also monotonic, which means that it
always increases or decreases, but its derivative does not; therefore, it will have a minima.
It forces all output values to be between 0 and 1. Because of this, even very high values
asymptotically tend to one and very low to 0. One problem that this creates is that the
derivative in those points is approximately 0; therefore, the gradient descent process will
not find a local minima for very high or very low values, as shown in the following
diagram:

Softmax
The softmax function is a generalization of the sigmoid function. While the sigmoid gives
us the probability for a binary output, softmax allows us to transform an un-normalized
vector into a probability distribution. That means that the softmax will output a vector that
will sum up to 1, and all of its values will be between 0 and 1.

Tanh
As we said, the logistic sigmoid can cause a neural network to get stuck, as a high or low
value input will produce a result very near zero. This will mean that the gradient descent
will not update the weights and not train the model.

Neural Network Fundamentals Chapter 2

[48]

The hyperbolic tangent, or the tanh function, is an alternative to sigmoid, and it still has a
sigmoidal shape. The difference is that it will output a value between -1 and 1. Hence,
strongly negative input to the tanh function will map to negative output. Additionally,
only zero-valued input is mapped to near-zero output. These properties make the network
less likely to get stuck during training:

Hyperbolic tangent function

ReLU
ReLU is one of the most commonly used activation functions. It behaves like a linear
function when the input is greater than 0; otherwise, it will always be equal to 0. It's the
analog of the half-wave rectification in electrical engineering, :

The ReLU function

Neural Network Fundamentals Chapter 2

[49]

The range for this function is from 0 to infinite. The issue is that the negative values become
zero; therefore, the derivative will always be constant. This is clearly an issue for
backpropagation, but in practical cases, it does not have an effect.

There are a few variants of ReLU; one of the most common ones is Leaky ReLU, which aims
to allow a positive small gradient when the function is not active. Its formula is as follows:

Here, is typically 0.01, as shown in the following diagram:

The Leaky ReLU function

Keras implementation
In Keras, it's possible to specify the activations through either an activation layer or
through the activation argument supported by all forward layers:

from keras.layers import Activation, Dense
model.add(Dense(32))
model.add(Activation('tanh'))

This is equivalent to the following command:

model.add(Dense(32, activation='tanh'))

Neural Network Fundamentals Chapter 2

[50]

You can also pass an element-wise TensorFlow/Theano/CNTK function as an activation:

from keras import backend as K
model.add(Dense(32, activation=K.tanh))

The chain rule
One of the fundamental principles to compute backpropagation is the chain rule, which is a
more generic form of the delta rule that we saw for the perceptron.

The chain rule uses the property of derivatives to calculate the result of the composition of
more functions. By putting neurons in series, we are effectively creating a composition of
functions; therefore, we can apply the chain rule formula:

In this particular case, we want to find the weight that minimizes our error function. To do
that, we derive our error function in respect to the weights, and we follow the direction of
the descending gradient. So, if we consider the neuron j, we will see that its input comes
from the previous part of the network, which we can denote with networkj. The output of
the neuron will be denoted with oj; therefore, applying the chain rule, we will obtain the
following formula:

Let's focus on every single element of this equation. The first factor is exactly what we had
before with the perceptron; therefore, we get the following formula:

This is because in this case, oj is also the output of the neurons in the next layer that we can
denote with L. If we denote the number of neurons in a given layer with l, we will have the
following formula:

Neural Network Fundamentals Chapter 2

[51]

That's where the delta rule that we used previously comes from.

When it's not the output neuron that we are deriving, the formula is more complex, as we
need to consider each single neuron as it might be connected with a different part of the
network. In that case, we have the following formula:

Then, we need to derive the output representation we found in respect to the rest of the
network. In this case, the activation function is a sigmoid; therefore, the derivative is pretty
easy to calculate:

The derivative of the input of neuron oj (networkj) with respect to the weight that connects
the neuron with our neuron j is simply the partial derivative of the activation function. In
the last element, only one term depends on wij; therefore, everything else becomes 0:

Now, we can see the general case of the delta rule:

Here, we denote the following formula:

Neural Network Fundamentals Chapter 2

[52]

Now, the gradient descent technique wants to move our weights one step toward the
direction of the gradient. This one step is something it's up to us to define, depending on
how fast we want the algorithm to converge and how close we want to go to the local
minima. If we take too large of a step, it's unlikely that we will find the minima, and if we
take too small of a step, it will take too much time to find it:

We mentioned that with gradient descent, we are not guaranteed to find a local minima,
and this is because of the non-convexity of error functions in neural networks. How well
we explore the error space will depend on parameters such as the step size and the learning
rate, but also on how well we created the dataset.

Unfortunately, at the moment, there is no formula that guarantees a good way to explore
the error function. It's a process that still requires a bit of craftsmanship, and because of
that, some theoretical purists look at deep learning as an inferior technique, preferring the
more complete statistical formulations. But if we choose to look at the other side of the
matter, this can be seen as a great opportunity for researchers to advance the field. The
growth of deep learning in practical applications is what has driven the success of the field,
demonstrating that the current limitations are not major drawbacks.

The XOR problem
Let's try to solve the XOR problem we presented earlier with a simple FFNN, by
performing the following steps:

First of all, let's import everything we will need for this task and seed our1.
random function:

import numpy as np
import pandas as pd
from sklearn.metrics import confusion_matrix

Neural Network Fundamentals Chapter 2

[53]

from sklearn.metrics import roc_auc_score
from sklearn.metrics import mean_squared_error
import matplotlib

matplotlib.use("TkAgg")

initiating random number
np.random.seed(11)

To make it more similar to a real-word problem, we will add some noise to the2.
XOR input, and we will try to predict a binary task:

Creating the dataset

mean and standard deviation for the x belonging to the first
class
mu_x1, sigma_x1 = 0, 0.1

Constant to make the second distribution different from the first
x1_mu_diff, x2_mu_diff, x3_mu_diff, x4_mu_diff = 0.5, 0.5, 0.5,
0.5
x1_mu_diff, x2_mu_diff, x3_mu_diff, x4_mu_diff = 0, 1, 0, 1

creating the first distribution
d1 = pd.DataFrame({'x1': np.random.normal(mu_x1, sigma_x1,
 1000) + 0,
 'x2': np.random.normal(mu_x1, sigma_x1,
 1000) + 0,'type': 0})

d2 = pd.DataFrame({'x1': np.random.normal(mu_x1, sigma_x1,
 1000) + 1,
 'x2': np.random.normal(mu_x1, sigma_x1,
 1000) - 0,'type': 1})

d3 = pd.DataFrame({'x1': np.random.normal(mu_x1, sigma_x1,
 1000) - 0,
 'x2': np.random.normal(mu_x1, sigma_x1,
 1000) - 1,'type': 0})

d4 = pd.DataFrame({'x1': np.random.normal(mu_x1, sigma_x1,
 1000) - 1,
 'x2': np.random.normal(mu_x1, sigma_x1,
 1000) + 1, 'type': 1})

data = pd.concat([d1, d2, d3, d4], ignore_index=True)

Neural Network Fundamentals Chapter 2

[54]

In this way, we will get a noisy XOR, as shown in the following screenshot:

FFNN in Python from scratch
To create our network, we will create a class similar to the one we created in the previous
chapter for the perceptron. Contrary to what object-oriented programming (OOP) would
dictate, we will not take advantage of the perceptron class we previously created, as it's
more convenient to work with matrices of weights.

Our goal is to show the code how to understand how to implement the theory we just
explained; therefore, our solution will be quite specific for our use case. We know that our
network will have three layers, and that the input size will be 2, and we know the number
of neurons in the hidden layer:

class FFNN(object):

 def __init__(self, input_size=2, hidden_size=2, output_size=1):
 # Adding 1 as it will be our bias
 self.input_size = input_size + 1
 self.hidden_size = hidden_size + 1
 self.output_size = output_size

 self.o_error = 0
 self.o_delta = 0
 self.z1 = 0

Neural Network Fundamentals Chapter 2

[55]

 self.z2 = 0
 self.z3 = 0
 self.z2_error = 0

 # The whole weight matrix, from the inputs till the
 hidden layer
 self.w1 = np.random.randn(self.input_size, self.hidden_size)
 # The final set of weights from the hidden layer till
 the output layer
 self.w2 = np.random.randn(self.hidden_size, self.output_size)

As we decided to use sigmoid as the activation function, we can add it as an external
function. Also, we know we need to compute the derivative, as we are using SGD;
therefore, we will implement it as another method. By using the preceding formulas, the
implementation is pretty straightforward:

def sigmoid(s):
 # Activation function
 return 1 / (1 + np.exp(-s))

def sigmoid_prime(s):
 # Derivative of the sigmoid
 return sigmoid(s) * (1 - sigmoid(s))

We will then have one function to calculate the forward pass, and one for the backward
pass. We will calculate the output using the dot product between the input and the weights
and we'll pass everything through the sigmoid:

def forward(self, X):
 # Forward propagation through our network
 X['bias'] = 1 # Adding 1 to the inputs to include the bias
 in the weight
 self.z1 = np.dot(X, self.w1) # dot product of X (input)
 and first set of 3x2 weights
 self.z2 = sigmoid(self.z1) # activation function
 self.z3 = np.dot(self.z2, self.w2) # dot product of hidden
 layer (z2) and second set of 3x1 weights
 o = sigmoid(self.z3) # final activation function
 return o

The forward propagation is also what we will use for predictions, but we will create an
alias, as it's most common to use the name predict for this task:

def predict(self, X):
 return forward(self, X)

Neural Network Fundamentals Chapter 2

[56]

The most important concept in backpropagation is the backward propagation of the error
to adjust the weights and reduce the error. We implement this function in the backward
method. For this, we start from the output and calculate the error between our prediction
and the actual output. This will be used to calculate the delta that is used to update the
weights. In all layers, we take the output of the neurons and use it as input, passing it
through the derivative of the sigmoid and multiplying it by the error and the step, also
known as the learning rate:

def backward(self, X, y, output, step):
 # Backward propagation of the errors
 X['bias'] = 1 # Adding 1 to the inputs to include the bias
 in the weight
 self.o_error = y - output # error in output
 self.o_delta = self.o_error * sigmoid_prime(output) * step #
 applying derivative of sigmoid to error

 self.z2_error = self.o_delta.dot(
 self.w2.T) # z2 error: how much our hidden layer weights
 contributed to output error
 self.z2_delta = self.z2_error * sigmoid_prime(self.z2) * step #
 applying derivative of sigmoid to z2 error

 self.w1 += X.T.dot(self.z2_delta) # adjusting first of weights
 self.w2 += self.z2.T.dot(self.o_delta) # adjusting second set
 of weights

When training the model for each data point, we will do two passes, one forward and one
backward. Therefore, our fit method will be as follows:

def fit(self, X, y, epochs=10, step=0.05):
 for epoch in range(epochs):
 X['bias'] = 1 # Adding 1 to the inputs to include the bias
 in the weight
 output = self.forward(X)
 self.backward(X, y, output, step)

Now, our NN is ready, and it can be used for our task. We will need a training and a testing
set again:

Splitting the dataset in training and test set
msk = np.random.rand(len(data)) < 0.8

Roughly 80% of data will go in the training set
train_x, train_y = data[['x1', 'x2']][msk], data[['type']][msk].values

Everything else will go into the validation set
test_x, test_y = data[['x1', 'x2']][~msk], data[['type']][~msk].values

Neural Network Fundamentals Chapter 2

[57]

We can now train the network, as follows:

my_network = FFNN()

my_network.fit(train_x, train_y, epochs=10000, step=0.001)

We'll verify the performance of our algorithm, as follows:

pred_y = test_x.apply(my_network.forward, axis=1)

Reshaping the data
test_y_ = [i[0] for i in test_y]
pred_y_ = [i[0] for i in pred_y]

print('MSE: ', mean_squared_error(test_y_, pred_y_))
print('AUC: ', roc_auc_score(test_y_, pred_y_))

The MSE, after 1,000 epochs is less than 0.01—a pretty good result. We measured the
performance by using the ROC Area Under the Curve (AUC), which measures how good
we were to order our predictions. With an AUC of over 0.99, we are confident that there are
a few mistakes, but the model is still working very well.

It's also possible to verify the performances using a confusion matrix. In this case, we will
have to fix a threshold to discriminate between predicting one label or another. As the
results are separated by a large gap, a threshold of 0.5 seems appropriate:

threshold = 0.5
pred_y_binary = [0 if i > threshold else 1 for i in pred_y_]

cm = confusion_matrix(test_y_, pred_y_binary, labels=[0, 1])

print(pd.DataFrame(cm,
 index=['True 0', 'True 1'],
 columns=['Predicted 0', 'Predicted 1']))

We will obtain one good result that's possible to check with the following confusion matrix:

Predicted 0 Predicted 1

True 0 8 417

True 1 392 0

Neural Network Fundamentals Chapter 2

[58]

Visualizing the clusters, it's clear where the errors are, as shown in the following diagram:

FFNN Keras implementation
To implement our network in Keras, we will again use the Sequential model, but this
time with one input neuron, three hidden units, and of course, one output unit, as we are
doing a binary prediction:

Let's import all of the necessary parts to create our network:1.

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
from sklearn.metrics import mean_squared_error
import os
from keras.callbacks import ModelCheckpoint, Callback,
EarlyStopping, TensorBoard

Now, we need to define the first hidden layer of the network. To accomplish2.
this, it's sufficient to specify the hidden layer's input—two in the XOR case. We
can also specify the number of neurons in the hidden layer, which is as follows:

model = Sequential()
model.add(Dense(2, input_dim=2))

As an activation function, we chose to use tanh:3.

model.add(Activation('tanh'))

Neural Network Fundamentals Chapter 2

[59]

We then add another fully connected layer with one neuron, which, with a4.
sigmoid activation function, will give us the output:

model.add(Dense(1))
model.add(Activation('sigmoid'))

We again use SGD as the optimization method to train our neural network:5.

sgd = SGD(lr=0.1)

We then compile our network, specifying that we want to use the MSE as loss6.
function:

model.compile(loss='mse', optimizer=sgd)

As the last step, we train our network, but this time we don't care about the batch7.
size and we run it for 2 epochs:

model.fit(train_x[['x1', 'x2']], train_y,batch_size=1, epochs=2)

As usual, we measure the MSE on the test set as follows:8.

pred = model.predict_proba(test_x)

print('NSE: ',mean_squared_error(test_y, pred))

TensorBoard
This was a simple example of how to solve a simple non-linear problem with a neural
network; it's really as simple as it gets.

In real life, we will face much bigger challenges; we will have to run multiple experiments
and debug our network, and only using the information Keras prints on the screen will not
be enough. Luckily, Keras and TensorFlow come with specific tools to help us to visualize
and understand our network. We will now see how to use TensorBoard, a suite of
visualization tools that we can use to plot quantitative metrics about the neural network.
It's also possible to use it to visualize additional data, such as images.

Neural Network Fundamentals Chapter 2

[60]

TensorBoard on the XOR problem
TensorBoard comes with TensorFlow by default, so to launch the program, we only need to
type in a console that is open where the network code is saved:

tensorboard --logdir ../logs

And we will see a URL on the screen, which is where the TensorBoard server will be
accessible. If you simply follow the preceding instructions, it will be
at http://localhost:6006/. It will read the files in the logs folder; as, for the moment,
it's empty, we will not be able to see any information.

To start logging, we will have to modify the code we previously wrote. We will use the
callbacks function.

A callback is just a set of functions that will be applied at given stages of the training
procedure. We can use them to peek into the internal states and statistics of the model
during training. To define a callback, we need to run the following command:

from keras.callbacks import Tensorboard

We can then pass a list of callbacks (as the keyword argument) to the fit methods in both
the Sequential and the Model classes. Then, the callbacks will be called at each stage of
the training.

We can add a callback that will show us the model of the graph:

basedir = '..'

logs = os.path.join(basedir, 'logs')

tbCallBack = TensorBoard(
 log_dir=logs, histogram_freq=0, write_graph=True,
 write_images=True)

callbacks_list = [tbCallBack]

The only thing we will need to change on the code we previously wrote will be the training
call; it will need a callbacks list so that they can be executed at the end of each epoch:

model.fit(train_x[['x1', 'x2']], train_y, batch_size=1, epochs=10,
callbacks=callbacks_list)

Neural Network Fundamentals Chapter 2

[61]

Note that we increased the number of epochs, just to be able to analyze more data.

Now, if we reload our TensorBoard page, we will be able to see the following two things:

The graph of our network
How the loss evolved during each epoch

Let's look at the preceding things on the following TensorBoard page:

Neural Network Fundamentals Chapter 2

[62]

Using TensorBoard, it's possible to visualize the tensors graphs and their computation to
see potential bottleneck and optimize performances:

Visualization of our loss function during training

Training a complex network can be a task that could last for days or even weeks. There are
multiple things that can go wrong during this time, such as the machine can run out of
resources or there can be an hardware or electrical failure. To protect our work, we would
like to have a way to save the current state of the training to be able to re-open it at a later
time. Luckily, the state of a network is pretty much the weights connecting our neurons;
therefore, it's easy to save it. To do this programmatically during training, we will again use
our callbacks and, in particular, something called checkpoint:

filepath = "checkpoint-{epoch:02d}-{acc:.2f}.hdf5"

checkpoint = ModelCheckpoint(
 filepath, monitor='accuracy', verbose=1, save_best_only=False,
mode='max')

Neural Network Fundamentals Chapter 2

[63]

Let's add it now to our callbacks, and we can tell Keras to monitor the accuracy. To add
accuracy, we will have to add it as a metric:

callbacks_list = [tbCallBack, checkpoint]

model.compile(loss='mse', optimizer=sgd, metrics=['accuracy'])

Also, after we fit our model, it will return to us an object containing all of the history, a
record of training loss values and metrics values for each epoch:

history = model.fit(train_x[['x1', 'x2']], train_y, batch_size=1,
epochs=10, callbacks=callbacks_list)

Summary
In this chapter, we introduced the perceptron concept and how to solve a linear problem
with a perceptron. We discovered different ways to update the parameters of our model,
and we saw how to implement a perceptron from scratch and using Keras. We then
introduced neural networks as a set of connected neurons that are able, theoretically, to
approximate any function. We saw a few different activation functions and we discussed
their advantages and disadvantages. We saw how to create a simple network from scratch,
and how to do it using Keras.

In the next chapter, we will explain how to solve an image classification problem, using the
concepts we just introduced.

2
Section 2: Deep Learning

Applications
In this section, we will look at the concrete application of deep learning methods. In
particular, we will focus on computer vision and natural language processing (NLP).

The following chapters are included in this section:

Chapter 3, Convolutional Neural Networks for Image Processing
Chapter 4, Exploiting Text Embedding
Chapter 5, Working with RNNs
Chapter 6, Reusing Neural Networks with Transfer Learning

3
Convolutional Neural Networks

for Image Processing
In the previous chapter, we saw how it's possible to use a fully connected neural network to
approximate a nonlinear function. These types of networks suffer from one major problem:
they have too many parameters to learn. This will not only increase the computational time,
but also the chance of overfitting the data. Overfitting occurs when our model is not able to
generalize outside the training data, and results in poor performance on new inputs. This is
quite dangerous, because you might realize you are overfitting only after implementing the
model in production.

There are many different neural network architectures that can counter this issue. The most
common one, especially in computer vision, is the Convolutional Neural Network (CNN).

The following topics will be covered in this chapter:

Understanding CNNs
Convolutional layers
CNNs in Keras

Understanding CNNs
A problem that arises from using fully connected, feed-forward neural networks in real-life
applications is that the inputs of the problems we are trying to solve, for example images,
are very large. If we just consider a simple image, 100 x 100 pixels in size, we will have
10,000 weights for each neuron in the first hidden layer alone. It's easy to see how this can
rapidly become a huge problem.

Convolutional Neural Networks for Image Processing Chapter 3

[66]

CNN is a network architecture that uses some of the properties of the input data to reduce
the amount of connections needed to connect different network layers. In particular, CNN
relies on the input data having strong spatial correlation, meaning that correlated features
will be close together and noncorrelated features further apart. This property is typical of
images, where usually your task is to identify and classify subcomponents of a broader
image. An example of such a task is to recognize a person in a broad picture: all the features
relevant to the task will be in the same area. There are other tasks that can benefit from
CNN, such as speech analysis. In general, as we said, if you know that the features of the
problem you are working on have high spatial correlation you can consider using CNNs.

CNNs take inspiration from the connectivity pattern between neurons, which resembles the
visual cortex. Individual neurons will only react to stimuli in a restricted region of the
visual field, known as the receptive field. The receptive fields of different neurons partially
overlap, such that they cover the entire visual field.

As the name suggests, convolution is the most important operation in CNN, which is a
feed-forward neural network (FFNN) usually composed of the following layers:

Input layers
Convolutional layers
Activation layers
Pooling layers
Normalization layers
Fully connected layers
Output layers

We will now see the theory behind these concepts and then how to code them in Keras. We
have already discussed activation functions, so they will not be covered again.

We will now discuss each layer in detail.

Input data
In a CNN, the input is some data that has a high spatial correlation. Let's take an image as
an example; the digital representation of any image is a matrix of pixels. Each pixel
represents a point in the image and, for a black and white image, is a single number; for
example between 0 and 255 if we use an 8 bit (one byte) representation. This is because our
machine will be using a binary representation, so we will have 28 possible values:

Convolutional Neural Networks for Image Processing Chapter 3

[67]

One of the images from the Modified National Institute of Standards and Technology (MNIST) dataset, in which we can recognize an handwritten number seven

As we have mentioned, this is just an example of all the suitable tasks a CNN can solve. In
general, they are very good at dealing with input that has a high spatial correlation. These
problems must have a grid-like topology. Other examples include videos, recommendation
systems, and even time-series because you can see them as a one-dimensional grid.

One of the advantages of a CNN is that it can process all inputs that do not fit the classical
tabular form, for example when inputs have different sizes. This is possible because the
convolution operation processes only one part of the input at a time. The CNN will repeat
the process of applying it to the kernel to the image patch; the number of repeats needed is
totally dependent on the size of the input. It can be seen as a multiple matrix
multiplication between the input and the kernel.

Convolutional layers
Convolution is a typical operation in signal processing that expresses how two functions
modify each other and create a third function. Convolution layers are actually
implementing an autocorrelation operation, but in practice for our case convolution and
autocorrelation are the same, as they can be interchanged with a simple rotation operation.

Convolutional Neural Networks for Image Processing Chapter 3

[68]

Let's call our input x, the set of weights it passes through w, the output signal s, and the
time t. We want to give more importance to inputs that are more recent, therefore we will
use the function w(a) to define the weights, where a is the age of the measurement. The
convolutional operation is the process of combining the signal s and the set of weights,
which is also called a kernel. As we are dealing with data from real applications and not
just match abstractions, the time must be discrete. In mathematical terms the convolution is
defined as follows:

In deep learning, our input as we said is usually a matrix and also the set of weights,
therefore, we only need to compute the summation over a finite set of items. Most
implementations do not use the convolution operation, instead cross-correlation is
preferred. The two operations for our purpose, just in convolution the kernel needs to be
flipped, meaning that you would have to rotate the kernel by 180 degrees:

Kernel rotation

As before, the goal of our training is to find the set of weights, so in this case the kernel.
Convolution in CNN is never used alone, but together with other operations:

Example of correlation calculation

Convolutional Neural Networks for Image Processing Chapter 3

[69]

Typically, CNNs have sparse weights, also known as sparse connectivity, meaning that
there are only a few connections between each layer.

There is a way to reduce the number of parameters in the network and reduce the
computational load necessary to train and use the network. This goal is achieved by having
the size of the kernel much smaller than the inputs, which can be smaller.

The improvement in terms of computation is quite drastic, as you can see by looking at the
matrix multiplication operations that we can save:

Another advantage is weight sharing. Let's take as an example, an image detection
problem. We know that to be able to recognize an object the algorithm should focus on
specific traits of the image, such as edges. This property of our data has been exploited for
many years, but different algorithms where these features were extracted with different
algorithms are explicitly designed to recognize those properties.

To accomplish the same goal, a CNN computes multiple convolution, using separate
kernels. These are also called filters and they are typically quite small. For example, a filter
for a colored image can be 5 x 5 x 3 pixels in size, and we have many of these in each layer.
We will apply our convolution between each filter and the output of the previous layer,
forming dot products. What's different from the previously explained FFNN process is the
sliding part; the filter is moved around the whole set of inputs whereas, earlier, there was
only one set of weights:

Convolutional Neural Networks for Image Processing Chapter 3

[70]

In this way, every filter will be trained to recognize a specific feature. The closer we are to
the inputs, the simpler the features are; for example, orientations and colors. The closer we
go to the output, the more complex the feature will become; for example, the filters in the
last layers can detect a wheel-like pattern. Each filter will produce a two-dimensional
activation map, staking these filters will produce the output volume.

Sometimes sharing weights might not be the best way to achieve good predictive
performances. Sharing weights makes sense when we expect features to be a part of our
image that can be located anywhere in our inputs, but sometimes there are features that
must stay very specific. An example is face recognition, where we want to use some very
peculiar shapes, such as the shape of the eyes, to differentiate.

Now that the first stage of the process is done, the convolution has created a set of filters
that can be linearly activated. This set of filters will then be the input of a nonlinear
function, which is most frequently going to be the Rectified Linear Unit (ReLU) function
that we saw in the previous chapter. This is when the actual detection appends, and that's
why it's also called the detector stage.

Let's now have a more visual example. We have two matrices, the first one is a part of a
larger image and the second one is the filter that we are convoluting it with. Convolution
between the two matrices is shown in the following image:

The matrix above is part of a larger image

The matrix above is the filter we are using to convolute the other matrix with

Convolutional Neural Networks for Image Processing Chapter 3

[71]

In this case, the convolution between these two matrices is going to be a large number as
the shapes of the two are quite similar, which means that the filter recognized the image's
feature and so, it will let the signal pass.

Pooling layers
It's common to periodically have a pooling layer in between convolutional layers. We can
think about the pooling layer as a way to sample our inputs and gradually reduce their
dimensionality. This helps with overfitting, as we will have fewer parameters to learn, and
reduce the amount of computational power needed. It also helps with invariant to small
translations in the inputs.

Stride
Stride is defined as the number of cells that we move our weights after each
convolution with the kernel. The stride must be a number greater than one, but usually the
choice is between one and two. For our task in particular, we know that the neighboring
pixels are highly correlated; therefore, a big stride will lead to high information loss. As we
said, the innovative part of the convolution is that we shift our weights over the inputs. To
do so we implicitly assumed that we would move the weights by one pixel each time, but
nothing guarantees that this is the best way to proceed. That's actually a parameter of our
network that is called stride. A common choice is a stride 2 with a kernel size 2 x 2 for the
pooling layer. It's possible to define different strides for different directions, going left or
down the matrix.

Max pooling
Max pooling is a simple operation that takes the kernel and keeps only the maximum value
of the input area covered by the kernel. Max pooling is the most popular form of pooling,
as it has been shown to work better in practice than other forms of pooling: average and L2-
norm pooling. Usually a filter of 2 x 2 is used together with a stride 2, which is represented
in the following image:

Convolutional Neural Networks for Image Processing Chapter 3

[72]

This operation is effectively downsampling the image and, as we said, helps to control
overfitting:

This is a perfect example of downsampling.

Max pooling is effectively downsampling

Zero padding
One of the problems that we face in applying convolution and pooling is that we are
shrinking the size of the signal we are working with. This makes it impossible to use deep
networks, which are networks that have tens of layers. We know from practical experience
that the best results are obtained with very large amounts of data and very deep networks.
Therefore, it is very important to find a way to maintain the size of our signal throughout
the layers of our network.

Zero padding is a simple operation to artificially increase the size of our signal. It only adds
zeros around our signal and will not influence the max pooling operation, as any number in
the network must be greater than or equal to zero, but it will increase the size of the
output, as it’s possible to observe in the following image:

Example of the zero padding process

Convolutional Neural Networks for Image Processing Chapter 3

[73]

The size of the padding, together with the kernel size and the stride, will determine the size
of the outputs.

If we denote with:

W and H, respectively, represent the width and the height of the input
Fw ,Fh represents the width and the height of the filter
P represents the size of the padding
Sw and Sh represent the stride along the width and the height dimension

What we have is as follows:

Different strides horizontally and vertically. The following equations calculate the exact
size of the output of our convolution. We will denote with W the width of the image, with
H the height. For the filters, we will use Fh for the filter's height and Fw for the filter's width:

Dropout layers
Dropout layers the function of reducing the effect of overfitting. In networks, because of the
very high number of weights and the multiple times that the inputs are used to train the
network, it becomes a major problem hence many techniques are used to alleviate it. The
idea behind dropout is quite simple and a bit radical. By randomly setting some activation
to zero, hence the term dropout, we will force the network to create some redundancy, as
we train it to classify our inputs correctly. The redundant parts will be on the most
important features, leaving less space to the network to feature that are too specific and will
make more difficult to generalize. It's important to note that this operation must occur
during training only, as when the network is trained we want to use all the information
available.

Normalization layers
Normalization layers are used to normalize the activation of the previous batch of data. For
example, maintaining the mean activation close to zero and the standard deviation close to
one.

Convolutional Neural Networks for Image Processing Chapter 3

[74]

In keras , normalization layers support multiple arguments, such as momentum and scale
if the following layer is not linear.

Output layers
So far, we have only seen simple output: our prediction was either a probability for a set of
classes or a value. CNNs can produce more-complex output, for example a high-
dimensional object. They can provide a probability of belonging to a specific class for each
input pixel. This capability allows CNNs to produce masks around the object they predict,
and even map which part of the image is contributing to increase the probability of
outputting a certain classification. The problem is that often the output image is much
smaller than the input.

The most common output for a CNN has a fixed size, for example a vector of
probability. Sometimes, we also allow the output size to vary, as for the input. An example
of this is when we want to label each single pixel of the input.

The output depends on the task itself, and CNN can be used for various tasks. We will
focus in particular on the image domain. Image classification, or recognition, is a very
common task for CNN and it consist on deciding what is contained inside a specific box
that contains the object we want to classify.

In the image (of the object) detection problem, we don't know how many objects we have
and not only do we need to recognize the object, but also locate it in the image.

Object detection is the task of detecting a predefined object in our image, and the goal is to
draw a box around the object we have detected. So it's not just simple object recognition,
which might happen by detecting a few features of the object. We also need to identify the
boundaries of the object itself. This of course makes the task more complicated. This
problem is solved with Region-CNN (R-CNN) and You Only Look Once (YOLO). R-CNN
at first generates a few thousands bounding box proposals, looking at colors and other
visual similarities within regions of the image. Then R-CNN uses CNN for image
classification and, finally, refines each bounding box using regression.

The main problem of this approach is the speed and computational cost, as they need to
decompose the images into several parts and then analyze them.

Another framework, YOLO, as the name suggests will analyze the image as a whole. It
splits the image into a S x S grid, and image classification and localization are applied to
each square. Then, YOLO takes the m boxes and a single CNN predicts the bounding of the
boxes.

Convolutional Neural Networks for Image Processing Chapter 3

[75]

 CNNs are also used for object classification, image generation, and visual question
answering. Style transfer is another application of CNNs, which will be discussed in detail
in Chapter 5, Working with RNNs. Style transfer consists of extracting the style of an image
and applying it to others.

CNNs in Keras
To showcase the CNN architecture, we will use a classic classification problem:
the Modified National Institute of Standards and Technology (MNIST) dataset.
The MNIST database is a set of handwritten digits composed of 60,000 datapoints for
testing and 10,000 for training.

Keras provides ready to use datasets, including the MNIST dataset. The resolution of the
images is only 28 x 28 pixels and is black and white, therefore, the computational cost to
train the network is relatively low.

We will now illustrate how to create a CNN in Keras to solve a classification task using the
MNIST dataset and achieve human-like performance.

Loading the data
First, we need to load the data and the libraries required to build our network. We decided
to only train for two epochs, as the performance is already quite good. However, it's
possible to increase them by increasing the number of epochs:

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D

batch_size = 128
epochs = 2

We know we have 10 classes
which are the digits from 0-9
num_classes = 10

the data, split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

Convolutional Neural Networks for Image Processing Chapter 3

[76]

We now have to transform the data to make it suitable for our network, and scale the image
as we saw previously:

the data, split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

input image dimensions
img_rows, img_cols = X_train[0].shape

Reshaping the data to use it in our network
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

Scaling the data
X_train = X_train / 255.0
X_test = X_test / 255.0

Let's check one of the datapoints:

import numpy as np
from matplotlib import pyplot as plt
plt.imshow(X_test[1][..., 0], cmap='Greys')
plt.axis('off')
plt.show()

That produces the following image:

Creating the model
Now, let's see how to create a simple model for our image recognition problem. We will
still use a sequential model and will add a couple of convolutional layers with a ReLU
activation function. We will also use a dropout layer that will randomly delete 25% of
connections and a final dropout of 30%:

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 input_shape=input_shape))
model.add(Conv2D(32, (3, 3), activation='relu'))

Convolutional Neural Networks for Image Processing Chapter 3

[77]

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(num_classes, activation='softmax'))

We will use categorical cross entropy, as we are dealing with a multiclass problem:

loss = 'categorical_crossentropy'
optimizer = 'adam'

model.compile(
 loss=loss, optimizer=optimizer, metrics=['accuracy'])

Then we can finally fit the model and evaluate its performance on our test set:

model.fit(X_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=1,
 validation_data=(X_test, y_test))
score = model.evaluate(X_test, y_test, verbose=0)

print(f'Test loss: { score[0]} - Test accuracy: {score[1]}')

The output is pretty good, with 0.9775 accuracy after only two epochs:

60000/60000 [==============================] - 90s 1ms/step - loss: 0.3057
- acc: 0.9082 - val_loss: 0.0688 - val_acc: 0.9775

Network configuration
Until now, we have not discussed how to find the best parameter for our network. For
simple algorithms, such as decision trees, finding the best parameters is not too difficult.
The main strategy in that case is usually the good old grid search, which is a very simple
technique. The user lies down a set of possible values for each parameter, and the process
simply tries every possible combination.

Convolutional Neural Networks for Image Processing Chapter 3

[78]

There is no official rule to determine the network configuration, but we know that each
additional layer makes the network able to catch a less linear environment.

An important step is to choose the number of filters and their dimensions. we can do that
using a grid search approach, let's see how we can approach it in keras:

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
import itertools
import os

batch_size = 512
num_classes = 10
epochs = 1
N_SAMPLES = 30_000

model_directory = 'models'

the data, split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

input image dimensions
img_rows, img_cols = X_train[0].shape

Reshaping the data to use it in our network
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)

input_shape = (img_rows, img_cols, 1)

Scaling the data
X_train = X_train / 255.0
X_test = X_test / 255.0

convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

We will take a sample of our data, to reduce the computational time, and will test a few
different options regarding the numbers of filters and a few kernel sizes:

loss = 'categorical_crossentropy'
optimizer = 'adam'

X_train = X_train[:N_SAMPLES]
X_test = X_test[:N_SAMPLES]

Convolutional Neural Networks for Image Processing Chapter 3

[79]

y_train = y_train[:N_SAMPLES]
y_test = y_test[:N_SAMPLES]

filters = [4, 8, 16]
kernal_sizes = [(2, 2), (4, 4), (16, 16)]

A simple strategy is to loop through the possible configurations. So that we create all
possible configurations we will be using the itertools library:

config = itertools.product(filters, kernal_sizes)

Now, we will just iterate through the configurations, create a very simple network, and see
which one is performing best:

for n_filters, kernel_size in config:
 model_name = 'single_f_' + str(n_filters) + '_k_' + str(kernel_size)

We are still using a sequential model, and we are adding a Conv2D layer. This layer
calculates the two-dimensional convolution between the inputs and the filters. It accepts the
number of filters as first argument of the initialization function, and it's also possible to
specify an activation function using the activation argument.

The function of the flatten layer is to create a one-dimensional vector from whatever the
input is, and is needed before a dense layer. The dense layer don't look at local patches, but
has all neurons connected to each other, that's why we want to flat the array. This layer also
accepts an argument:data_format. It's quite simple, reorder the dimension of the input
based on the data format you specify. If we specify channel_first , the layer will expect
the channel to be the first dimension of the past; with channel_last, which is the
default, it will expect the opposite.

As we said, this last layer is where the real classification happens, while all the other layers
are creating the features that the last layer will use.

As we are dealing with multiple classes, we will need to use the softmax activation
function in the final layer, as it will give us a probability distribution:

 model = Sequential(name=model_name)
 model.add(
 Conv2D(
 n_filters,
 kernel_size=kernel_size,
 activation='relu',
 input_shape=input_shape))
 model.add(Flatten())
 model.add(Dense(num_classes, activation='softmax'))

Convolutional Neural Networks for Image Processing Chapter 3

[80]

 model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])

 model.fit(
 X_train,
 y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=1,
 validation_data=(X_test, y_test))
 score = model.evaluate(X_test, y_test, verbose=0)

print(f'{model_name} Test loss: { score[0]} - Test accuracy: {score[1]}')
 print(model_name, 'Test loss:', score[0], 'Test accuracy:', score[1])

 model_path = os.path.join(model_directory, model_name)
 model.save(model_path)

Then, when a network is created, it is possible to reduce the amount of neurons necessary
to obtain a similar performance.

Keras for expression recognition
Let's now see a more complex problem—recognize facial expressions from pictures of
human faces. For this we will use the Facial Expression Recognition (FER) 2013 dataset.
This is a challenging task, as there are many mislabelled images, some are not centered
well, and a few are not even human faces. Currently, in the literature, accuracy is below
75% for CNNs trained from scratch on only the FER 2013 dataset.

The FER 2013 dataset is provided on a comma-separated values (CSV) file, but as we want
to demonstrate another way of reading the data we will transform it into a collection of
images to make it easier to inspect the dataset:

#!/usr/bin/env python
coding: utf-8

import os
import pandas as pd
from PIL import Image

Pixel values range from 0 to 255 (0 is normally black and 255 is white)
basedir = os.path.join('..', 'data', 'raw')
file_origin = os.path.join(basedir, 'fer2013.csv')
data_raw = pd.read_csv(file_origin)

data_input = pd.DataFrame(data_raw, columns=['emotion', 'pixels', 'Usage'])

Convolutional Neural Networks for Image Processing Chapter 3

[81]

data_input.rename({'Usage': 'usage'}, inplace=True)
data_input.head()

label_map = {
 0: '0_Anger',
 1: '1_Disgust',
 2: '2_Fear',
 3: '3_Happy',
 6: '4_Neutral',
 4: '5_Sad',
 5: '6_Surprise'
}

Creating the folders
output_folders = data_input['Usage'].unique().tolist()
all_folders = []

for folder in output_folders:
 for label in label_map:
 all_folders.append(os.path.join(basedir, folder, label_map[label]))

for folder in all_folders:
 if not os.path.exists(folder):
 os.makedirs(folder)
 else:
 print('Folder {} exists already'.format(folder))

counter_error = 0
counter_correct = 0

def save_image(np_array_flat, file_name):
 try:
 im = Image.fromarray(np_array_flat)
 im.save(file_name)
 except AttributeError as e:
 print(e)
 return

for folder in all_folders:

 emotion = folder.split('/')[-1]
 usage = folder.split('/')[-2]

 for key, value in label_map.items():
 if value == emotion:
 emotion_id = key

Convolutional Neural Networks for Image Processing Chapter 3

[82]

 df_to_save = data_input.reset_index()[data_input.Usage == usage][
 data_input.emotion == emotion_id]
 print('saving in: ', folder, ' size: ', df_to_save.shape)
 df_to_save['image'] = df_to_save.pixels.apply(to_image)
 df_to_save['file_name'] = folder + '/image_' + df_to_save.index.map(
 str) + '_' + df_to_save.emotion.apply(
 str) + '-' + df_to_save.emotion.apply(
 lambda x: label_map[x]) + '.png'
 df_to_save[['image', 'file_name']].apply(
 lambda x: save_image(x.image, x.file_name), axis=1)
 df_to_save.apply(lambda x: save_image(x.pixels, os.path.join(basedir,
x.file_name)), axis=1)

The images are black and white, so we will only have one color channel, and their
resolution is 48 x 48 pixels. Therefore, the dimension of the matrix will be 48 x 48 x 1.

We have over 28,000 images in the training set, and over 3,000 in the validation set. These
images are classified into seven different and distinct categories: Angry, Disgust, Fear,
Happy, Neutral, Sad, and Surprise, as shown in the following screenshot:

Convolutional Neural Networks for Image Processing Chapter 3

[83]

The folder containing the images must follow a precise structure to be able to be read from
disk.

Let's start by importing all the necessary libraries, as follows:

#!/usr/bin/env python
coding: utf-8
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers import Dense, Dropout, Flatten
from keras.callbacks import ModelCheckpoint, TensorBoard
import os

To solve a macOS specific issue
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

Now, let's set up the folder structure that we'll need:

basedir = '..'
name = 'layer'
logs = os.path.join(basedir, 'logs')

basedir_data = os.path.join(basedir, 'data', 'espression')
train_feature = os.path.join(basedir, 'data', 'raw', 'Training')
train_target = os.path.join(basedir, 'data', 'raw', 'Training')
test_feature = os.path.join(basedir, 'data', 'raw', 'PrivateTest')

The following folders need to exist
train_processed_images = os.path.join(basedir, 'data', 'processed',
'Training')
test_processed_images = os.path.join(basedir, 'data', 'processed',
'PrivateTest')

Now, we can define all the necessary logs and callback functions. We will also create a
checkpoint:

Logs to track the progress
tbCallBack = TensorBoard(
 log_dir=logs, histogram_freq=0, write_graph=True, write_images=True)

filepath = "weights-improvement-{epoch:02d}-{accuracy:.2f}.hdf5"

checkpoint = ModelCheckpoint(
 filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_list = [tbCallBack]

Convolutional Neural Networks for Image Processing Chapter 3

[84]

 Now, we will define the main variables of our script:

_loss = 'categorical_crossentropy'
_optimizer = 'adam'

img_width, img_height = 48, 48
color_channels = 1
img_shape = (img_width, img_height, color_channels)
epochs = 110
batch_size = 512

emotions = {
0: '0_Anger',
1: '1_Disgust',
2: '2_Fear',
3: '3_Happy',
6: '4_Neutral',
4: '5_Sad',
5: '6_Surprise'
}

num_classes = len(emotions)

nb_train_samples = 28698
nb_validation_samples = 3589

n_filters = 32
kernel_size = (5, 5)
pooling_size = (2, 2)

model_name = 'model_nfilters_' + str(n_filters) + '_kernel_size_' +
str(kernel_size)

Now, we can define our CNN architecture. We will use a set of convolutional layers, max
pooling with padding and finally the dense layer. We will also add a dropout layer, which
randomly drops a certain amount of neurons, which is possible to specify as an argument.
This will help with overfitting, as the network will have to create redundant features,
focusing on the most important ones:

model = Sequential(name=model_name)
Feature maps
model.add(Convolution2D(n_filters, kernel_size, padding='same',
 input_shape=img_shape, activation='relu'))
model.add(MaxPooling2D(pool_size=pooling_size, padding='same'))

model.add(Convolution2D(n_filters, kernel_size, activation='relu',
padding='same'))
model.add(MaxPooling2D(pool_size=pooling_size, padding='same'))

Convolutional Neural Networks for Image Processing Chapter 3

[85]

model.add(Dropout(0.2))
model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dense(num_classes, activation='softmax', name='preds'))
Compile model
model.compile(
 loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])

Now, we define the data generator. In the generator we can specify some preprocessing
steps, for example rescaling, centering, and normalizing the data. It's also possible to define
some parameters that will change various aspects of the image. For example, it's possible to
change the orientation of the image, shift it in weight and height, and also flip, zoom, and
rotate it. These transformations will not only increase the amount of data available for our
algorithm, but will also make it more robust to noisy data:

train_datagen = ImageDataGenerator(
 rescale=1. / 255,
 shear_range=0.2,
 zoom_range=0.2,
 featurewise_center=True,
 featurewise_std_normalization=True,
 rotation_range=20,
 width_shift_range=0.2,
 height_shift_range=0.2,
 horizontal_flip=True,
)

It's not necessary to do these transformations on the test set, except for the rescaling, so we
need to define another generator:

test_datagen = ImageDataGenerator(rescale=1. / 255)

Now, it's possible to use the flow_from_directory method to load all the datasets in a
predefined structured useful for the deep learning task.

Use folders to get data and labels
Setting the train_generatorand validation_generator to categorical and it
will one-hot encode your classes.
train_generator = train_datagen.flow_from_directory(
 directory=train_feature,
 color_mode='grayscale',
 target_size=(img_width, img_height),
 batch_size=batch_size,

Convolutional Neural Networks for Image Processing Chapter 3

[86]

 class_mode='categorical'
 # save_to_dir=train_processed_images
)
validation_generator = test_datagen.flow_from_directory(
 directory=test_feature,
 color_mode='grayscale',
 target_size=(img_width, img_height),
 batch_size=batch_size,
 class_mode='categorical'
 # save_to_dir=test_processed_images
)

Finally, we can compile our model:

model.compile(
 loss=_loss, optimizer=_optimizer, metrics=['accuracy'])

nn_history = model.fit_generator(
 train_generator,
 steps_per_epoch=nb_train_samples // batch_size,
 epochs=epochs,
 validation_data=validation_generator,
 validation_steps=nb_validation_samples // batch_size,
 callbacks=callbacks_list,
 workers=4)

model.save(model.name + ".h5")

We can access the while training history by using the variable nn_history and save the train
model for future use.

Optimizing the network
It would be great now to identify what we could improve in our network and also how our
filters are reacting. It makes intuitive sense that it's possible to map the input pixels and
understand which pixel helped determine a certain classification. This can help us
understand why our model is not working correctly, as we can see which parts of the image
mislead our model, and how it's possible to improve.

We will now see how it's possible to use it to further improve our network. To make it
easier to understand and follow we will look at the MNIST dataset.

Convolutional Neural Networks for Image Processing Chapter 3

[87]

Let's start with a saliency map, which highlights the importance of each pixel in a
classification context and can be regarded as a type of image segmentation. The map will
highlight some specific areas in our image that contributed the most to the classification, as
shown in the following image:

The saliency map of a single digit

Also, as we said previously, the filters learn local patterns, so it's possible to inspect them to
find out the best.

We can see if the saliency map is not highlighting the correct parts, it means we will not be
able to easily classify our image. In the following images, we can see saliency maps from
models with a single convolutional layer and a different number of filters and kernel sizes:

Saliency maps from models working well

Also, as we said, the filters are capturing local features, so visualizing them can help to see
if we are capturing useful information such as lines and curves:

Visualizing the filters of our convolutional layer

Convolutional Neural Networks for Image Processing Chapter 3

[88]

Finally, our network aim is to be able to generalize a concept (for example a particular
handwritten digit) and to be able to recognize many of them. It's something our brain does
naturally. For example, if we think about the concept 'behind a chair', we might have a
specific chair in mind, but we have no problem recognizing a different type of chair if we
see one.

Similarly a network must create this concept of the object we are classifying in its weight,
and use it to categorize unseen instances. It's possible to visualize this information by
plotting the activation map for the dense layer. This will allow us to check whether the
essence that our network captured makes intuitive sense, and if our network is looking at
the interesting parts:

The activation map of the handwritten eight digit

Summary
In this chapter, we explained the main concept of CNNs and how to use them in Keras.

We saw why a convolutional layer is an efficient approach for problems where the inputs
have high spatial correlation. We also saw the mathematics behind the convolutional layer,
and how our filters are able to capture the features.

We discussed the need for pooling layers, softmax activation, and zero padding to avoid
the shrinking of our images, especially for deep neural networks (DNNs).

We also saw how it's possible to debug our network to detect problems, checking the
activation maps, filters, and saliency maps.

We discussed the various possible uses of CNN-like image classification and image
detection, and how they are actually very flexible and can be used to solve many different
tasks.

In the next chapter, we will focus on deep learning for natural language processing, but
later in this book we will come back to some concepts we have touched on here.

4
Exploiting Text Embedding

Working with text has a varied set of challenges compared to images. One of the major
issues with text is that it does not have a standard form. The vast multitude of languages
leads to a hoard of valid ways to express the same concept and even these ways are
constantly evolving. Texting, emoticons, and abbreviations are relatively recent trends and
yet have been institutionalized already, with even world leaders jumping on the
bandwagon and using social media to connect with the masses. The machine learning
subfield that deals with language related task is known as natural language processing
(NLP).

Deep learning has provided significant help with solving issues revolving around this
topic. In recent years, we have seen great improvements in a domain that was a bit stagnant
compared to other machine-learning fields.

In this chapter, we will learn some of the classic machine-learning methods used to deal
with text. Then we will see how it's possible to take advantage of deep learning and more
recent techniques to improve the results obtained using old methods.

In particular, we will see what text embedding is and how it can be used to allow us to take
advantage of mathematical models on textual data.

To understand these concepts with clarity, we will look at the following topics:

Machine learning for NLP
Understanding word embeddings
GloVe

Exploiting Text Embedding Chapter 4

[90]

Machine learning for NLP
Text has always been a great source of data and information and has historically been a
major way to share knowledge and ideas. This rich source of information can be extremely
interesting for machine-learning systems. It's a prime example of so-called non-structured
data.

Even though it's challenging, the field of machine learning for NLP is very important in that
it can unlock major improvements in our lives.

These are some of the major sub-fields of NLP:

Speech, such as speech recognition and text-to-speech, in which the given text
will transform into a spoken representation.
Automatic summarization, the task of producing a summary of a long text that
maintains its meaning and is readable.
Semantics, the branch that wants to understand the meaning of words in a
context. Common examples are machine translation and natural language
generation.
Syntax, for example, lemmatization, which is the task of identifying the core of a
word, without inflectional endings.

Before the advent of words embeddings, NLP was mainly using the following two
methods:

Rule-based methods
Statistical methods

The following two sections are dedicated to understanding these methods.

Rule-based methods
Rule-based methods try to exploit common linguistic rules, such as grammar, to infer the
function of a word or to perform stemming. Stemming is an important NLP task, very often
used as a data pre-processing stage, whose aim is to identify the root of the word.

In the Python ecosystem, there are tools that do these tasks almost automatically. To see an
example, we need to install another Python library—Natural Language Toolkit (NLTK).

Exploiting Text Embedding Chapter 4

[91]

Install the NTLK library using conda, by executing the following command line:

conda install -c anaconda nltk

Alternatively, we can also use pip as follows:

pip install nltk

The following is an example of stemming:

import nltk
from nltk.stem.porter import *

ps = PorterStemmer()

print(ps.stem('run'))

print(ps.stem('dogs'))

print(ps.stem('mice'))

print(ps.stem('were'))

The preceding commands generates the following output:

[[('hello', 'NN'), ('world', 'NN')],
 [('this', 'DT'), ('is', 'VBZ'), ('a', 'DT'), ('test', 'NN')]]

Part-of-Speech (PoS) tagging is another common task that comprises assigning tags, such
as verb, adjective, or noun, to part of the sentence.

Understanding word embeddings
Embedding is a mathematical structure contained within another instance. If we are
embedding an object X in an object Y, we will be preserving the structure of the objects and
so the instance.

Word embedding is a technique to map words to vectors, creating a multidimensional
space that will allow the creation of similar representations for similar words. Each word is
represented by a single vector with often tens or hundreds of dimensions, in contrast to
other representations such as one-hot encoding that can have thousands or even millions of
dimensions.

Exploiting Text Embedding Chapter 4

[92]

When we have words in the form of vectors, we end up using all mathematical techniques
that we would on pure numbers. Also when transformed into vectors, words will keep the
same proprieties that numbers have.

It also means that we could start doing operations as follows:

King - man + woman =queen

Being able to treat words as numbers is, surely, very useful and is a great achievement. We
will also see how it's possible to deal with sentences and even full paragraphs using word
embedding.

This representation is arguably the most significant contribution of deep learning to the
field of NLP.

Applications of words embeddings
The problem with old NLP techniques is that they consider single words without taking
into consideration the similarity between them.

In generic terms, word embeddings learn a vector representation based on the usage of
words. Therefore, based on the words that keep appearing around the words we are
considering, we can determine a vectorized representation.

We will see now one of these techniques in more detail, namely Word2vec, which
pioneered the field.

The following are two commonly used types of word embeddings:

Frequency-based embedding
Prediction-based embedding

Word2vec
Word2vec is a subset of text embedding techniques that map words to a vector space using
a neural network. Usually, these networks are shallow: typically two-layer networks. The
goal of these networks is to reconstruct the linguistic context that the words are used in.

Exploiting Text Embedding Chapter 4

[93]

Each word would then be represented by a single vector formed by hundreds of
dimensions. Words that appear in a similar context will be represented by two vectors lying
close together in the embedded space.

The initial Word2vec model was designed and patented by Google, but after that, many
researchers studied it and came up with different implementations, like for example in the
gensim library.

We need to produce a sparse representation. To do that, Word2vec can utilize the following
two architectures:

Continuous bag-of-words (CBOW)
Continuous skip-gram

The CBOW method tries to predict the center word based on the source context words:

Exploiting Text Embedding Chapter 4

[94]

Using this architecture, we make the assumption that the order of the words in the window
does not influence the prediction. If this is not the case, we need to use a different
architecture, such as continuous skip-gram:

Continuous skip-gram still uses a window around the word but uses higher weights for
words close to the word we are considering. This is usually more precise, especially for
infrequent words, but due to the additional weights, this is quite a bit slower than CBOW.

Let's consider skip-gram as an example. The first step of the algorithm is to one-hot encode
for each word. Then we feed the whole word as input to the network.

Word2vec is a very simple neural network, completed by a single hidden layer. During
training, we find the weight that minimizes the loss of the prediction task, which for skip-
gram is to calculate the probability of the words near the input word.

In reality, we don't care about the task itself; we care more about the hidden weights. The
weights that connect the hidden layers with the outputs, and during training, so the goal is
to adjust those weights and use them as word embedding.

Exploiting Text Embedding Chapter 4

[95]

Word2vec's approach is not only applicable to text sets but also to graphs, social media,
gene sequences, and many more. The generic approach is called sequence vectors, because
it can extract information on any sequence data as it models the likelihood of co-occurrence.

These types of models typically require more data than the traditional ones, mostly because
traditionally NLP researchers used to create features by themselves, leveraging their
domain expertise. This approach started to show limitations when it was applied to
different domains. In such cases, the researcher would need to spend a lot of time creating
new features.

In contrast, deep learning finds the best feature by itself during training, so we can apply
very similar approaches in different domains.

After we train our network, we will use a vector of numbers, called a neural word
embedding, to represent each word. In this regard, it's a similar process to autoencoders,
for which we also have a vectorized representation of the input. We will talk more about
autoencoders in Chapter 5, Working with RNNs, but their goal is basically to find a compact
way of representing the input so it would be possible to reconstruct it.

On the other side, as we have already mentioned, we want to predict one word, given the
context, so our representation will be optimized for that.

These concepts can also be used to help with translating text. When we have two
embeddings trained in different languages, we can also map them to each other.

Word embedding in Keras
We will now see how it is possible to create this embedding layer using a binary
classification task to train our network and derive the word representation. We will be
using Keras and, in particular, the embedding layer, which turns positive integers – the
indexes of our vocabulary – into dense vectors of fixed size, for example:

To accomplish this, we will create a simple classification task. For example, for a simple
corpus of sentences about pizza, we want to find out its sentiment. It's a simple binary
classification task that is different from the neural networks we use for Word2vec, but we
are now only interested in the embedding layer.

Exploiting Text Embedding Chapter 4

[96]

To create the embedding layer, follow these steps:

Import the libraries we want to use, in particular, some pre-processing that we1.
will need to transform and pre-process the textual data:

from numpy import array
from keras.preprocessing.text import one_hot
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.embeddings import Embedding
import pandas as pd

Define a simple dataset. We define a vector of sentences regarding pizza. Each of2.
these sentences will only have one sentiment, which can be either positive or
negative. Provide the class of the sentences in a separate vector:

define the corpus
corpus = ['This is good pizza',
 'I love Italian pizza',
 'The best pizza',
 'nice pizza',
 'Excellent pizza',
 'I love pizza',
 'The pizza was alright',
 'disgusting pineapple pizza',
 'not good pizza',
 'bad pizza',
 'very bad pizza',
 'I had better pizza']

creating class labels for our
labels = array([1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0])

output_dim = 8
pd.DataFrame({'text': corpus, 'sentiment':labels})

Exploiting Text Embedding Chapter 4

[97]

The preceding commands generate the following output:

Transform the words of our corpus using a one-hot encoding representation.3.
This is because the embedding layer requires a unique integer:

we extract the vocabulary from our corpus
sentences = [voc.split() for voc in corpus]
vocabulary = set([word for sentence in sentences for word in
sentence])

vocab_size = len(vocabulary)
encoded_corpus = [one_hot(d, vocab_size) for d in corpus]
encoded_corpus

Exploiting Text Embedding Chapter 4

[98]

We will obtain the following encoded output:

Our output is composed by vectors of variable length. To have all of them with4.
the same size, we pick one size for all of them, filling with zero to reach missing
value. The extra spaces will not be filled with zeros towards the end of the
vector:

we now pad the documents to
the max length of the longest sentences
to have an uniform length
max_length = 5
padded_docs = pad_sequences(encoded_corpus, maxlen=max_length,
padding='post')
print(padded_docs)

The preceding commands will give us the following padded output:

Exploiting Text Embedding Chapter 4

[99]

Define the model with only two layers. We will use a sequential model with an 5.
embedding layer:

model definition
model = Sequential()
model.add(Embedding(vocab_size, output_dim,
input_length=max_length, name='embedding'))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
compile the model
model.compile(optimizer='adam', loss='binary_crossentropy',
metrics=['acc'])
summarize the model
print(model.summary())
fit the model
model.fit(padded_docs, labels, epochs=50, verbose=0)
evaluate the model

loss, accuracy = model.evaluate(padded_docs, labels, verbose=0)
print('Accuracy: %f' % (accuracy * 100))

It's possible to specify the maximum length of the sequence by setting the
num_timesteps parameter. Shorter sequences are padded with values at
the end while longer ones are truncated.

The preceding commands generate the following output:

Exploiting Text Embedding Chapter 4

[100]

The model to create the embedding. We printed the accuracy although that is not the goal,
especially because we trained and tested on the same dataset. The goal is to create a
vectorized representation of our world, which it can now be found in the embedding layer.

Pre-trained network
Embedding usually works well when trained in large datasets. Most of the time, this would
mean spending a lot of time and resources training the network and having an
infrastructure that allows you to do so.

Luckily, there are many pre-trained models that are available to download and use.

GloVe
GloVe stands for Global Vectors and is a model to produce a distributed word
representation. It's an unsupervised learning method that finds a useful word
representation in a vector space using statistics on the co-occurrence words from a corpus.

It combines two methods: global matrix factorization and local context windows. We will
now explain these two models in more detail and show an example of how to use it.

Global matrix factorization
Matrix factorization, also known as matrix decomposition, is the decomposition of a matrix
into a product of multiple matrices. There are many ways to decompose a matrix
depending on the class of problems we aim to solve.

Matrix factorization is intended as a set of algorithms, commonly used in recommender
systems. In this case, the system goal is to represent users and items in a lower-dimensional
space. This space is also called latent and is where latent features, or variables, lie. A latent
variable is a variable that is not observable in the inputs but is inferred using a
mathematical model, usually called a latent variable model.

The main reason to use latent variables is that it's possible to reduce the dimensionality of
the data. In recommender systems, data can be really sparse. For example, Amazon
Marketplace recommendations deal with millions of users and objects, most of them with
little to no interaction.

Exploiting Text Embedding Chapter 4

[101]

These types of problems are quite similar to our text task, for which there are many
different words, some of them with more than one meaning, of which most won't interact
with each other.

With text, we usually have interchangeable words, and, as we saw before, it's possible to
infer this by how many times they co-occur in the same context. Words are also represented
as term-document frequency, which gives us the frequency of the word in
each document in the corpus. In this case, words represent the columns, while the rows
represent the documents.

Latent semantic analysis (LSA) is only one of the models that use correlations between
words to infer the meaning. Others include the following:

Hyperspace Analogue to Language (HAL)
Syntax- or dependency-based models
Semantic folding
Topic models, such as LDA

The factorization of a generic m-by-n matrix M into a product U Σ V*, where U is m-by-
m and unitary, Σ is an m-by-n rectangular diagonal matrix (the non-zero entries of which
are known as the singular values of M), and V is n-by-n and unitary, which looks like this:

We will now see how it’s possible to implement in Python the matrix factorization that we
just saw:

from numpy import array
from numpy import diag
from numpy import zeros
from numpy import linalg

Exploiting Text Embedding Chapter 4

[102]

define a matrix that we want to
A = array([
 [1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]
])
print('Initial matrix')
print(A)
Applying singular-value decomposition
VT is already the vector we are looking in
as the formula return it transposed
while we are interested in the normal form
U, s, VT = linalg.svd(A)
creating a m x n Sigma matrix
Sigma = zeros((A.shape[0], A.shape[1]))
populate Sigma with n x n diagonal matrix
Sigma[:A.shape[0], :A.shape[0]] = diag(s)
select only two elements
n_elements = 2
Sigma = Sigma[:, :n_elements]
VT = VT[:n_elements, :]
reconstruct
A_reconstructed = U.dot(Sigma.dot(VT))
print(A_reconstructed)
Calculate the result
By the dot product
Between the U and sigma
In python 3 it's possible to
calculate the dot product using @
T = U @ Sigma
for python 2 should be
T = U.dot(Sigma)
print('dot product between U and Sigma')
print(T)
print('dot product between A and V')
T_ = A @ VT.T
print(T_)

print('Are the dot product similar? ',
 'Yes' if np.isclose(X, X_a).all() else 'no')

Exploiting Text Embedding Chapter 4

[103]

Using the GloVe model
GloVe computes the probability of the next word given the previous one. In a log-bilinear
model, this can be calculated in the following way:

Here, let's take a look at the following terms used in the preceding formula:

 is a word-vector
𝑐 is the context for 𝑤𝑖

c is computed as follows:

GloVe is, essentially, a log-bilinear model with a weighted least-squares objective,
which means that the overall solution minimizes the sum of the squares of the residuals
created in the results of every single equation. The probabilities of the ratios of word-word
occurring together, or simultaneously, has the ability to encode some meaning.

We can take an example from the GloVe website (https:/​/​nlp.​stanford.​edu/​projects/
glove/​) and consider the probability that the two words, ice and steam, occur together.
This is done by probing with the help of some words from the vocabulary. The following
are some probabilities from a word corpus of around 6 billion:

Looking at these conditional probabilities, we can see that the word ice occurs together
more frequently near the word solid than it does with gas, whereas steam occurs together
less frequently with solid compared to gas. Steam and gas co-occur with the word
water frequently, as they are states that water can appear as. On the other hand, they both
occur together with the word fashion less frequently.

https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Exploiting Text Embedding Chapter 4

[104]

Noise from non-discriminative words, such as water and fashion, cancels out in the ratio of
probabilities in a way that any value greater than 1 can correlate with the features specific
to that of ice and any value smaller than 1 correlates well with the features that are specific
to that of steam. Thus, the ratio of probabilities correlates with the non-realistic concept of
thermodynamics.

GloVe's goal is to create vectors that represent words in a way that their dot product will
equal the logarithm of the probability words and their co-occurrence. As we know, in the
logarithmic scale a ratio is equivalent to the difference of the logarithm of the two elements
considered. Because of this, the ratio of the logarithms of the probability of the
elements will be translated in the vector space in the difference between two words.
Because of this property, it's convenient to use these ratios to encode the meaning in a
vector, and this will make it possible to use it for differences and obtain analogies such as
the example we saw in Word2vec.

Now let's see how it's possible to run GloVe. First of all, we need to install it using the
following commands:

To compile GloVe we need gcc, a c compiler. On macOS, execute the following
commands:

conda install -c psi4 gcc-6
pip install glove_python

Alternatively, it's possible to execute the following commands:

export CC="/usr/local/bin/gcc-6"
export CFLAGS="-Wa,-q"
pip install glove_python

On macOS using brew:

brew install gcc
and then export gcc into CC like:
export CC=/usr/local/Cellar/gcc/6.3.0_1/bin/g++-6

Test GloVe with some Python code. We will use an example from https:/​/
textminingonline.​com:

Import the main libraries as follows:1.

import itertools
from gensim.models.word2vec import Text8Corpus
from glove import Corpus, Glove

https://textminingonline.com
https://textminingonline.com
https://textminingonline.com
https://textminingonline.com
https://textminingonline.com
https://textminingonline.com

Exploiting Text Embedding Chapter 4

[105]

We need gensim just to use their Text8Corpus:2.

sentences = list(itertools.islice(Text8Corpus('text8'),None))

corpus = Corpus()

corpus.fit(sentences, window=10)
glove = Glove(no_components=100, learning_rate=0.05)

glove.fit(corpus.matrix, epochs=30, no_threads=4, verbose=True)

Observe the training of the model:

Performing 30 training epochs with 4 threads
Epoch 0
Epoch 1
Epoch 2
...
Epoch 27
Epoch 28
Epoch 29

Add the dictionary to glove:3.

glove.add_dictionary(corpus.dictionary)

Check the similarity among words:4.

glove.most_similar('man')
Out[10]:
[(u'terc', 0.82866443231836828),
 (u'woman', 0.81587362007162523),
 (u'girl', 0.79950702967210407),
 (u'young', 0.78944050406331179)]

glove.most_similar('man', number=10)
Out[12]:
[(u'terc', 0.82866443231836828),
 (u'woman', 0.81587362007162523),
 (u'girl', 0.79950702967210407),
 (u'young', 0.78944050406331179),
 (u'spider', 0.78827287082192377),
 (u'wise', 0.7662819233076561),
 (u'men', 0.70576506880860157),
 (u'beautiful', 0.69492684203254429),
 (u'evil', 0.6887102864856347)]

glove.most_similar('frog', number=10)

Exploiting Text Embedding Chapter 4

[106]

Out[13]:
[(u'shark', 0.75775974484778419),
 (u'giant', 0.71914687122031595),
 (u'dodo', 0.70756087345768237),
 (u'dome', 0.70536309001812902),
 (u'serpent', 0.69089042980042681),
 (u'vicious', 0.68885819147237815),
 (u'blonde', 0.68574786672123234),
 (u'panda', 0.6832336174432142),
 (u'penny', 0.68202780165909405)]

glove.most_similar('girl', number=10)
Out[14]:
[(u'man', 0.79950702967210407),
 (u'woman', 0.79380171669979771),
 (u'baby', 0.77935645649673957),
 (u'beautiful', 0.77447992804057431),
 (u'young', 0.77355323458632896),
 (u'wise', 0.76219894067614957),
 (u'handsome', 0.74155095749823707),
 (u'girls', 0.72011371864695584),
 (u'atelocynus', 0.71560826080222384)]

glove.most_similar('car', number=10)
Out[15]:
[(u'driver', 0.88683873415652947),
 (u'race', 0.84554581794165884),
 (u'crash', 0.76818020141393994),
 (u'cars', 0.76308628267402701),
 (u'taxi', 0.76197230282808859),
 (u'racing', 0.7384645880932772),
 (u'touring', 0.73836030272284159),
 (u'accident', 0.69000847113708996),
 (u'manufacturer', 0.67263805153963518)]

glove.most_similar('queen', number=10)
Out[16]:
[(u'elizabeth', 0.91700558183820069),
 (u'victoria', 0.87533970402870487),
 (u'mary', 0.85515424257738148),
 (u'anne', 0.78273531080737502),
 (u'prince', 0.76833451608330772),
 (u'lady', 0.75227426771795192),
 (u'princess', 0.73927079922218319),
 (u'catherine', 0.73538567181156611),
 (u'tudor', 0.73028985404704971)]

Exploiting Text Embedding Chapter 4

[107]

Text classification with GloVe
Now we can see how it's possible to use these vectorized representations to tackle some text
classification tasks. This tutorial is a modification of a python tutorial from Robert Guthrie.

After downloading the embedding from GloVe's website (https:/​/​nlp.​stanford.​edu/
projects/​glove/​) we will need to decide which representation we will be using. There are
four choices based on the length of the vector (50, 100, 200, 300). We will try the
representation with 50 values for each vector:

possible_word_vectors = (50, 100, 200, 300)
word_vectors = possible_word_vectors[0]
file_name = f'glove.6B.{word_vectors}d.txt'
filepath = '../data/'
pretrained_embedding = os.path.join(filepath, file_name)

Now we will need to create a better structure for the association word/index, we want to
have a dictionary where each word is the key and the vectorized representation is the
vector. This will be handy after to quickly transform each word into a vector.

We will then use a class that follows the APIs of scikit-learn to transform our document
into an average of all its embedding vectors:

class EmbeddingVectorizer(object):
 """
 Follows the scikit-learn API
 Transform each document in the average
 of the embedding of the words in it
 """
 def __init__(self, word2vec):
 self.word2vec = word2vec
 self.dim = 50
 def fit(self, X, y):
 return self
 def transform(self, X):
 """
 Find the embedding vector for each word in the dictionary
 and take the mean for each document
 """
 # Renaming it just to make it more understandable
 documents = X
 embedded_docs = []
 for document in documents:
 # For each document
 # Consider the mean of all the embeddings
 embedded_document = []
 for words in document:

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Exploiting Text Embedding Chapter 4

[108]

 for w in words:
 if w in self.word2vec:
 embedded_word = self.word2vec[w]
 else:
 embedded_word = np.zeros(self.dim)
 embedded_document.append(embedded_word)
 embedded_docs.append(np.mean(embedded_document, axis=0))
 return embedded_docs

Now we can finally create the embeddings as follows:

Creating the embedding
e = EmbeddingVectorizer(embeddings_index)
X_train_embedded = e.transform(X_train)

With those it's now possible to train our classifier and test it on unseen data:

Train the classifier
rf = RandomForestClassifier(n_estimators=50, n_jobs=-1)
rf.fit(X_train_embedded, y_train)
X_test_embedded = e.transform(X_test)
predictions = rf.predict(X_test_embedded)

We then check the predictions' AUC and the confusion matrix to evaluate the
performances:

print('AUC score: ', roc_auc_score(predictions, y_test))
confusion_matrix(predictions, y_test)
The performances are acceptable, but they could be improved.
AUC score: 0.7390774760383386
array([[224, 89],
 [95, 305]])

Summary
In this chapter, we learned about machine learning for NLP and word embedding in detail,
along with its applications. We also covered GloVe in detail, which involved global matrix
factorization and using the GloVe model.

In the next chapter, we will introduce a more sophisticated type of network, recurrent
neural networks (RNNs), as well as the math and the concepts behind them.

5
Working with RNNs

So far, we've explored solutions for tasks that are not sequence-based, which means they
don't require any history and it will not make any difference knowing what image came
before the one that is being classified at the moment. In many other tasks it's very
important to know the information that accompanies a piece of information. For example,
when we speak, a letter might be pronounced in a different way based on what letter comes
before after the concerned letter.

Our brain is able to process this information seemingness, and you could argue that
providing more information to the Neural Networks (NNs) we saw so far we would be
able to process new text.

There is a particular architecture of NNs that aims to solve this problem: Recurrent Neural
Networks (RNNs)

The important addition that we will discuss in this chapter is a way to extend the type of
computational graphs we create to process. A computational graph is a way to structure
multiple computations, for example, computing gradients.

The computational graphs we explored only had connections between one layer and the
next. An RNN is a network that has one additional type of connection, a recurrent one,
which forms a cycle.

In this chapter, we will explore what is achievable with an RNN and how we can build one
in Keras to solve a particular problem and following are some main topics that we will
cover:

Recurrent Neural Networks
Long Short-Term Memory
LSTMs in Keras

Working with RNNs Chapter 5

[110]

Understanding RNNs
RNNs are a family of networks used to solve problems, where it's important to know the
sequence of events. They are very similar to Convolutional Neural Networks (CNNs),
which are good at predicting grid data, like the below image.

RNNs are better at predicting a sequence of inputs that span over multiple time steps. The
input in this case looks as follows:

Here, X(τ) is the value at the time period, τ.

Working with RNNs Chapter 5

[111]

An example of a sequential task could be to categorize and segment continuous
handwritten characters. In this case, to find out when a letter ends and when another starts,
it's important to know not only the current information (that is, the pixels), but also the
related information:

RNNs have been successfully applied to many fields; some of these fields are as follows:

Speech recognition
Video sequence prediction
Machine translation
Time series predictions
Music composition
Handwriting recognition
Grammar learning

Some RNNs are Turing complete, meaning that they can simulate any
Turing machine. In other words, RNNs can be used to approximate any
algorithm.

Working with RNNs Chapter 5

[112]

Theory behind CNNs
An important concept of RNNs is stemmed from an idea from the 1980s, like many other
things in Machine Learning and its related fields. The idea was that it might be possible to
share parameters across the model, in this way it is possible to apply the model to instances
of different forms and come up with a generalization.

Otherwise, if we take as an example a time series, by having separate values for each
parameter, we would not be able to generalize to a sequence that has a length different
from a training one.

We saw how convolutional networks can deal with image with large width and height,
similarly, RNNs can scale to very long sequences that wouldn't be practical for networks
without the recurrent layer. Additionally, as some CNNs can process images of various
dimensions, RNNs can also process sequences of variable length.

As an example, let's consider these two sentences: In 2011, I met my wife and I met my wife in
2011. Here, we want to recognize 2011 as an important year. In a fully connected
feedforward neural network (FFNN) we would need to separate the parameters for each
input feature so that it would learn the language rules separated by position.

Using a CNN across a one-dimensional temporal sequence and the same sequence with a
time delay, it could allow us to share some of the weights across time, but in a shallow
manner, as the convolution would be made only on a closed neighborhood of the network.
In this way, we are sharing some parameters because of the convolution with the kernels.

In RNNs, each member of the output is a function of the previous members of the output;
this is by applying the same update rule to previous outputs. In this manner, it is possible
to share weights through a very deep convolutional graph, such as the following diagram:

We denote the input of an RNN with a vector, x(t), with the time step that goes from 1 to τ.
Most of the time, an RNN operates on mini-batches composed by sequences with different
lengths for each member.

An RNN can also be applied on sequences with multiple dimensions that are linked
through time, for example, a video.

Working with RNNs Chapter 5

[113]

The advantages of RNNs are as follows:

There is no limitation on the input length, without impacting the model size
They are able to take sequential history into account
Weights are shared across time

On the other hand, the disadvantages of RNNs are as follows:

They are time-intensive
They have difficulty accessing information from a long time ago
They cannot consider any future input for the current state

Types of RNNs
There are several types of RNNs that connect the same unit through time (each in a
different way). Let's consider the classical form of a dynamic system driven by the external
signal, x(t), and composed by state, s, as follows:

This equation is recurrent as it's referring to the state at the time, t-1. However, t-1 would
also depend on t-2, therefore, we could define this equation as follows:

At the time, t=3, the equation will be updated to the following formula:

To make it more explicit that we are talking about the hidden state of the unit, we can use h
instead of s, and rewrite the formula as follows:

Any recurrent function can be described with RNNs. All the previous states are
summarized by the current state, h(t); because of this, we can say that h(t) is a lossy
compression of the previous information.

Working with RNNs Chapter 5

[114]

Use h(t) as a type of lossy summary of the task-relevant aspects of the past sequence of
inputs up to the current one. This summary is necessarily lossy, since it maps an arbitrary
length, that is, sequence(x(t), x(t−1), x(t−2), . . . , x(2), x(1)), to a fixed length vector, h(t). How
far back we want to go will depend on the type of problem; for example, if we want to
predict the next word, we will only consider a few prior positions, such as two or three
previous words or outputs.

The main types of RNN are as follows:

An RNN with a recurrent connection between hidden units, which fires an
output at each time step
An RNN that has a recurrent connection between the output and the hidden unit
at the next time step
Recurrent connections between the hidden units and the output are obtained
only after processing the whole sequence

For each time step, t, the activation, a(t), and the output, y(t), are expressed as follows:

If we denote with Wax, Waa, Wya, ba, by, Wax, Waa, Wya, and ba, by the coefficients that
are shared temporally and with the g1, g2, g1, g2 activation functions, as shown in the
following diagram:

Based on different time differences we will have different types of RNNs.

Working with RNNs Chapter 5

[115]

One-to-one
When we have both the input and the output used to only compute the same time step, we
will have a simple NN, as follows:

One-to-many
Some networks will only use the current input but they will also consider the output from
the previous time step. This type of architecture is used in music generation, where the
notes must somehow follow a pleasant pattern:

Many-to-many
For some tasks, it's important to have information not only from the previous inputs but
also the previous output.

We can further distinguish between two different types of architecture based on the time
difference that we are interested in.

Working with RNNs Chapter 5

[116]

The same lag
This is when both the input and output are considered with the same time window. This
commonly used for sentiment classification. In this case, the network architecture will look
like this:

A different lag
Sometimes it's useful to remove the restriction of having the same temporal difference. This
type of architecture is used for machine translation:

Loss functions
The loss function, in this case, is the sum of the loss functions over the time window,
defined as follows:

Working with RNNs Chapter 5

[117]

As an activation function, it's common to use sigmoid, tanh, and ReLU. One of the
problems that we might have in an RNN (which we might not encounter in FFNN) is that
the gradient of the loss function can also explode (not only vanish). This because of the
recurrent connections that provide a history of the past instances, which creates a
multiplicative gradient that can exponentially increase or decrease. Gradient clipping is
used to avoid the explosion of the gradient and this is done by limiting its maximum value,
as shown in the following graph:

Another way to control the gradient is by using some specific type of gates. Gates are
usually indicated with Γ and are defined as follows:

Here, W, U, and b are coefficients specific to the gate and σ is the sigmoid function. The
main ones are summed up in the following table:

Type of gate Role
Update gate ΓuΓu Decides how much past information will affect the result
Relevance gate ΓrΓr Decides whether we should drop the previous information
Forget gate ΓfΓf Decides whether we should erase the cell

Long Short-Term Memory
One of the main problems in RNNs is that the gradient vanishes pretty quickly with an
increase in the time steps. There are some architectures that help alleviate this problem, and
the most common one is Long Short-Term Memory (LSTM).

A very common type of RNN is LSTM. This type of network is much better at capturing
long-term dependencies than simple RNNs. The only unusual thing about LSTMs is the
way that they compute the hidden state.

Working with RNNs Chapter 5

[118]

Essentially, an LSTM is composed of a cell, an Input Gate, an Output Gate, and a Forget
Gate, which is the unusual thing about it, as shown in the following diagram:

LSTM architecture
This type of network is used to classify and make predictions from time series data. For
example, some LSTM applications include handwriting recognition or speech recognition.

One of the properties of LSTM architecture is the ability to deal with lags of different
durations (which it does better than RNNs).

The equation of an LSTM with a forget gate is given as follows:

Working with RNNs Chapter 5

[119]

Now take a look at the following notation:

Here, the LSTM needs to decide what information we're going to throw away from the cell.
This is done by a type of gate called the forget layer. It's implemented using a
sigmoid function that evaluates the hidden state and the current input in order to decide
whether we keep the information or get rid of it.

If we want to predict the next word based on the previous one, the information of the cell
might store is the gender of the noun, to predict the next world correctly. If we change the
subject we want to forget the previous gender information, and that what this gate is
used to:

Working with RNNs Chapter 5

[120]

The second step would be to decide what information the cell should store. In our example,
it would be to determine the gender we should store once we forget the previous one. This
is done in two parts; the first part is composed of a sigmoid that decides which value we
should update. Then, another layer, which uses tanh, is used to create a vector of
candidates:

Now we have the decision as to whether we should drop the information and the new
potential value:

At the end of the notation, the cell decides what to output. The first part is to decide what
part of the cell we are going to output. This is determined by a sigmoid. The second part is
to squash the values between -1 and 1, and then multiply it by the sigmoid gate:

Working with RNNs Chapter 5

[121]

In our language model task, we can decide to output information about whether the subject
is plural or singular, to inform, for example, the next verb conjugation.

Gated Recurrent Units (GRUs) operate in a similar way to LSTMs but with fewer
parameters, as they do not have an output gate. It has a similar performance in some tasks,
but in general, LSTM architecture provides better performance:

LSTMs in Keras
We will now demonstrate an example of an LSTM implemented in keras to solve a simple
time series prediction problem:

Import all the required libraries as follows:1.

%matplotlib inline
import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential

Working with RNNs Chapter 5

[122]

from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import os
import numpy as np
import math

Necessary for some OSX version
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

fix a random seed for reproducibility
numpy.random.seed(11)

Define a few parameters that will be important for later on, as follows:2.

LEN_DATASET = 100
EPOCHS = 50
BATCH_SIZE = 1

It's going to be used to
reshape into X=t and Y=t+1
look_back = 1

Create the dataset as follows:3.

sin_wave = np.array(
 [math.sin(x) + i * 0.1 for i, x in
enumerate(np.arange(LEN_DATASET))])
dataset = sin_wave.reshape(len(sin_wave), 1)

The preceding commands generate the time series that we have to model:

Working with RNNs Chapter 5

[123]

Define a function to reshape the input data, as follows:4.

def create_dataset(dataset, look_back=1):
 X, Y = [], []
 for i in range(len(dataset) - look_back - 1):
 a = dataset[i:(i + look_back), 0]
 X.append(a)
 Y.append(dataset[i + look_back, 0])
 return numpy.array(X), numpy.array(Y)

Create a training set to fit our model and a test set to verify the performances by5.
executing the following commands:

normalize the dataset
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
split into train and test sets
train_size = int(len(dataset) * 2/3)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size, :],
dataset[train_size:len(dataset), :]

X_train, y_train = create_dataset(train, look_back)
X_test, y_test = create_dataset(test, look_back)
reshape input to be [samples, time steps, features]
X_train = numpy.reshape(X_train, (X_train.shape[0], 1,
X_train.shape[1]))
X_test = numpy.reshape(X_test, (X_test.shape[0], 1,
X_test.shape[1]))

Define a simple network; to accomplish this, we will use the LSTM function from6.
keras, as follows:

create and fit the LSTM network
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X_train, y_train, epochs=EPOCHS, batch_size=BATCH_SIZE,
verbose=2)

Make the predictions as follows:7.

Making the predictions
predictions_train = model.predict(X_train)
predictions_test = model.predict(X_test)

Working with RNNs Chapter 5

[124]

Invert the scaler we applied to the input data:8.

Re-applying the scaling to the predictions
predictions_train = scaler.inverse_transform(predictions_train)
predictions_test = scaler.inverse_transform(predictions_test)
y_train = scaler.inverse_transform([y_train])
y_test = scaler.inverse_transform([y_test])

Calculate the root mean square error, as follows:9.

calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(y_train[0],
predictions_train[:, 0]))
testScore = math.sqrt(mean_squared_error(y_test[0],
predictions_test[:, 0]))

print('Train RMSE: %.2f ' % (trainScore))
print('Test RMSE: %.2f ' % (testScore))

This will produce the following output:

Epoch 1/50
 - 5s - loss: 0.0991
Epoch 2/50
 - 0s - loss: 0.0559
Epoch 3/50
 - 0s - loss: 0.0331
Epoch 4/50
 - 0s - loss: 0.0236
Epoch 5/50
 - 0s - loss: 0.0203
Epoch 6/50
 - 0s - loss: 0.0186
Epoch 7/50
 - 0s - loss: 0.0176

Verify the accuracy of the predictions graphically, as follows:10.

shift train predictions for plotting
predictions_train_plot = numpy.empty_like(dataset)
predictions_train_plot[:, :] = numpy.nan
predictions_train_plot[look_back:len(predictions_train) +
look_back, :] = predictions_train

shift test predictions for plotting
predictions_test_plot = numpy.empty_like(dataset)
predictions_test_plot[:, :] = numpy.nan
predictions_test_plot[len(predictions_train) + (look_back * 2) +

Working with RNNs Chapter 5

[125]

1:len(dataset) -1, :] = predictions_test

plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(predictions_train_plot, label='Training set')
plt.plot(predictions_test_plot, label='Test set')
plt.legend(loc='upper left')
plt.show()

The preceding commands, if executed, will produce the following graph:

The blue line represents the whole time series; in red, we see the training set, and
our predictions are in green.

PyTorch basics
PyTorch is another deep learning framework that aims to provide an efficient way to
compute graphs using Pythonic APIs. According to the authors, it has the following two
goals:

To provide an equivalent to NumPy that is capable of using the computational
power of Graphics Processing Units (GPUs)
To create a deep learning research platform

What really distinguishes PyTorch from other popular frameworks is the adoption of a
Dynamic Computational Graph (DCG). Usually, a static graph is used as it's possible to
optimize it and run it in parallel in the target GPU. This can be a problem if we require
more flexibility; for example, by changing the execution graph as we train the algorithm.
This is especially useful in natural language processing (NLP) when spoken expression can
be of different lengths.

Working with RNNs Chapter 5

[126]

To accomplish these goals, it relies on tensors, which are the equivalent of
ndarray in NumPy but with the addition that they can also be computed on a GPU:

import torch
x, y = 3, 2
Create a matrix
of dimension x and y
x = torch.Tensor(x, y)
print(x)

A fundamental part of PyTorch is the autograd package. It provides auto-differentiation
for all operations on tensors. To define the operation in a tensor, we need to initiate tensor
in torch.Tensor. If we set requires_grad as True, PyTorch starts recording the
operations on it. Then, we call backwards() on our tensor.

To be able to do this, we will need to set the requires_grad parameter to true. This will
make sure that torch.autograd records operations on tensor for automatic
differentiation:

 x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True)

Then, to differentiate, it's enough to specify the following command:

my_tensor.backward()

We will have the gradient computed automatically. So, we don't need to explicitly define
the gradient as we did before. We will now take a look at an example of an NLP prediction
task using PyTorch to solve it.

Time series prediction
We will now demonstrate how to use an RNN to perform Part-of-Speech (PoS) tagging on
a very simple dataset by performing the following steps:

Import the main libraries as follows:1.

Author: Robert Guthrie

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

torch.manual_seed(1)

Working with RNNs Chapter 5

[127]

Create the dataset; we are going to use a toy example, as follows:2.

#
https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial
.html#example-an-lstm-for-part-of-speech-tagging
import numpy as np

def prepare_sequence(seq, to_ix):
 idxs = [to_ix[w] for w in seq]
 return torch.tensor(idxs, dtype=torch.long)

training_data = [
 ("My grandmother ate the polemta".split(), ["DET", "NN", "V",
 "DET", "NN"]),
 ("Marina read my book".split(), ["NN", "V", "DET", "NN"])
]
word_index = {}
for sent, tags in training_data:
 for word in sent:
 if word not in word_index:
 word_index[word] = len(word_index)

print(word_index)
tag_to_ix = {"DET": 0, "NN": 1, "V": 2}

These will usually be more like 32 or 64 dimensional.
We will keep them small, so we can see how the weights change as
we train.
EMBEDDING_DIM = 6
HIDDEN_DIM = 6

The preceding commands generates the following output:

{'My': 0, 'grandmother': 1, 'ate': 2, 'the': 3, 'polemta': 4,
'Linda': 5, 'read': 6, 'my': 7, 'book': 8}

Define the LSTM model as follows:3.

class LSTMTagger(nn.Module):

 def __init__(self, embedding_dim, hidden_dim, vocab_size,
 tagset_size):
 super(LSTMTagger, self).__init__()
 self.hidden_dim = hidden_dim

 self.word_embeddings = nn.Embedding(vocab_size,
 embedding_dim)

Working with RNNs Chapter 5

[128]

 # The LSTM takes word embeddings as inputs, and outputs
 hidden states
 # with dimensionality hidden_dim.
 self.lstm = nn.LSTM(embedding_dim, hidden_dim)

 # The linear layer that maps from hidden state space to tag
 space
 self.hidden2tag = nn.Linear(hidden_dim, tagset_size)

 def forward(self, sentence):
 embeds = self.word_embeddings(sentence)
 lstm_out, _ = self.lstm(embeds.view(len(sentence), 1, -1))
 tag_space = self.hidden2tag(lstm_out.view(len(sentence),
 -1))
 tag_scores = F.log_softmax(tag_space, dim=1)
 return tag_scores

Train the network as follows:4.

Training the model

model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_index),
len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

for epoch in range(300): # again, normally you would NOT do 300
epochs, it is toy data
 for sentence, tags in training_data:
 # Step 1. Remember that Pytorch accumulates gradients.
 # We need to clear them out before each instance
 model.zero_grad()

 # Step 2. Get our inputs ready for the network, that is,
 turn them into
 # Tensors of word indices.
 sentence_in = prepare_sequence(sentence, word_index)
 targets = prepare_sequence(tags, tag_to_ix)

 # Step 3. Run our forward pass.
 tag_scores = model(sentence_in)

 # Step 4. Compute the loss, gradients, and update the
 parameters by
 # calling optimizer.step()
 loss = loss_function(tag_scores, targets)
 loss.backward()

Working with RNNs Chapter 5

[129]

 optimizer.step()

See what the scores are after training
with torch.no_grad():
 inputs = prepare_sequence(training_data[0][0], word_index)
 tag_scores = model(inputs)

 # The sentence is "my grandmother ate the polenta". i,j
 corresponds to score for tag j
 # for word i. The predicted tag is the maximum scoring tag.
 # Here, we can see the predicted sequence below is 0 1 2 0 1
 # since 0 is index of the maximum value of row 1,
 # 1 is the index of maximum value of row 2, etc.
 # Which is DET NOUN VERB DET NOUN, the correct sequence!
 print(tag_scores)

The preceding commands generate the following result:

tensor([[-0.3892, -1.2426, -3.3890],
 [-2.1082, -0.1328, -5.8464],
 [-3.0852, -5.9469, -0.0495],
 [-0.0499, -3.4414, -4.0961],
 [-2.4540, -0.0929, -5.8799]])

Note that we cannot check whether the algorithm has learned:

import numpy as np

ix_to_tag = {0: "DET", 1: "NN", 2: "V"}

def get_max_prob_result(inp, ix_to_tag):
 idx_max = np.argmax(inp, axis=0)
 return ix_to_tag[idx_max]

test_sentence = training_data[0][0]
inputs = prepare_sequence(test_sentence, word_index)
tag_scores = model(inputs)
for i in range(len(test_sentence)):
 print('{}: {}'.format(test_sentence[i],
 get_max_prob_result(tag_scores[i].data.numpy(),
 ix_to_tag)))

Now we can verify that the following output is the one that was expected:

The: DET
dog: NN
ate: V
the: DET
apple: NN

Working with RNNs Chapter 5

[130]

Summary
In this chapter, we demonstrated how to replicate any function, as RNNs are Turing
complete. In particular, we explored how to solve time-dependent series data or time series
data.

In particular, we learned how to implement an LSTM and its architecture. We learned
about its ability to capture both long- and short-term dependencies. LSTM has a chain-like
structure, which is similar to a simple RNN; however, instead of one, it has four neural
network layers. These layers form a gate that allows the network to add or remove
information if certain conditions are met.

Additionally, we learned how to implement an RNN using keras. We also introduced
another tool, which is particularly useful for complex tasks, such as NLP with
PyTorch. PyTorch allows you to compute the execution graph dynamically, which is
particularly useful for tasks that have variable data.

In the next chapter, we will explore how to make use of networks to train and solve one
task for different tasks that they have been trained on.

6
Reusing Neural Networks with

Transfer Learning
There is a fundamental difference between the way humans learn and the way machines
learn. A clear advantage for humans is our ability to transfer knowledge between different
domains. So far, we have only explored techniques that make our models learn tasks, such
as image recognition. In this chapter, we will see how it's possible to generalize learning
and use a model trained for another task to solve different problems. We will also explore a
code example of transfer learning, in PyTorch.

Following are the topics that will be covered in this book:

Transfer learning theory
Implementing multi-task learning
Feature extraction
Implementation in PyTorch

Transfer learning theory
As we have said in previous chapters, hidden layers of neural networks can be used to
automatically build features on top of each other. This way of building features
automatically from raw data is quite efficient. For example, if we want to build an image
classification algorithm that classifies different types of artwork, we don't need to hand-
craft features; we can outsource this process to the network.

This also has the advantage of creating a different and compact representation of the main
features that are important in our task. These can potentially be used to algorithmically
generate new instances of the object of our classification. In our example, we would be able
to generate realistic artwork. We will see how we can generate new instances in more detail
in Chapter 7, Working with Generative Algorithms.

Reusing Neural Networks with Transfer Learning Chapter 6

[132]

There is another important aspect of Neural Networks (NNs). You might wonder how
specific these features are to the task they have been trained on. Turns out that it's possible
to re-use networks that have been trained for one task to solve similar tasks with minor
adjustments.

This process is called transfer learning (TL), and it can be especially useful when you don't
have much available data but do have a very high-performing network that was trained for
a similar task. For example, a network trained to recognize cars could be re-used to
recognize trucks. Of course, it would be necessary to make some modifications, but re-
using part of the network has several advantages as follows:

Less time needed to train the network
Less data needed
Cheaper to train

On the other hand, we also have some problems and limitations. One of the problems you
might experience with TensorFlow is that your assumptions on the similarity of the tasks is
not accurate. Also, if you don't have a good understanding of the theory behind
TensorFlow, you might lose visibility and make the problem much more difficult to solve.
This is because, by hiding one of the complexities, it will also be more difficult to find out
why the network is not performing as expected.

Introducing multi-task learning
Multi-task learning (MTL) is a type of algorithm in which a model is trained on different
tasks at the same time. In this way, the network creates weights that are more generic and
not tied to a specific task. In general, these models are more adaptable and flexible.

Refer to https:/​/​www.​datacamp.​com/​community/​tutorials/​transfer-​learning for more
information.

With this task, we will have a few initial shared layers.

The assumption is that training a network on different tasks will make the network able to
generalize to more tasks, maintaining a good level of performance. The way it will achieve
that is to create some layers that are more generic.

https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning
https://www.datacamp.com/community/tutorials/transfer-learning

Reusing Neural Networks with Transfer Learning Chapter 6

[133]

Reusing other networks as feature extractors
Another popular application of TL is using pre-trained networks to extract useful features.
To be able to apply this technique, we will need to find a pre-trained network on a similar
task, after which we need to customize it for our task.

Implementing MTL
Now, we will see in more detail what we need to do in an MTL task.

There are different ways to implement MTL. Two methods that are commonly used are as
follows:

Hard parameter sharing: This is the most common way to implement MTL, and
it consists of sharing some of the hidden layers across all tasks, while other layers
are kept specific for each single task:

The main advantage of this method is that it's difficult to overfit. Overfitting is
particularly a problem for NNs, but in this case, the more tasks, the lower the
danger of overfitting. This is quite clear, because overfitting is creating a solution
that is too specific for the dataset we provide, while in this case, by design, we
have a more generic task and a variegated dataset.

Reusing Neural Networks with Transfer Learning Chapter 6

[134]

Soft parameter sharing: With soft parameter sharing, we have one model, but
each task will have its own parameters. In this case, we train the full network on
different tasks, but then we add a constraint to make sure the parameters will be
similar overall. Regularization techniques are often used to accomplish that, in
particular the L2 norm. This type of normalization imposes a penalty on large
differences among the parameters at the same level of the network:

Implementing any MLT strategy has some advantages over classical learning. In particular,
some of the main things we can accomplish are as follows:

Increases the dataset: By using different tasks, we will have more data available
to train out network.
Regularization: By having constraints on the weights, we attain regularization.
Increases the importance of generic features: MLT will make sure that more
generic features will be remembered by the weights, since task-specific features
would increase the error of the other tasks. If that does not happen, we will have
something called negative transfer, where task-specific features will contribute
negatively to another task.
Eavesdrop: Some features are easy to learn in one task and difficult to learn from
another. MLT increases the chance of learning more interesting features by
working on a multitude of tasks.

Reusing Neural Networks with Transfer Learning Chapter 6

[135]

Feature extraction
Another simpler but usually less effective way of doing TL is to use a network trained on a
specific task as a feature extractor. In this way, the feature we will extract will be very
dependent on the task.

But we also know that the features created in different layers follow a hierarchical structure
that will learn a high-level representation of the image in the following different layers:

Lower layer: Features in lower layers will be very low-level. This means that they
are quite generic and simple. Examples of features extracted in the first layer can
be lines, edges, or linear relationships; we saw previously that, with one layer,
we can describe linear relationships. The second layer will be able to capture
more complex shapes, such as curves.
Higher layer: Features in higher layers will be more high-level descriptions of
our inputs. Parts of it might be too specific to one task, and other parts can be
adapted. For example, if the task is to classify a bird, you would be able to see the
beak and part of the head.
Last layer: Depending on the task, this is where feature creation ends and where
classification starts.

Depending on how similar the two tasks are, we will determine how much of the network
we should retrain with data from the new task.

Implementing TL in PyTorch
Now we will see how it's possible to implement TL in PyTorch by performing the following
steps. We will use a standard training set, cats and dogs, and a pre-trained network:

Import the necessary libraries as follows:1.

import torch
import torchvision
import torch.nn as nn
import numpy as np
import torch.optim as optim
from torchvision import models
from torchvision import transforms
import copy
import os
from os import listdir
import shutil

Reusing Neural Networks with Transfer Learning Chapter 6

[136]

from torchvision import datasets
import random
from torch.optim import lr_scheduler
import matplotlib.pyplot as plt

Now, we will use a handy PyTorch function:2.

Create train and test dataset

data_dir = os.path.join('kagglecatsanddogs_3367a','PetImages')

Create the train and test set folder
train_dir = os.path.join(data_dir, 'train')
validation_dir = os.path.join(data_dir, 'validation')
train_dir_cat = os.path.join(train_dir,'Cat')
train_dir_dog = os.path.join(train_dir,'Dog')
validation_dir_cat = os.path.join(validation_dir,'Cat')
validation_dir_dog = os.path.join(validation_dir,'Dog')

try:
 os.mkdir(train_dir)
 os.mkdir(train_dir_dog)
 os.mkdir(train_dir_cat)
 os.mkdir(validation_dir)
 os.mkdir(validation_dir_dog)
 os.mkdir(validation_dir_cat)
except FileExistsError:
 print('File exists')

dir_cat = os.path.join(data_dir,'Cat')
dir_dog = os.path.join(data_dir,'Dog')

files_cat = [os.path.join(dir_cat, f) for f in os.listdir(dir_cat)
if os.path.isfile(os.path.join(dir_cat, f))]
files_dog = [os.path.join(dir_dog, f) for f in os.listdir(dir_dog)
if os.path.isfile(os.path.join(dir_dog, f))]

msk_cat = np.random.rand(len(files_cat)) < 0.8
msk_dog = np.random.rand(len(files_dog)) < 0.8

rand_items_cats = random.sample(files_cat, int(len(files_cat)*0.8))
rand_items_dogs = random.sample(files_dog, int(len(files_dog)*0.8))

validation_data
train_data

Reusing Neural Networks with Transfer Learning Chapter 6

[137]

def move_file_list(directory, file_list):
 for f in file_list:
 f_name = f.split('/')[-1]
 shutil.move(f, os.path.join(directory, f_name))

move_file_list(train_dir_dog, rand_items_dogs)
move_file_list(train_dir_dog, rand_items_dogs)

files_cat_v = [os.path.join(dir_cat, f) for f in
os.listdir(dir_cat) if os.path.isfile(os.path.join(dir_cat, f))]
files_dog_v = [os.path.join(dir_dog, f) for f in
os.listdir(dir_dog) if os.path.isfile(os.path.join(dir_dog, f))]

move_file_list(validation_dir_cat, files_cat_v)
move_file_list(validation_dir_dog, files_dog_v)

Now that we have created the dataset, we can load the data as follows:3.

!!!!!!Original!!!!
Data augmentation and normalization for training
Just normalization for validation
mean = np.array([0.5, 0.5, 0.5])
std = np.array([0.25, 0.25, 0.25])

data_transforms = {
 'train': transforms.Compose([
 transforms.RandomResizedCrop(224),
 transforms.RandomHorizontalFlip(),
 transforms.ToTensor(),
 transforms.Normalize(mean, std)
]),
 'validation': transforms.Compose([
 transforms.Resize(256),
 transforms.CenterCrop(224),
 transforms.ToTensor(),
 transforms.Normalize(mean, std)
]),
}

image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir,
x),
 data_transforms[x])
 for x in ['train', 'validation']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],
batch_size=4, shuffle=True, num_workers=4)
 for x in ['train', 'validation']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train',
'validation']}

Reusing Neural Networks with Transfer Learning Chapter 6

[138]

class_names = image_datasets['train'].classes

device = torch.device("cpu")

Let's also create a function to visualize the images from tensor as follows:4.

def imshow(input_image, title=None):
 """Plot the input tensor as animage"""
 input_image = input_image.numpy()
 input_image = input_image.transpose((1, 2, 0))
 input_image = std * input_image + mean
 plt.imshow(input_image)
 plt.title(title)

Let's see the output; using the following code:5.

Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))

Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

The preceding commands generate the following output:

Retrain the model by executing the following code block:6.

def train_model(model, criterion, optimizer, scheduler, epochs=10):

 best_model_wts = copy.deepcopy(model.state_dict())
 best_acc = 0.0

 for epoch in range(epochs):
 print('Epoch {} of a total of {}'.format(epoch, epochs -
1))

 # Each epoch has a training and validation phase
 for phase in ['train', 'validation']:

Reusing Neural Networks with Transfer Learning Chapter 6

[139]

 if phase == 'train':
 scheduler.step()
 model.train() # Set model to training mode
 else:
 model.eval() # Set model to evaluate mode

 running_loss = 0.0
 running_corrects = 0

 # Iterate over data.
 for inputs, labels in dataloaders[phase]:
 inputs = inputs.to(device)
 labels = labels.to(device)

 # zero the parameter gradients
 optimizer.zero_grad()

 # forward
 # track history if only in train
 with torch.set_grad_enabled(phase == 'train'):
 outputs = model(inputs)
 _, preds = torch.max(outputs, 1)
 loss = criterion(outputs, labels)

 # backward + optimize only if in training phase
 if phase == 'train':
 loss.backward()
 optimizer.step()

 # statistics
 running_loss += loss.item() * inputs.size(0)
 running_corrects += torch.sum(preds == labels.data)

 epoch_loss = running_loss / dataset_sizes[phase]
 epoch_acc = running_corrects.double() /
 dataset_sizes[phase]

 print('{} Loss: {:.4f} Acc: {:.4f}'.format(
 phase, epoch_loss, epoch_acc))

 # deep copy the model
 if phase == 'val' and epoch_acc > best_acc:
 best_acc = epoch_acc
 best_model_wts = copy.deepcopy(model.state_dict())

 print()

 print('Training finish')

Reusing Neural Networks with Transfer Learning Chapter 6

[140]

 print('Best val Acc: {:4f}'.format(best_acc))

 # load best model weights
 model.load_state_dict(best_model_wts)
 return model

And now we can finally define the model. To do that, we will use a famous pre-trained
model that is available in torchvision.

We will use a model called resnet18. ResNet is a family of networks that use deep
residual learning, where the layers explicitly refer to learning residual functions with
reference to the input layers. In this way, it's possible to train deeper networks:

Reusing Neural Networks with Transfer Learning Chapter 6

[141]

There is empirical evidence that these networks are easier to optimize and can increase
accuracy with increased depth. Now that we have a good model, we can apply the
principles that we learned about TL.

ResNet-18 was trained on the ImageNet dataset, an open source dataset for general object
recognition consisting of one million images. The following are the results:

Network Top-1 error Top-5 error

ResNet-18 30.24 10.92

Now, let's load the trained model:

model_ft = models.resnet18(pretrained=True)

Now we want to use the features the network already has, but adapt them to a new task. As
we said, the layer we need to change is the last one, where classification happens. We need
this because we previously had multiple outputs, while for this task we want binary output
only.

In PyTorch, this is pretty simple: it's enough to overwrite the last layer with a binary
classifier. We decided to use a linear function. To create a suitable linear classifier, we need
to keep in mind not only the number of outputs we want (2) but also the number of
features we will receive as input from the network:

model_ft.fc = nn.Linear(num_features, 2)
criterion = nn.CrossEntropyLoss()
criterion = nn.BCEWithLogitsLoss()
criterion = nn.BCELoss()
Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=4,
gamma=0.1)

Now we can train it as follows:

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
dataloader_training=dataloaders_train,
Sdataloader_validation=dataloaders_validation, epochs=1)

Reusing Neural Networks with Transfer Learning Chapter 6

[142]

Summary
In this chapter, we explained the main concepts of TL. We also learned about multi-task
learning and implementation of MTL. Then, we learned feature extraction. Finally, we
learned how to implement TL in PyTorch.

In the next chapter, we will see how the differences between the generator and the
discriminator help form the foundations of a GAN.

3
Section 3: Advanced

Applications
In this section, we will learn more advanced concepts and how they are used in a multitude
of tasks, from generation to sequential decision-making.

The following chapters are included in this section:

Chapter 7, Working with Generative Algorithms
Chapter 8, Implementing Autoencoders
Chapter 9, Deep Belief Networks
Chapter 10, Reinforcement Learning
Chapter 11, What's Next?

7
Working with Generative

Algorithms
Generative algorithms are part of unsupervised learning techniques. They underpin one of
the most innovative concepts in machine learning in the past decade: Generative
Adversarial Networks (GANs). In this chapter, we will be looking at the variations and
developments in generative models in recent times.

A generative model can learn to mimic any distribution of it. Their potential is huge as they
can be taught to recreate similar models in any domain. Some of these domains include, but
are not limited, to the following:

Images
Music
Speech
Text
Videos

There are a host of published papers outlining the advancements in GANs, and links to
some of those most noteworthy have been listed at the end of this chapter.

Specifically, we will be covering the following topics in this chapter:

Discriminative versus generative algorithms
Different types of GANs, including those that have achieved some state-of-the-
art results
GAN applications

Working with Generative Algorithms Chapter 7

[145]

Discriminative versus generative algorithms
In order to comprehend generative algorithms, it can be helpful to contrast them with
discriminative algorithms. When input data is fed into a discriminative algorithm, it aims
to predict the label to which the data belongs. As such, the algorithm aims to map features
to labels. Generative algorithms, on the other hand, do the opposite; they aim to predict
features given a certain label.

Let's compare these two types of models in the context of whether an email is spam. We can
consider x to be the model feature; for example, all of the words in the email. We can also
consider the target variable, y, to state whether the email is actually spam. In such a
scenario, the discriminative and generative models will aim to answer the following
questions:

Discriminative model p(y|x): Given the input features, x, what is the probability
of the email being spam?
Generative model p(x|y): Given that the email is spam, how likely are the input
features to be x?

In other words, discriminative models learn the boundary between classes, whereas
generative models learn to model the distribution of individual classes, as shown in the
following diagram:

Working with Generative Algorithms Chapter 7

[146]

The generative model learns to predict the joint probability with the help of the following
Bayes Theorem:

Here, let's explore the preceding terms:

p(x|y) is a conditional probability, the likelihood of y, given x
p(x|y) is also a conditional probability, the likelihood of x, given y
p(x) and p(y) are the probabilities of observing x and y independently of each
other

The following are some examples of discriminative classifiers:

Logistic regression
Nearest neighbors
Support vector machines (SVMs)

The following are some examples of generative classifiers:

Naive Bayes
Hidden Markov Models (HMMs)
Bayesian networks

Understanding GANs
GANs are comprised of two neural networks: a generator and a discriminator. They are
able to generate new, synthetic data. The generator outputs new instances of the data, while
the discriminator determines whether each instance of the data that is fed to it belongs to
the training dataset.

Working with Generative Algorithms Chapter 7

[147]

The following screenshot gives an illustration of the output from a GAN on the MNIST
and Toronto Face datasets. In both cases, the images on the far-right side of the grid are the
true values and the others are generated by the model:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1406.​2661.​pdf

Let's consider this further in the context of using the MNIST dataset, where the goal of the
GAN is to generate similar images of handwritten digits. The role of the generator in the
network is to create new synthetic images. These images are then passed to the
discriminator. The goal of the discriminator is to identify whether the images from the
generator are authentic or fake. The goal of the generator, on the other hand, is to generate
images that won't be classed as fake by the discriminator. As such, the discriminator and
generator have opposing objective (loss) functions, which means that if one of the models
changes their behavior, then so does the other.

The following are the steps that a GAN takes:

Random numbers are fed into the generator and an image is generated1.
The generated image is fed into the discriminator along with other images taken2.
from the real dataset
The discriminator considers all of the images fed into it and returns a probability3.
as to whether it thinks the image is real or fake

https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf

Working with Generative Algorithms Chapter 7

[148]

Take a look at the following diagram:

The discriminator network is simply a standard convolutional network that categorises
images being fed to it. It performs downsampling and classifies the images in a binary
fashion, labeling each image as real or fake:

Working with Generative Algorithms Chapter 7

[149]

Conversely, the generator is essentially the reverse of a convolutional network. The
generator takes the random noise and performs upsampling in order to output the image:

Training GANs
The training process of a GAN is as follows:

Training the discriminator: Generator values should be held constant
Training the generator: The discriminator should be pretrained against the
original dataset

Either side of the GAN can overpower the other if one is significantly higher-performing
than the other. For example, if the discriminator is too high-performing, it will return a
value that is very close to either 0 or 1, and the generator will have difficulties reading the
gradient. On the other hand, if the performance of the generator is too high, then it will
continually exploit weaknesses in the discriminator that lead to false negatives.

Such a dilemma during training is illustrated in the following graph for the case of a binary
classification problem. We want to stop one side of the GAN from winning so that both
sides can continue to learn together for an extended period of time:

Working with Generative Algorithms Chapter 7

[150]

GAN challenges
GANs often face the following major challenges:

Mode collapse: When the generator collapses and produces limited varieties of
samples
Diminished gradient: When the discriminator performs too well that the
generator gradient vanishes and learns nothing
High sensitivity: They are highly sensitive to the hyperparameter selections
Overfitting: An imbalance between the generator and discriminator can cause
overfitting
Long training time: If the model is trained on a GPU, it can take hours
Non-convergence: The models may never converge, as the parameters can
oscillate and destabilize

Working with Generative Algorithms Chapter 7

[151]

We will consider the MNIST dataset, where there are 10 major modes: digits 0 to 9. The
samples in the following screenshot are generated by two different GANs. The top row in
the grid outputs all 10 modes (that is, all digits from 0 to 9), whereas the second row only
outputs a single mode (the digit 6). This is an example of mode collapse:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1611.​02163.​pdf

Mode collapse is one of the most difficult problems to solve in GANs. While a complete
collapse is uncommon, a partial collapse happens often. The following diagram shows that
photos with the same underlined color look similar when the mode begins collapsing:

The source can be found at: https:/​/​arxiv.​org/​pdf/​1703.​10717.​pdf

https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf

Working with Generative Algorithms Chapter 7

[152]

Overcoming mode collapse is currently an active area of research. There are a number of
different ways in which mode collapse has been dealt with, but there is not one single silver
bullet to solve the problem completely. Some of the known techniques that can be used to
reduce the severity of the problem are as follows:

Minibatch discrimination: The idea is to use samples within a batch to assess
whether the entire batch is real. The generator can be penalized for generating
similar-looking samples by incorporating a term that represents the diversity of
the samples. This term can be added to the generator's cost function. As such, the
generator is forced to generate diverse samples.
Experience replay: In order to prevent the generator from easily fooling the
discriminator, we can show previously generated samples to the discriminator.
Wasserstein GANs (WGANs): Traditional GANs aim to minimize the Jensen-
Shannon divergence between the distribution of the generator and the
distribution of the real data. However, minimising the Wasserstein distance has
been proven more effective in terms of reducing mode collapse.

GAN variations and timelines
There have been many significant developments to GAN research in recent times. The
following timeline shows some of the most noteworthy advances:

This chapter will now give insight into these developments, their applications, and results.

Working with Generative Algorithms Chapter 7

[153]

Conditional GANs
Conditional GANs are a central theme that form the building blocks of many state-of-the-
art GANs. The paper submitted by Mirza and Osindero in 2014 shows how integrating the
class labels of data yields greater stability in GAN training. This idea of conditioning GANs
with prior information is a common approach in future GAN research. It is particularly
important for papers whose main focus is on image-to-image or text-to-image applications:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1411.​1784.​pdf

DCGAN
A Deep Convolutional Generative Adversarial Network (DCGAN) is a popular network
design for GANs. It incorporates key Convolutional Neural Network (CNN) concepts in
order to overcome some of the challenges outlined previously, and consequently generates
better images. The following photos give an example of some of the images generated by a
DCGAN when trained on bedroom images:

https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf

Working with Generative Algorithms Chapter 7

[154]

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1511.​06434.​pdf

The network design of the generator within the DCGAN is as per the following diagram:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1511.​06434.​pdf

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf

Working with Generative Algorithms Chapter 7

[155]

The DCGAN architecture is constituted of the following aspects:

Batch normalization, is used except for the output layer of the generator and the
input layer of the discriminator
Convolutional stride replaces all max pooling
Convolutional layers are eliminated
The Rectified Linear Unit (ReLU) activation function is used in the generator,
except for the output layer, which uses tanh
The Leaky ReLU activation function is used in the discriminator

ReLU versus Leaky ReLU
The ReLU activation function takes the maximum between the input value and zero.
Sometimes, the network gets stuck in a popular state (referred to as the dying state) using
the ReLU activation function because it produces nothing but zeros for all of the outputs.

Leaky ReLU helps to prevent the dying state by allowing a few negative values to pass
through. If the input to a leaky ReLU activation function is positive, then the output will
also be positive. Similarly, the output will be a controlled negative value if the input is
negative. This negative value is controlled by a parameter called alpha, which that
introduces tolerance to the network by allowing some negative values to pass through it:

Working with Generative Algorithms Chapter 7

[156]

DCGAN – a coded example
Now, let's consider a coded example of training a DCGAN using the Keras library and
MNIST dataset, in order to generate synthetic images by performing the following steps:

Firstly, import the necessary libraries as follows:1.

from keras.models import Sequential,Model
from keras.layers import *
from keras.datasets import mnist
from keras.optimizers import Adam
from keras.layers.advanced_activations import LeakyReLU
from tqdm import tqdm

Now import the MNIST dataset, split it into training and testing datasets, and2.
normalize as follows:

(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
X_train = np.reshape(X_train,(60000,28,28,1)).astype('float32')
X_test = np.reshape(X_test,(10000,28,28,1)).astype('float32')
Normalize the images between -1 to 1
X_train = (X_train - 127.5)/127.5

From here, define the generator model as follows:3.

def generator_model():
model = Sequential()
model.add(Dense(128*7*7,input_dim = 100, activation =
LeakyReLU(0.1)))
model.add(BatchNormalization())
model.add(Reshape((7,7,128)))
model.add(UpSampling2D())
model.add(Conv2D(64,(5,5), padding = 'same', activation =
LeakyReLU(0.1)))
model.add(BatchNormalization())
model.add(UpSampling2D())
model.add(Conv2D(1,(5,5), padding = 'same', activation = 'tanh'))
return model
generator_model = generator_model()

Working with Generative Algorithms Chapter 7

[157]

The preceding code generates the following output:

Define the discriminator model, where the input will be both the real images4.
from the MNIST dataset and the fake images created by the generator:

def discriminator_model():
model = Sequential()
model.add(Conv2D(64,(5,5),padding = 'same',input_shape = (28,28,1)
, activation = LeakyReLU(0.1) , subsample = (2,2)))
model.add(Dropout(0.3))
model.add(Conv2D(128,(5,5),padding = 'same', activation =
LeakyReLU(0.1) , subsample = (2,2)))
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(1,activation = 'sigmoid'))
return model

Working with Generative Algorithms Chapter 7

[158]

The preceding code generates the following output:

Compile both the generator and the discriminator with the Adam optimizer:5.

generator_model.compile(loss = 'binary_crossentropy' , optimizer =
Adam())
discriminator_model.compile(loss = 'binary_crossentropy' ,
optimizer = Adam())
Now we build and compile the adversarial model.
generator_input = Input(shape = (100,))
generator_output = generator_model(generator_input)
discriminator_model.trainable = False
discriminator_output = discriminator_model(generator_output)
adversarial_model = Model(input = generator_input , output =
discriminator_output)
adversarial_model.summary()
adversarial_model.compile(loss = 'binary_crossentropy' , optimizer
= Adam())

Working with Generative Algorithms Chapter 7

[159]

The preceding code generates the following output:

From here, create a function to train the model:6.

def train(epochs):
batch_size = 128
batch = 400
for i in range(epochs):
for j in tqdm(range(batch)):
Define the noise to be input into the generator
noise_1 = np.random.rand(batch_size,100)
Create the random images output from the generator
gen_images = generator_model.predict(noise_1 , batch_size =
batch_size)
Real images from MNIST dataset
image_batch = X_train[np.random.randint(0, X_train.shape[0],
size=batch_size)]
Create the input data for discriminator (real images and fake
images from the generator)
disc_inp = np.concatenate([gen_images,image_batch])
Assign labels where 1 is a real image and 0 is fake for the
discriminator training
disc_Y = [0]*batch_size + [1]*batch_size
Make discriminator model trainable
discriminator_model.trainable = True
Train the discriminator model
discriminator_model.train_on_batch(disc_inp,disc_Y)
Generate noise for the adversarial network
noise_2 = np.random.rand(batch_size,100)
Freeze the weights of the discriminator and train the generator
discriminator_model.trainable = False
Labels for adversarial model are always 1
y_adv = [1]*batch_size

Working with Generative Algorithms Chapter 7

[160]

Train the adversarial model
adversarial_model.train_on_batch(noise_2,y_adv)
Repeat process for 'epoch' no. of times
train(80)

Now that the model is trained, we can output some synthetic images and see7.
how realistic they appear:

import matplotlib.pyplot as plt
def plot_output(text):
Random noise as the input
try_input = np.random.rand(50, 100)
predictions = generator_model.predict(try_input)
plt.figure(figsize=(20,20))
for i in range(predictions.shape[0]):
plt.subplot(10, 10, i+1)
plt.imshow(predictions[i, :, :, 0], cmap='gray')
plt.axis('off')
plt.tight_layout()
plt.savefig(text)
plot_output('80')

The preceding code generates the following output:

It appears that the model is performing nicely, as the images are similar to those in the
original dataset.

Working with Generative Algorithms Chapter 7

[161]

Pix2Pix GAN
Another image-to-image translation GAN model is Pix2Pix. It has many applications such
as edge maps to photo-realistic images, and black and white to colour.

The architecture uses paired training samples and incorporates a PatchGAN. The
PatchGAN looks at individual regions of the image in order to determine whether they are
real or fake, versus when considering the whole image.

The following are some examples of images generated by implementing the Pix2Pix GAN:

Mapping the edges of a handbag to a full realistic image is as follows:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1611.​07004.​pdf

https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf

Working with Generative Algorithms Chapter 7

[162]

Mapping black-and-white image to color is as follows:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1611.​07004.​pdf

A TensorFlow implementation of Pix2Pix GAN is available at the GitHub repository:
https:/​/​github.​com/​affinelayer/​pix2pix-​tensorflow. This allows you to generate
images using your own dataset.

StackGAN
StackGAN is somewhat unique to many other papers of research around GANs because it
focuses on translating natural language text to images. This is achieved by altering a text
embedding in such a way that it captures visual characteristics.

The following screenshot shows some of the images generated by StackGAN, given the
textual description fed into it. This has many real-world applications, such as converting a
story to a comic illustration:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1612.​03242.​pdf

https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf

Working with Generative Algorithms Chapter 7

[163]

The following diagram shows the overall architecture of StackGAN. It works on multiple
scales and first outputs an image of resolution 64 x 64, and then uses this as prior
information to generate an image of a 256 x 256 resolution. The stage-one generator draws
the low-resolution image by defining the rough shape and basic colors of the object from
the given text. It then paints the background from a random noise vector. The stage-two
generator corrects defects in the stage-one generator and adds details to the results. This
yields a more realistic high-resolution image, as follows:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1612.​03242.​pdf

A PyTorch implementation of this model can be downloaded from the GitHub repository
at: https:/​/​github.​com/​hanzhanggit/​StackGAN-​Pytorch.​git.

CycleGAN
Cycle-Consistent Adversarial Networks (CycleGANs) were introduced in a paper
focusing on the problem of image-to-image translation in cases where you do not have
paired training samples. The paper aims to stabilize GAN training through the introduction
of the cycle-consistency loss formulation. The central idea behind the loss function is
illustrated in the following diagram. It relies on the assumption that if you convert an
image to the other domain and back again, you should get back something similar to what
was put into it. This enforces that F(G(x)) ≈ x and G(F(y)) ≈ y:

https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git
https://github.com/hanzhanggit/StackGAN-Pytorch.git

Working with Generative Algorithms Chapter 7

[164]

There are many applications of CycleGAN, such as enhanced image resolution and style
transfer. More specifically, it can be used for converting pictures to paintings (and vice
versa), along with mapping one animal to another, as shown in the following example
screenshots.

The following are the examples cited in the CycleGAN paper on implementing CycleGAN:

Mapping Monet's paintings to a photographic style looks as follows:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1703.​10593.​pdf

https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf

Working with Generative Algorithms Chapter 7

[165]

Mapping a horse to a zebra looks as follows:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1703.​10593.​pdf

A Pytorch implementation of CycleGAN is available at the GitHub repository at: https:/​/
github.​com/​aitorzip/​PyTorch-​CycleGAN. This allows you to generate images using your
own dataset.

ProGAN
Progressive Growing of GAN (ProGAN) is aimed to address some of the problems faced
in the original DCGAN architecture. It begins by training both the generator and the
discriminator with a low resolution image (for example, 4 x 4 pixels). After that, it adds a
higher resolution layer every time it performs its training progressively in order to generate
a large high-quality image (for example, 1,024 x 1,042 pixels). This approach to training
firstly learns the base features, and then learns more and more details about the image in
each subsequent layer. By increasing the resolution gradually in this way, it breaks down
the problem into much simpler pieces. This incremental learning process greatly stabilizes
training and reduces the possibility of mode collapse occurring.

https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN
https://github.com/aitorzip/PyTorch-CycleGAN

Working with Generative Algorithms Chapter 7

[166]

The following diagram depicts the individual generator and discriminator networks:

Take a look at the following overall architecture:

Working with Generative Algorithms Chapter 7

[167]

While ProGAN does generate high-quality images, it has very limited ability to control
specific features of the image. This is because tweaking the input usually affects multiple
features at the same time, rather than just one.

A Pytorch implementation of ProGAN can be found at the GitHub repository at: https:/​/
github.​com/​akanimax/​pro_​gan_​pytorch.

StarGAN
A StarGAN model can also translate images from one domain to the other. For example, if
considering images of people's faces, the model could change the hair color of a person
from blonde to brown. In this example, the hair color is known to be the attribute, and the
colors blonde and brown are known to be the attribute values. The domain in this scenario
would be denoted as a set of images that share the same attribute value. People with blonde
hair is one domain and people with brown hair is another.

The following photos show some results of StarGAN when trained on the CelebA dataset.
This illustrates the performance of facial attribute transfer on photos:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1711.​09020.​pdf

https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://github.com/akanimax/pro_gan_pytorch
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf

Working with Generative Algorithms Chapter 7

[168]

The following diagram depicts the structure of a StarGAN model:

The steps a StarGAN takes are as follows:

The Generator G takes in as input the image itself, and the domain label (for1.
example, the hair color). It then generates a fake image (step a in the preceding
diagram).
Given the original domain label, the Generator G tries to reconstruct the original2.
image from the fake image.
The discriminator determines how likely the image is to be fake and also3.
classifies the image to its corresponding domain. The generator attempts to
generate images that are indistinguishable from the real images and are
classifiable as a target domain by the discriminator. As such, the generator will
ultimately learn to generate realistic images corresponding to the given target
domain (step c).

StarGAN discriminator objectives
The discriminator in StarGAN has the following two objectives:

To identify whether the image is fake
To predict the domain of the image input fed into it with the help of an auxiliary
classifier

Working with Generative Algorithms Chapter 7

[169]

The discriminator learns the mapping of the original image and its domain from the dataset
with the auxiliary classifier. When the generator creates a new image conditioned on a
target domain (for example, hair color, h), the discriminator can predict the generated
images domain, so the generator will create new images until the discriminator predicts it
as the target domain, h (for example, blonde hair).

The loss function of the discriminator works as per the following equation:

StarGAN generator functions
The generator in StarGAN has the following three key functions:

Its weights are adjusted so that the images are realistic.
Its weights are adjusted so that the generated images are classifiable as a target
by the discriminator.
Given the original domain label, the generator aims to reconstruct the original
image from the fake image. A single generator is used twice; firstly, to translate
the original image in the target domain, and then, to take the translated image
and reconstruct the original image.

The loss function of the generator is as per the following equation:

The following GitHub repository provides a PyTorch implementation of StarGAN
at https:/​/​github.​com/​yunjey/​stargan. Users of the repository can either use a pretrained
model or train their own model in order to generate synthetic images.

BigGAN
The BigGAN model is arguably the current state-of-the-art model in ImageNet generation
(at the time of writing). Modifications incorporated into the model focus on the following:

Scalability: The two architectural changes to improve scalability were
introduced in order to improve the performance of the GAN, while at the same
time improving conditioning by applying orthogonal regularization to the
generator.

https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan

Working with Generative Algorithms Chapter 7

[170]

Robustness: The orthogonal regularization that is applied to the generator makes
the model responsive to the truncation trick, so that fine control of the fidelity
and variety tradeoffs is possible by truncating the latent space.
Stability: Devised solutions in order to minimize the instabilities.

Samples of photos generated by the BigGAN model at a 512 x 512 resolution are as follows:

The source for this image can be found at: https:/​/​arxiv.​org/​pdf/​1809.​11096.​pdf

StyleGAN
StyleGAN is a GAN design released by researchers at NVIDIA in December 2018. It is
essentially an upgraded version of ProGAN. It combined ProGAN with neural style
transfer. At the core of the StyleGAN architecture is a style-transfer technique. The model
set a new record for face generation tasks and can also be used to generate realistic images
of cars, bedrooms, houses, and so on.

https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf

Working with Generative Algorithms Chapter 7

[171]

As with ProGAN, StyleGAN generates images gradually by starting with a very low
resolution and continuing to a high-resolution image. The GAN controls the visual features
that are expressed in each level, from coarse features such as the pose and face shape,
through to the finer features such as eye and hair color:

The source for this image can be found at: https:/​/​arxiv.​org/​abs/​1812.​04948

The generator in StyleGAN incorporates a mapping network. The goal of the mapping
network is to encode the input vector into an intermediate vector where different elements
control different visual features. With the introduction of another neural network, the
model can generate a vector that isn't required to follow the training data distribution and
can minimize the correlation between features. This mapping network consists of eight
fully connected layers where the output is the same size as the input layer, as shown in the
following diagram:

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948

Working with Generative Algorithms Chapter 7

[172]

Style modules
The Adaptive Instance Normalization (AdaIN) module transfers the encoded information
(that is, the output of the mapping network, w) into the generated image. The AdaIN
module is added to each resolution level of the synthesis network. It defines the visual
expression of the features at that level. The steps it takes are as follows:

Each channel of the convolutional layer output is normalized. This is to ensure1.
that the scaling and shifting in step 3 have the anticipated affect.
Another fully connected layer, A, transforms the intermediate vector w into scale2.
and bias vectors for each channel.
These scale and bias vectors shift each channel of the convolution output,3.
defining the importance of every filter in the convolution. This tuning process
translates w into a visual representation.

Working with Generative Algorithms Chapter 7

[173]

What this means in simple terms is that it changes the mean and variance of an image's
neural network layers to match that of a style image (that is, the image whose style we want
to emulate), as shown in the following diagram:

Most GANs (including ProGAN) use random input to create the initial image of the
generator (that is, the input to the 4 x 4 level). However, with StyleGAN, the initial input is
replaced with constant values due to the fact that the image features are controlled by w
and the AdaIN module.

A synthesis network is replaced with constant input, as shown in the following diagram:

Working with Generative Algorithms Chapter 7

[174]

StyleGAN provides a striking example as to how GANs could completely transform how
the majority of media produces its content and alter how consumers interpret the
information presented to them.

StyleGAN implementation
In February 2019, NVIDIA announced that it was open sourcing a tool that generates
hyper-realistic images of faces using StyleGAN. The model is trained on the Flickr Faces
dataset, which contains 70,000 high-quality PNG images of human faces. The images are at
1,024 x 1,024 resolution and were first aligned and cropped. Users of the open source tool
can either use the pretrained model or train their own model in order to generate images of
faces.

The tool can be downloaded by cloning the GitHub repository at: https:/​/​github.​com/
NVlabs/​stylegan.​git.

https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git

Working with Generative Algorithms Chapter 7

[175]

Some examples of the realistic images generated by the tool are shown in the following
photos:

The source for this image can be found at: https:/​/​github.​com/​NVlabs/​stylegan.​git

Deepfakes
Deepfake technology uses GANs to create fake realistic videos. The craze began in
December 2017, where a user on Reddit named Deepfakes started fabricating fake videos of
celebrities online by swapping the faces of people in two separate videos. The models were
even advanced enough to lip-sync with a fake audio clip.

In order to swap the faces of the people in the video, thousands of images are collected of
each person. An autoencoder (AE) is then used to reconstruct the images. From there, the
video is processed frame by frame. The face is extracted from Person A, fed into the
encoder, and then the decoder of Person B is used to reconstruct the picture. Essentially,
when the face is swapped, the face of Person B is drawn in the context of Person A. A GAN
is then used to determine whether the image is real or fake, ensuring the images generated
are realistic, as follows:

https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git
https://github.com/NVlabs/stylegan.git

Working with Generative Algorithms Chapter 7

[176]

A Long Short-Term Memory (LSTM) network is used to perform the lip syncing within
the video and the paper detailing how this can be done is referenced in the Further reading
section at the end of this chapter.

RadialGAN
While the majority of well-known GANs are used for image creations, RadialGAN is
designed for numerical analysis. If we consider an example where we want to evaluate how
effective a new medical treatment is, we would need to combine data from a number of
different hospitals in order to ensure we have enough data to make concrete conclusions.
However, this poses problems such as different hospitals measuring outcomes in different
ways, using laboratories that give different results in different environments, and so on. In
order to address this problem, RadialGAN firstly transforms the dataset from each hospital
into latent space, which allows us to hold the data from different sources in a uniform
format. From here, the latent space data can be converted into the feature space of each
unique dataset.

Working with Generative Algorithms Chapter 7

[177]

Each dataset considered by the RadialGAN has an encoder neural network. This encoder
transforms the data into the same structure as the latent space. Each dataset also has a
decoder, which is a GAN with a generator converting information from the latent space
into a structure that is the same as the dataset. Every decoder GAN has a discriminator that
verifies whether the information coming out of the latent space is aligned with the
properties of the target data domain. Such a setup ensures that the domain transfer of
information works in both directions, as follows:

Once the networks are trained simultaneously, RadialGAN can be used to create the
augmented dataset. Each of the other datasets are run through their encoders in order to
transfer that knowledge into latent space. All of the information is then extracted from that
space using the decoder. From here, the transformed information is appended to the
original dataset.

The overall result is a larger dataset, constructed using information from each domain that
also matches the characteristics of the domain being considered.

Working with Generative Algorithms Chapter 7

[178]

Summary
In this chapter, we explained the key differences between a generator and a discriminator
and how these form the foundations of a GAN. We covered different variations and
architectures of GANs and their applications, along with showcasing some of their results.

The GAN revolution has produced some major technological breakthroughs in recent
times. Pioneering AI techniques such as GANs are rapidly changing our relationships with
technology and with one another; GANs are most certainly something to keep an eye on!

In the next chapter, we will be looking at implementing AEs and their different types.

Further reading
Generative Adversarial Networks, Ian J Goodfellow and others (2014): https:/​/
arxiv.​org/​abs/​1406.​2661

On Discriminative vs. Generative Classifiers: A comparison of logistic regression and
naive Bayes, Andrew Y Ng and Michael I. Jordan (2002): https:/​/​ai.​stanford.
edu/​~ang/​papers/​nips01-​discriminativegenerative.​pdf

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks, Radford et al (2016): https:/​/​arxiv.​org/​pdf/​1511.​06434.​pdf

Conditional Generative Adversarial Nets, Mehdi Mirza and Simon Osindero (2014):
https:/​/​arxiv.​org/​pdf/​1411.​1784.​pdf

Unrolled Generative Adversarial Networks, Luke Metz, Ben Poole, David Pfau,
Jascha Sohl-Dickstein (2016): https:/​/​arxiv.​org/​abs/​1611.​02163

Wasserstein GAN, Martin Arjovsky, Soumith Chintala, Léon Bottou (2017):
https:/​/​arxiv.​org/​pdf/​1701.​07875.​pdf.
Improved Training of Wasserstein GANs, Ishaan Gulrajani, Faruk Ahmed, Martin
Arjovsky, Vincent Dumoulin, Aaron Courville (2017): https:/​/​arxiv.​org/​pdf/
1704.​00028.​pdf

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks,
Jun-Yan Zhu, Taesung Park, Phillip Isola Alexei A Efros (2017): https:/​/​arxiv.
org/​pdf/​1703.​10593.​pdf

Image-to-Image Translation with Conditional Adversarial Networks, Phillip Isola, Jun-
Yan Zhu, Tinghui Zhou, Alexei A. Efros (2016): https:/​/​arxiv.​org/​pdf/​1611.
07004.​pdf

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf

Working with Generative Algorithms Chapter 7

[179]

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial
Networks, Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang,
Xiaolei Huang, Dimitris Metaxas (2016): https:/​/​arxiv.​org/​pdf/​1612.​03242.
pdf

Large Scale GAN Training for High Fidelity Natural Image Synthesis, Andrew Brock,
Jeff Donahue, Karen Simonyan (2018): https:/​/​arxiv.​org/​abs/​1809.​11096

BEGAN: Boundary Equilibrium Generative Adversarial Networks, David Berthelot,
Thomas Schumm, Luke Metz (2017): https:/​/​arxiv.​org/​pdf/​1703.​10717.​pdf

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image
Translation, Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun
Kim, Jaegul Choo (2017): https:/​/​arxiv.​org/​pdf/​1711.​09020.​pdf

Progressive Growing of GANs for Improved Quality, Stability, and Variation, Tero
Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen (2017): https:/​/​arxiv.​org/
pdf/​1710.​10196.​pdf

A Style-Based Generator Architecture for Generative Adversarial Networks: https:/​/
arxiv.​org/​abs/​1812.​04948

Synthesizing Obama: Learning Lip Sync from Audio, Supasorn Suwajanakorn, Steven
M. Seitz, Ira Kemelmacher-Shlizerman (2017): https:/​/​grail.​cs.​washington.
edu/​projects/​AudioToObama/​siggraph17_​obama.​pdf

RadialGAN: Leveraging multiple datasets to improve target-specific predictive models
using Generative Adversarial Networks, Jinsung Yoon, James Jordon, and Mihaela
van der Schaar (2018): https:/​/​arxiv.​org/​abs/​1802.​06403

https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403
https://arxiv.org/abs/1802.06403

8
Implementing Autoencoders

In this chapter, we explain what autoencoders are and discuss different types of them. We
will give an overview as to how they have been applied to some real-world problems.
Coded examples of how different types of autoencoders can be implemented, using the
Keras library in Python, will also be provided.

Specifically, the following topics will be covered in this chapter:

An overview of autoencoders and their applications
Bottleneck and loss functions
Standard types of autoencoders and coded examples
Variational autoencoders (VAEs) and coded examples

Overview of autoencoders
An autoencoder is an unsupervised learning technique. Autoencoders can model an
unsupervised learning problem as a supervised one by taking an unlabeled dataset and
tasking it with reconstructing the original input. In other words, the goal of the
autoencoder is for the input to be as similar as possible to the output.

An autoencoder is composed of an encoder and a decoder, as shown in the following
diagram:

Implementing Autoencoders Chapter 8

[181]

Autoencoder applications
There are many applications for autoencoders:

Data denoising
Dimensionality reduction for data visualization
Image generation
Interpolating text

Bottleneck and loss functions
Autoencoders impose a bottleneck on the network, which enforces a compressed
knowledge representation of the original input. If the bottleneck were not present, the
network would simply learn to memorize the input values. This would mean that the
model wouldn't generalize well on unseen data.

Let's take a look at the following diagram, which depicts an autoencoder bottleneck:

We want the model to be sensitive to the inputs so that it detects their signal, but not so
much that it simply memorizes them and doesn't predict well on unseen data. As such, we
need to construct a loss/cost function, which determines the optimal trade-off.

Implementing Autoencoders Chapter 8

[182]

The loss function can be defined as per the following formula, where xi is the value at each
node in the input layer and xī is the value of each node in the output layer. L(x, x̄)
represents the reconstruction loss, the part of the function that allows it to be sensitive to
the inputs. The regularizer helps to ensure the model doesn't overfit:

There are some commonly used autoencoder architectures for imposing these two
constraints and ensuring that there is an optimal trade-off between the two.

Standard types of autoencoder
There are various types of standard autoencoder. Here we will explain the most widely
used ones and go through some coded examples in Keras.

Undercomplete autoencoders
Undercomplete autoencoder architectures can be used to constrain the number of nodes
that are present in the hidden layers of the network, limiting the amount of information
that can flow through it. The model can learn the most important attributes of the input
data by penalizing it as per the reconstruction error. This reconstruction error is essentially
the difference between the input and the reconstructed output from the encoding. The
encoding learns and describes the latent attributes of the input data.

Example
In this example, we will show how you can compile an undercomplete autoencoder model
in Keras by performing the following steps:

First, we import the relevant libraries along with the Modified National1.
Institute of Standards and Technology (MNIST) dataset as follows:

import keras
from keras.layers import Input, Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
import tensorflow
(x_train, _), (x_test, _) = mnist.load_data()
Now we scale the data so that the feature values are in a range

Implementing Autoencoders Chapter 8

[183]

between 0 and 1.
x_train = x_train.astype('float32')/255 # 255 = np.max(x_train)
x_test = x_test.astype('float32')/255
x_train = x_train.reshape(len(x_train), np.prod(x_train.shape[1:]))
x_test = x_test.reshape(len(x_test), np.prod(x_test.shape[1:]))
print(x_train.shape)
print(x_test.shape)
(60000, 784)
(10000, 784)

We assign the sizes of layers in the three-layered network: input, hidden, and2.
output. Note that we assign the hidden layer to be smaller than the input and
output layers, as it is an undercomplete model:

input_size = 784 # Pixel values 28*28
hidden_size = 64
output_size = 784

In the following example code, we use the adam optimizer and the mean squared3.
error (MSE) as the loss function:

input_image = Input(shape=(input_size,))
Encoder
e = Dense(hidden_size, activation='relu')(input_image)
Decoder
d = Dense(output_size, activation='sigmoid')(e)
encoder = Model(input_image, d)
encoder.compile(optimizer='adam', loss='mse')
encoder.summary()

The preceding commands generate the following output:

Implementing Autoencoders Chapter 8

[184]

From here, we fit the model and train it as follows:4.

autoencoder_train = encoder.fit(x_train, x_train,
batch_size=128,epochs=10,verbose=1, validation_data=(x_test,
x_test))

The preceding command generates the following output:

Visualizing with TensorBoard
When fitting the model, it is possible to pass the TensorBoard callback parameter so that
performance metrics during training can be monitored. To do so, we can perform the
following steps:

First, import the TensorBoard function as follows:1.

from keras.callbacks import TensorBoard

From here, we can call the TensorBoard function from within the fit function.2.
We define the log directory, in which we want the files to be saved, as follows:

ae.fit(x_train, x_train, batch_size=128,epochs=10,verbose=1,
validation_data=(x_test, x_test),
callbacks=[TensorBoard(log_dir='/tmp/autoencoder_example'))])

Implementing Autoencoders Chapter 8

[185]

The TensorBoard web interface can then be accessed by navigating to the link: http:/​/​0.​0.
0.​0:6006.​

Visualizing reconstructed images
We can view the reconstructed images the model has produced by running the following
commands:

#Decoded images
d_images = encoder.predict(x_test)
x = 10
plt.figure(figsize=(20, 2))
for i in range(1, x):
Display original images
ax = plt.subplot(2, x, i)
plt.imshow(x_test[i].reshape(28, 28))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
Display reconstructed images
ax = plt.subplot(2, x, i + x)
plt.imshow(d_images[i].reshape(28, 28))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()

The preceding commands generate the following output:

http://0.0.0.0:6006
http://0.0.0.0:6006
http://0.0.0.0:6006
http://0.0.0.0:6006
http://0.0.0.0:6006
http://0.0.0.0:6006
http://0.0.0.0:6006
http://0.0.0.0:6006
http://0.0.0.0:6006
http://0.0.0.0:6006
http://0.0.0.0:6006

Implementing Autoencoders Chapter 8

[186]

Multilayer autoencoders
A multilayer autoencoder has more than one hidden layer. Any of the hidden layers can be
used as the feature representation, as shown in the following diagram:

Example
In the following coded example, we define the layer sizes along with the hidden layers and
compile the model:

input_size = 784
hidden_size = 128 # 64*3
code_size = 64
input_image = Input(shape=(input_size,))
Encoder
hidden_1 = Dense(hidden_size, activation='relu')(input_image)
e = Dense(code_size, activation='relu')(hidden_1)
Decoder
hidden_2 = Dense(hidden_size, activation='relu')(e)
d = Dense(input_size, activation='sigmoid')(hidden_2)
autoencoder = Model(input=input_image, output=d)
autoencoder.compile(optimizer='adam', loss='mse')
autoencoder.summary()

Implementing Autoencoders Chapter 8

[187]

The preceding command generates the following output:

Convolutional autoencoders
Autoencoders can be used with convolutions instead of fully connected layers. This can be
done using 3D vectors instead of 1D vectors. In the context of images, downsampling the
image forces the autoencoder to learn a compressed version of it.

Example
We obtain the train and test datasets from the MNIST datasets, as we did previously:

(x_train, _), (x_test, _) = mnist.load_data()
Scale the training and testing data so that they are in a range between 0
and 1
x_train = x_train.astype('float32')/255
x_test = x_test.astype('float32')/255
print(x_train.shape)
print(x_test.shape)
(60000, 28, 28)
(10000, 28, 28)

Implementing Autoencoders Chapter 8

[188]

As the images in the dataset are greyscale, with pixel values ranging from 0 to 255 and a
dimension of 28 x 28, we need to convert each image into a matrix of 28 x 28 x 1, as follows:

x_train = x_train.reshape(-1, 28,28, 1)
x_test = x_test.reshape(-1, 28,28, 1)
print(x_train.shape)
print(x_test.shape)
(60000, 28, 28, 1)
(10000, 28, 28, 1)

Now, load in the additional functions from the keras library. We will use the Conv2D and
MaxPooling2D layers for the encoder and the Conv2D and Upsampling2D layers for the
decoder:

from keras.models import Sequential
from keras.layers import Flatten, Reshape, Conv2D, MaxPooling2D,
UpSampling2D
#Subsequently we can define the model as follows.
ae = Sequential()
Layers of the encoder
ae.add(Conv2D(32, (3, 3), activation='relu', padding='same',
input_shape=x_train.shape[1:]))
ae.add(MaxPooling2D((2, 2), padding='same'))
ae.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
ae.add(MaxPooling2D((2, 2), padding='same'))
ae.add(Conv2D(128, (3, 3), strides=(2,2), activation='relu',
padding='same'))
Layers of the decoder
ae.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
ae.add(UpSampling2D((2, 2)))
ae.add(Conv2D(8, (2, 2), activation='relu', padding='same'))
ae.add(UpSampling2D((2, 2)))
ae.add(Conv2D(64, (3, 3), activation='relu'))
ae.add(UpSampling2D((2, 2)))
ae.add(Conv2D(1, (3, 3), activation='sigmoid', padding='same'))
ae.summary()

Implementing Autoencoders Chapter 8

[189]

The preceding commands generate the following output:

From here, we can compile and fit the model as follows:

ae.compile(optimizer='adam', loss='binary_crossentropy')
autoencoder_train = ae.fit(x_train, x_train,
batch_size=128,epochs=10,verbose=1, validation_data=(x_test, x_test))

Implementing Autoencoders Chapter 8

[190]

The preceding commands generate the following output:

Sparse autoencoders
Sparse autoencoders introduce a bottleneck without reducing the number of nodes in the
hidden layers. The number of nodes in each hidden layer is the same as the number of
nodes in the input and output layers. The loss function is reconstructed such that it
penalizes activations within a layer. This means that the network is encouraged to learn by
activating only a small number of neurons at a time.

Implementing Autoencoders Chapter 8

[191]

The architecture of a sparse autoencoder is shown in the following diagram, where how
opaque the node is corresponds to the level of activation. Different inputs to the model
result in the activation of different nodes throughout the network. This allows the network
to sensitize individual hidden layer nodes towards specific attributes of the data fed into it.
This differs from undercomplete autoencoders, as they use the same network for every
observation:

Example
It is possible to add a sparsity constraint on the latent variables by using the
activity_regularizer function in Keras. This function limits the number of nodes that
are activated in a given time. It is added to the dense layer, as follows:

from keras import regularizers
input_size = 784
h_size = 64
o_size = 784
x = Input(shape=(input_size,))
Encoder
h = Dense(h_size, activation='relu',
activity_regularizer=regularizers.l1(10e-5))(x)
Decoder
r = Dense(o_size, activation='sigmoid')(h)
autoencoder = Model(input=x, output=r)

Implementing Autoencoders Chapter 8

[192]

Denoising autoencoders
Denoising encoders deliberately add noise to the input of the network; they essentially
create a corrupted copy of the data. The denoising encoder does this to help the model
learn the latent representation present in the input data, making it more generalizable:

The corrupted/noisy image is then fed into the network in a similar fashion to other
standard autoencoders:

Example
We can add noise to the MNIST dataset as shown in the following example. The noise that
has been added is with normal distribution, centered at 0.5 and standard deviation 0.5:

add_noise = np.random.normal(loc=0.5, scale=0.5, size=x_train.shape)
x_train_with_noise = x_train + add_noise
add_noise = np.random.normal(loc=0.5, scale=0.5, size=x_test.shape)
x_test_with_noise = x_test + add_noise
x_train_noisy = np.clip(x_train_with_noise, 0., 1.)
x_test_noisy = np.clip(x_test_with_noise, 0., 1.)

Implementing Autoencoders Chapter 8

[193]

Contractive autoencoder
The aim of a contractive autoencoder (CAE) is to have a learned representation of the latent
attributes of the input data that is less sensitive to a small variation in the data. In other
words, we require the model to be robust against noise.

To ensure the CAE is robust, a regularizer (penalty term) is added to the cost function. The
name CAE comes from the fact that the penalty term generates a mapping, which strongly
contracts the data:

Variational Autoencoders
Variational Autoencoders (VAEs) differ from the standard autoencoders that we have
discussed so far, in the sense that they describe an observation in latent space in a
probabilistic, rather than deterministic, manner. As such, a VAE outputs a probability
distribution for each latent attribute, rather than a single value.

Standard autoencoders are only really useful when you want to replicate the data that was
input into it, which has somewhat limited applications in the real world. As VAEs are
generative models, they can be applied to cases where you don't want to output data that is
the same as the input data.

Considering this in a real-world context, when training an autoencoder model on a dataset
of faces, one would hope that it would learn latent attributes such as whether the person is
smiling, their skin tone, whether they are wearing glasses, and so on. Standard
autoencoders represent these latent attributes as discrete values, as shown in the following
diagram:

Implementing Autoencoders Chapter 8

[194]

Using VAEs, we can describe these attributes in probabilistic terms, allowing each feature
to be within a range of possible values, rather than a single value. The following diagram
depicts how we can represent whether the person is smiling, as either a discrete value or as
a probability distribution:

Implementing Autoencoders Chapter 8

[195]

For VAEs, the distribution of each latent attribute is sampled from the image to generate
the vector that is used as the input for the decoder model, as shown in the following
diagram:

It is assumed that the distributions from each latent feature are Gaussian. As such, two
vectors are output where one describes the mean and the other describes the variance of the
distributions:

Implementing Autoencoders Chapter 8

[196]

Training VAEs
When training a VAE, it is necessary to be able to calculate the relationship of each
parameter in the network with respect to the overall loss. This process is called
backpropagation.

Standard autoencoders use backpropagation in order to reconstruct the loss across the
weights of the network. However, VAEs are not as straightforward to train, owing to the
fact that the sampling operation is not differentiable: the gradients cannot be propagated
from the reconstruction error:

The reparameterization trick can be used to overcome this limitation. The idea behind the
reparameterization trick is to sample ε from a unit normal distribution, then shift it by the
mean of the latent attribute, and scale it by the latent attributes' variance 𝜎:

Implementing Autoencoders Chapter 8

[197]

Performing this operation essentially removes the sampling process from the flow of
gradients, as it is now outside the network. As such, the sampling process doesn't depend
on anything in the network. This means that we can now optimize the parameters of the
distribution, while maintaining the ability to randomly sample from it:

In other words, as the distribution of each attribute is Gaussian and, as per the associated
properties of such a distribution, we can transform with mean and covariance matrix ∑
as per the following formula:

Here, ε ~ N(0,1).

Implementing Autoencoders Chapter 8

[198]

With the introduction of the reparameterization trick, we can now train the model via
simple backpropagation:

Example
This coded example shows how to build a VAE while continuing to use the Keras library
and MNIST dataset, by performing the following steps:

First, we import the required libraries along with the MNIST dataset and scale as1.
we have done previously:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
Scale the training and testing data so that they are in a range
between 0 and 1
x_train = x_train.astype('float32')/255
x_test = x_test.astype('float32')/255
x_train = x_train.reshape(len(x_train), np.prod(x_train.shape[1:]))
x_test = x_test.reshape(len(x_test), np.prod(x_test.shape[1:]))
Assign appropriate values for each of the variables.
batch_size = 50
input_dim = 784 # Pixel values 28*28
latent_dim = 2 # The mean and variance

Implementing Autoencoders Chapter 8

[199]

hidden_dim = 256 # Required to be smaller than the input
epochs = 20
epsilon_std = 1.0
Now we define the encoder, mean and standard deviation of the
latent variables.
x = Input(shape=(input_dim,))
Encoder
h = Dense(hidden_dim, activation='relu')(x)
Mean of the latent variables
z_mean = Dense(latent_dim)(h)
Standard deviation of latent variables
z_log_var = Dense(latent_dim)(h)
Define a function that will sample from the latent space.
def sampling_function(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim),
mean=0., stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
Define z to be a random sample from the latent normal distribution.
z = Lambda(sampling_function, output_shape=(latent_dim,))([z_mean,
z_log_var])
Assign the three layers for the decoder; we map the sampled points
from the latent space.
decoder = Dense(hidden_dim, activation='relu')
decoder_mean = Dense(input_dim, activation='sigmoid')
h_decoded = decoder(z)
x_decoded_mean = decoder_mean(h_decoded)
Now instantiate the VAE model.
vae = Model(x, x_decoded_mean)
Compile and fit the model.
vae.add_loss(vae_loss)
vae.compile(optimizer='rmsprop')
vae.summary()
vae.fit(x_train,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test, None))

Implementing Autoencoders Chapter 8

[200]

The preceding commands generate the following output:

A key benefit of a VAE is that it can learn smooth latent state representations of2.
the input data. Here, we build a model to project the inputs onto the latent space:

encoder = Model(x, z_mean)
From here we can plot the digit classes in the latent space.
x_test_e = encoder.predict(x_test, batch_size=batch_size)
plt.figure(figsize=(10, 8))
plt.scatter(x_test_e[:, 0], x_test_e[:, 1], c=y_test)
plt.colorbar()
plt.show()

Implementing Autoencoders Chapter 8

[201]

The preceding commands generate the following output:

Now, we build a digit generator that can sample from the learned distribution, as3.
follows:

input_decoder = Input(shape=(latent_dim,))
_h_decoded = decoder(input_decoder)
_x_decoded_mean = decoder_mean(_h_decoded)
gen = Model(input_decoder, _x_decoded_mean)
In order to display a manifold of the digits we can run the below.
n = 10
size_digit = 28
figure = np.zeros((size_digit * n, size_digit * n))
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = np.array([[xi, yi]])
x_decoded = gen.predict(z_sample)
digit = x_decoded[0].reshape(size_digit, size_digit)
figure[i * size_digit: (i + 1) * size_digit,
j * size_digit: (j + 1) * size_digit] = digit
plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()

Implementing Autoencoders Chapter 8

[202]

The preceding commands generate the following output:

Summary
In this chapter, we have explained what autoencoders are and discussed their various
types. Throughout, we have given coded examples as to how autoencoders can be applied
to the MNIST dataset.

In the next chapter, we will introduce Deep Belief Networks (DBNs) along with some
fundamental concepts that underpin their architecture.

Further reading
Tutorial on Variational Autoencoders: https:/​/​arxiv.​org/​abs/​1606.​05908

CS598LAZ - Variational Autoencoders: http:/​/​slazebni.​cs.​illinois.​edu/
spring17/​lec12_​vae.​pdf

Auto-Encoding Variational Bayes: https:/​/​arxiv.​org/​abs/​1312.​6114

Deep Learning Book: https:/​/​www.​deeplearningbook.​org/​contents/
autoencoders.​html

https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
http://slazebni.cs.illinois.edu/spring17/lec12_vae.pdf
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html

9
Deep Belief Networks

In this chapter, we will explain what Deep Belief Networks (DBNs) are and how they have
been applied to some real-world problems. We will initially introduce some fundamental
concepts that need to be understood first, before diving into the details of DBNs. We will
give examples as to how these models can be implemented in Python and make predictions
on some commonly used datasets.

The following are the topics covered in this chapter:

Overview of DBNs
DBN architecture
Training DBNs
Fine-tuning
Datasets and libraries

Overview of DBNs
DBNs are a class of unsupervised probabilistic/graphical deep learning algorithms. The
goal of a DBN is to classify data into different categories. They are composed of multiple
layers of stochastic latent variables, which can be referred to as feature detectors or hidden
units. It is these hidden units that capture correlations present in the data.

DBNs were introduced in 2006 by Geoffrey Hinton and have since been widely used in the
following areas:

Image recognition, generation, and clustering
Speech recognition
Video sequences
Motion capture data

Deep Belief Networks Chapter 9

[204]

Before trying to fully understand a DBN, there are two fundamental notions to be
considered and understood:

Bayesian Belief Networks (BBNs)
Restricted Boltzmann machines (RBMs)

BBNs
BNNs are probabilistic graphical models that can be used to describe the conditional
dependencies between random variables. They can be used to help determine what caused
a certain outcome or the probabilities of different effects, given an action. They can also be
used to make future predictions.

In the previous example, we considered the conditional probabilities of a person smiling
when it is sunny. Through previously observed outcomes (that is, our prior belief), the
probability of a person smiling and it being sunny is 31/50; it represents a joint probability
of the two outcomes occurring at the same time. All of the four joint probability outcomes
sum to 1. The overall probability of an event occurring is referred to as the marginal
probability. For example, the marginal probability of it being sunny is 34/50, as shown in
the following table:

Sunny Not sunny
Smiling 31/50 8/50 39/50
Not smiling 3/50 8/50 11/50

34/50 16/50 50/50

The relationships of these probabilities can be represented as a BBN where a node
represents a hypothesis/random process that takes at least two possible values. As such,
Bayesian networks make certain assumptions about the probabilistic dependencies between
the events they model. For example, the sunny node represents the state whether the
person is smiling or not, as shown in the following diagram:

Deep Belief Networks Chapter 9

[205]

Let's now also consider the relationship between whether there is a rainbow and the person
is smiling, as shown in the following table:

Rainbow No rainbow
Smiling 36/50 6/50 42/50
Not smiling 2/50 6/50 8/50

38/50 12/50 50/50

We can represent all of these three events (Smiling, Sunny, and Rainbow) in a single BBN.
The core concept is that a node is created for each set of complementary and mutually
exclusive events, and arrows are placed between those that directly depend on one another:

There are two ways in which information can be propagated in the BBN: predictive and
retrospective.

Predictive propagation
During predictive propagation, information is passed in the direction of the arrows. An
example of making a prediction from the preceding is that, if the probability of it being
sunny is high, then the probability of a person smiling is also high.

Retrospective propagation
If we are to follow the arrows in the opposite direction, we can explain the observations via
retrospective propagation. An example of this is that, if the person is smiling, it is because it
is sunny.

Deep Belief Networks Chapter 9

[206]

RBMs
RBM is an algorithm that has been widely used for tasks such as collaborative filtering,
feature extraction, topic modeling, and dimensionality reduction. RBMs are able to learn
patterns in a dataset in an unsupervised fashion.

For example, if you watch a movie and say whether you liked it or not, we could use an
RBM to help us to determine the reason why you made this decision.

RBMs belong to a family of models called Energy-Based Models (EBMs). They embrace the
notion of energy as a metric to measure the quality of the model. Their goal is to minimize
energy defined by the following formula, which depends on the configurations of
visible/input states, hidden states, weights, and biases. In other words, during the training
of the RBM, we aim to find the parameters for given values so that the energy reaches its
minimum:

RBMs are two-layer networks that are the fundamental building blocks of a DBN. The first
layer of an RBM is a visible/input layer of neurons and the second is the hidden layer of
neurons. Similar to BBNs, the neurons/nodes are where the calculations take place:

In simple terms, the RBM takes the inputs from the visible layer and translates them into a
set of numbers in order to represent them. The numbers are then translated back to
reconstruct the inputs through several forward and backward passes during training. The
restriction in the RBM is such that nodes in the same layer are not connected.

Deep Belief Networks Chapter 9

[207]

Each node in the Visible layer takes a low-level feature from the training dataset. For
example, in image classification, each node would receive one pixel value for each pixel in
an image:

Let's follow this one pixel value through the network. The input x is multiplied by the
weight from the hidden layer and a bias is then added. This is then fed into an activation
function which produces the output. This output is essentially the strength of the signal
passing through it, given the input x:

Deep Belief Networks Chapter 9

[208]

At each node in the hidden layer, x from each pixel value is multiplied by a separate
weight. The products are then summed and a bias is added. The output of this is then
passed through an activation function, producing the output at that single node, as shown
in the following diagram:

At each point in time, the RBM is in a certain state, which refers to the values of the neurons
in the visible, v, and hidden, h, layers. The probability of such a state can be given by the
following joint distribution function where Z is the partition function that is the summation
over all possible pairs of visible and hidden vectors:

RBM training
There are following, two main steps an RBM carries out during training:

Gibbs sampling: The first step in the training process uses Gibbs sampling,1.
which repeats the following process k times. Probability of hidden vector given
the input vector; prediction of the hidden values. Probability of the input vector
given the hidden vector; prediction of the input values. From this, we obtain
another input vector, which was recreated from the original input values.

Deep Belief Networks Chapter 9

[209]

Contrastive divergence: RBMs adjust their weights through contrastive2.
divergence. During this process, weights for visible nodes are randomly
generated and used to generate hidden nodes. The hidden nodes then use the
same weights to reconstruct visible nodes. The weights used to reconstruct the
visible nodes are the same throughout. However, the generated nodes are not the
same, because they aren't connected to each other.

Once an RBM has been trained, it is essentially able to express the following two things:

The interrelationship between the features of the input data
Which features are the most important when identifying patterns

Example – RBM recommender system
In the context of movies, we can use RBMs to uncover a set of latent factors that represent
their genre and consequently determine which genre of movie a person likes; for example,
we could ask someone to tell us which movies they have watched and whether they liked
them or not, and represent them as binary inputs (1 or 0) to the RBM. For those movies they
haven't seen or haven't told us about, we need to assign a value of -1 so that the network
can identify those during training and ignore their associated weights.

Let's consider an example where a user likes Mrs Doubtfire, The Hangover, and
Bridesmaids; does not like Scream or Psycho, and has not yet seen The Hobbit, given
these inputs, the RBM may identify three hidden factors, Comedy, Horror, and Fantasy,
which correspond to the genres of movies shown in the following diagram:

Deep Belief Networks Chapter 9

[210]

For each hidden neuron, the RBM assigns a probability of the hidden neuron given the
input neuron. The final binary values of the neurons are obtained by sampling from the
Bernoulli distribution.

In the preceding example, the only hidden neuron that represents the genre comedy
becomes active. As such, given the movie ratings input into the RBM, it predicts that the
user likes comedy films the most.

In order for the trained RBM to make predictions on movies the user has not yet seen based
on their preference, the RBM uses the probability of the visible neurons, given the hidden
neurons. It samples from the Bernoulli distribution to find out which one of the visible
neurons then becomes active.

Example – RBM recommender system using code
Continuing in the context of movies, we will now give an example as to how we can build a
RBM recommender system using the TensorFlow library. The goal of the example is to train
a model to determine whether a user will like a movie or not.

In this example, we will use the MovieLens dataset (https:/​/​grouplens.​org/​datasets/
movielens/​) with 1 million ratings, which was created by the GroupLens Research Group
at the University of Minnesota, by performing the following steps:

Firstly, we download the datasets. This can be done through Terminal1.
commands, as follows:

wget -O moviedataset.zip
http://files.grouplens.org/datasets/movielens/ml-1m.zip
unzip -o moviedataset.zip -d ./data
unzip -o moviedataset.zip -d ./data

Now, we import the libraries that we will use, as follows:2.

import pandas as pd
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline

Then, we import the data, as follows:3.

movies_df = pd.read_csv('data/ml-1m/movies.dat', sep = '::', header
= None)
movies_df.columns = ['movie_id', 'title', 'genres']
movies_df['List Index'] = movies_df.index

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

Deep Belief Networks Chapter 9

[211]

ratings_df = pd.read_csv('data/ml-1m/ratings.dat', sep = '::',
header = None)
ratings_df.columns = ['user_id', 'movie_id', 'rating', 'timestamp']

We now merge the movies and ratings datasets and drop unnecessary columns:4.

merged_df= movies_df.merge(ratings_df, on='movie_id')
merged_df = merged_df.drop(['timestamp', 'title', 'genres'],
axis=1)
merged_df.head(2)

The preceding commands generate the following output:

Now, we group the user IDs by executing the following commands:5.

usergroup = merged_df.groupby('user_id')
usergroup.first().head()

The preceding commands generate the following output:

Then, we create a list of lists, where each list in the training data will be the6.
ratings given to all of the movies by a user normalized into the interval
[0,1]; they are divided by 5, as it needs to be normalized before it can be fed
into the neural network:

training_users = 1000
training_data = []
for userID, curUser in usergroup:
temp = [0]*len(movies_df)

Deep Belief Networks Chapter 9

[212]

for num, movie in curUser.iterrows():
temp[movie['List Index']] = movie['rating']/5.0
training_data.append(temp)
if training_users == 0:
break
training_users -= 1

Now, we assign values for the number of hidden units, h, and number of visible7.
units, v. We choose the number of hidden units and set the number of visible
units to be the length of the input dataset. The weight matrix will be created
using the size of these hidden and visible units:

h = 20
v = len(movies_df)

Now, we assign tf.placeholder to be an appropriate size. It is essentially a8.
literal placeholder into which we will feed values during training:

This is the number of unique movies
vb = tf.placeholder(tf.float32, [v])
This is the number of features we are going to learn in the
hidden unit
hb = tf.placeholder(tf.float32, [h])
This is the placeholder for the weights
W = tf.placeholder(tf.float32, [v, h])

Then, we obtain our output for the hidden layer. This is our processing phase9.
and the commencement of Gibb's sampling. We use a Rectified Linear Unit
(ReLU) as our activation function. It is possible to use other activation functions
such as the hyperbolic tangent function of the sigmoid function, but they are
computationally more expensive to computer:

v0 = tf.placeholder(tf.float32, [None, v])
Visible layer activation
_h0 = tf.nn.sigmoid(tf.matmul(v0, W) + hb)
Gibb's Sampling
hidden0 = tf.nn.relu(tf.sign(_h0 -
tf.random_uniform(tf.shape(_h0))))

Now, we define the reconstruction phase; we recreate the input from the hidden10.
layer activations, as follows:

Hidden layer activation; reconstruction
_v1 = tf.nn.sigmoid(tf.matmul(hidden0, tf.transpose(W)) + vb)
visible1 = tf.nn.relu(tf.sign(_v1 -
tf.random_uniform(tf.shape(_v1))))
h1 = tf.nn.sigmoid(tf.matmul(visible1, W) + hb)

Deep Belief Networks Chapter 9

[213]

We set the learning rate to alpha. We also initiate positive and negative gradients11.
via matrix multiplication. We also define the code that will update the weights
matrix and biases using the contrastive divergence algorithm. This approximates
the log-likelihood gradient, given the data and persons gradient ascent on the
approximations:

alpha = 0.6
w_pos_grad = tf.matmul(tf.transpose(v0), hidden0)
w_neg_grad = tf.matmul(tf.transpose(visible1), h1)
Calculate the contrastive divergence
CD = (w_pos_grad - w_neg_grad) / tf.to_float(tf.shape(v0)[0])
Methods to update weights and biases
update_w = W + alpha * CD
update_vb = vb + alpha * tf.reduce_mean(v0 - visible1, 0)
update_hb = hb + alpha * tf.reduce_mean(hidden0 - h1, 0)

The following code creates weights and bias matrices for computation in each12.
iteration of training. The weights are initialized with random values from a
normal distribution with a small standard deviation:

Current weight
cur_w = np.random.normal(loc=0, scale=0.01, size=[v, h])
Visible unit biases at current state
cur_vb = np.zeros([v], np.float32)
Hidden unit biases at current state
cur_hb = np.zeros([h], np.float32)
Previous weight of network
previous_w = np.zeros([v, h], np.float32)
Visible unit biases (previous)
previous_vb = np.zeros([v], np.float32)
Hidden unit biases (previous)
previous_hb = np.zeros([h], np.float32)
err = v0 - visible1
err_sum = tf.reduce_mean(err*err)
#We set the error function to be the mean absolute error.
err = v0 - visible1
err_sum = tf.reduce_mean(err*err)

Now, we initialize a session in TensorFlow with the appropriate configuration if13.
running on GPU, as shown in the following commands:

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())

Deep Belief Networks Chapter 9

[214]

From here, we train the model as per the following code:14.

epochs = 15
batch_size = 100
errors = []
for i in range(epochs):
for start, end in zip(range(0, len(training_data), batch_size),
range(batch_size, len(training_data), batch_size)):
batch = training_data[start:end]
cur_w = sess.run(update_w, feed_dict={v0: batch, W: previous_w, vb:
previous_vb, hb: previous_hb})
cur_vb = sess.run(update_vb, feed_dict={v0: batch, W: previous_w,
vb: previous_vb, hb: previous_hb})
cur_nb = sess.run(update_hb, feed_dict={v0: batch, W: previous_w,
vb: previous_vb, hb: previous_hb})
previous_w = cur_w
previous_vb = cur_vb
previous_hb = cur_nb
errors.append(sess.run(err_sum, feed_dict={v0: training_data, W:
cur_w, vb: cur_vb, hb: cur_nb}))

Now, we plot the error across epochs during training, as follows:15.

plt.plot(errors)
plt.ylabel('Error')
plt.xlabel('Epoch')
plt.show()

The preceding commands generate the following diagram:

Deep Belief Networks Chapter 9

[215]

The graph also helps us to determine how many epochs we should run the training for. It
shows that, after six epochs, the improved performance rate drops and hence we should
consider stopping the training at this stage.

DBN architecture
A DBN is a multilayer belief network where each layer is an RBM stacked against one
another. Apart from the first and final layers of the DBN, each layer serves as both a hidden
layer to the nodes before it, and as the input layer to the nodes that come after it:

Two layers in the DBN are connected by a matrix of weights. The top two layers of a DBN
are undirected, which gives a symmetric connection between them, forming an associative
memory. The lower two layers have directed connections from the layers above. The
presence of direction converts associative memory into observed variables:

Deep Belief Networks Chapter 9

[216]

The two most significant properties of DBNs are as follows:

A DBN learns top-down, generative weights via an efficient, layer by layer
procedure. These weights determine how the variables in one layer depend on
the layer above.
Once training is complete, the values of the hidden variables in each layer can be
inferred by a single bottom up pass. The pass begins with a visible data vector in
the lower layer and uses its generative weights in the opposite direction.

The probability of a joint configuration network over both visible and hidden layers
depends on the joint configuration network's energy, compared with the energy of all other
joint configuration networks.

Once the pre-training phase of the DBN is complete by the RBM stack, a feedforward
network can then be used for the fine-tune phase in order to create a classifier, or simply
help to cluster unlabeled data in an unsupervised learning scenario:

Training DBNs
DBNs are trained using a greedy algorithm where one layer is trained at a time; the RBMs
are learned sequentially. A key concept surrounding this greedy approach is that it allows
each model in the sequence to receive a different representation of the input data.

Deep Belief Networks Chapter 9

[217]

There are two phases to be considered during the training of a DBN, a positive phase and a
negative phase:

Positive phase: The first layer is trained with the data from the training dataset
whilst all of the other layers are frozen. All of the individual activation
probabilities for the first hidden layer are derived. This is referred to as the
positive phase:

Negative phase: During the negative phase the visible units are reconstructed in
a similar fashion to the positive phase. From here, all of the associated weights
are updated:

From here, the activations of the previously trained features are treated as visible
units in order to learn the features of those in the second layer.

Deep Belief Networks Chapter 9

[218]

The weights in this second RBM are the transpose of the weights in the first RBM. As with
the first RBM, the contrastive divergence method is used with Gibbs sampling. The positive
and negative phases are calculated and the associated weights are then updated. We iterate
over this process until the threshold values are obtained:

Each of the subsequent layers takes the output of the previous one as an input to produce
an output. The output at each layer is essentially a new representation of the data with a
simpler distribution. The whole DBN is trained when the learning for the final hidden layer
is complete.

Fine-tuning
The objective of fine-tuning is to improve the accuracy of the model, better discriminating
between classes. It aims to find the optimal values of the weights between layers. Fine-
tuning slightly tweaks the original features in order to obtain more precise boundaries of
the classes.

A small labelled dataset is used for fine-tuning, as this helps the model to associate patterns
and features to the datasets. Back propagation is a method used to fine-tune and helps the
model to generalize better.

Once we have identified some reasonable feature detectors, backward propagation only
needs to perform a local search.

Deep Belief Networks Chapter 9

[219]

Fine-tuning can be applied as a stochastic bottom-up pass and adjust the top-down
weights. Once the top is reached, recursion is applied to the top layer. In order to fine-tune
further, we can do a stochastic top-down pass and adjust the bottom-up weights.

Datasets and libraries
Now that we have covered DBNs from a theoretical perspective, we take a look at some
examples of code using the TensorFlow library along with the TensorFlow DBN Git
repository (https:/​/​github.​com/​albertbup/​deep-​belief-​network/​). The repository
allows you to develop simple, fast, Python implementations of DBN, which is based on
binary RBMs.

We will consider the following two commonly used datasets in the machine learning
community, in order to do so:

MNIST dataset: For this dataset, you can refer to Chapter 3, Convolutional Neural
Networks for Image Processing. This is a dataset of images, each of which displays a
number from 0-9. Each image is 28 pixels in height and 28 pixels in width. It is
available in the sklearn library but can be downloaded from the following web
page, http:/​/​yann.​lecun.​com/​exdb/​mnist/​:

https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
https://github.com/albertbup/deep-belief-network/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Deep Belief Networks Chapter 9

[220]

Boston house prices dataset: It contains information about different houses in
Boston. It is available within the sklearn library but can be downloaded from
the following web page, https:/​/​www.​cs.​toronto.​edu/​~delve/​data/​boston/
bostonDetail.​html:

Example – supervised DBN classification
In this example code, we implement a supervised DBN classification model. We use the
TensorFlow DBN GitHub repository and use the MNIST dataset in order to train a model
that will classify the images as numbers from 0-9. Let's perform the following steps:

Firstly, we import the relevant libraries, as follows:1.

import numpy as np
import pandas as pd
from dbn.tensorflow import SupervisedDBNClassification
from sklearn.model_selection import train_test_split
from sklearn.metrics.classification import accuracy_score
from sklearn.preprocessing import StandardScaler

We then import the MNIST dataset, as follows:2.

data = pd.read_csv("train.csv")

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Deep Belief Networks Chapter 9

[221]

We assign the feature variables (X), which are essentially the pixel values of the3.
images, as follows:

X = np.array(data.drop(["label"], axis=1))

We assign the target variables (Y), which are the numbers 0-9, as follows:4.

Y = np.array(data["label"])
array([1, 0, 1, ..., 7, 6, 9])

We then use the StandardScaler function from the sklearn library in order to5.
normalize the pixel values in X, and then split the dataset into train and test sets,
as follows:

ss = StandardScaler()
X = ss.fit_transform(X)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.2, random_state=0)

Next, we initialize the SupervisedDBNClassifier classifier and fit it to the6.
training dataset, as follows:

classifier = SupervisedDBNClassification(hidden_layers_structure
=[256, 256], learning_rate_rbm=0.05, learning_rate=0.1,
n_epochs_rbm=10, n_iter_backprop=100, batch_size=32,
activation_function='relu', dropout_p=0.2)
classifier.fit(X_train, Y_train)

From here, we can make predictions on the test data and review the performance7.
accuracy of the model:

Y_pred = classifier.predict(X_test)
accuracy = accuracy_score(Y_test, Y_pred)

Example – supervised DBN regression
In this example, we will take the Boston house prices dataset in order to train a model that
will predict the prices of houses using the features in the dataset. Perform the following
steps:

Firstly, we import the relevant libraries and assign our feature and target values,1.
X and Y. We then split these into train and test datasets as done previously:

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

Deep Belief Networks Chapter 9

[222]

from sklearn.metrics.regression import r2_score, mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from dbn.tensorflow import SupervisedDBNRegression
Load the Boston dataset
boston = load_boston()
Define x and y variables
x, y = boston.data, boston.target
Split dataset between train and test
x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size=0.3, random_state=100)

We use the MinMaxScaler function of the sklearn library in order to rescale2.
feature values to be in the range [0,1] as follows:

min_max_scaler = MinMaxScaler()
x_train = min_max_scaler.fit_transform(x_train)
x_test = min_max_scaler.transform(x_test)

Next, we initiate the SupervisedDBNRegression classifier and fit the model to3.
our dataset, as follows:

regressor = SupervisedDBNRegression(hidden_layers_structure=[100],
learning_rate_rbm=0.01, learning_rate=0.01, n_epochs_rbm=20,
n_iter_backprop=100, batch_size=20, activation_function='relu')
regressor.fit(x_train, y_train)

From here, we can make predictions on the test dataset and review the4.
performance of the model:

y_pred = regressor.predict(X_test)
mean_squared_error(y_test, y_pred)

Example – unsupervised DBN classification
In this example, we show how to build a classification pipeline with an unsupervised DBN
feature extractor along with a logistic regression classifier using the MNIST dataset.

In addition to the libraries previously imported, also import Pipeline of the sklearn
library and the UnsupervisedDBN function, along with the MNIST dataset:

from sklearn.pipeline import Pipeline
from sklearn import linear_model
from dbn.models import UnsupervisedDBN
data = pd.read_csv('train.csv')
X = np.array(data.drop(['label'], axis=1))
Y = np.array(data['label'])

Deep Belief Networks Chapter 9

[223]

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,
random_state=0)

Now, we initiate the models and combine them into a pipeline, as follows:

logistic = linear_model.LogisticRegression()
dbn = SupervisedDBNClassification(hidden_layers_structure=[256, 256],
learning_rate_rbm=0.05, learning_rate=0.1, n_epochs_rbm=10,
n_iter_backprop=50, batch_size=32, optimization_algorithm='sgd',
activation_function='relu', dropout_p=0.1)
classifier = Pipeline(steps=[('dbn', dbn), ('logistic', logistic)])
history = classifier.fit(x_train, y_train)

Summary
In this chapter, we introduced belief networks along with RBMs and explained how these
can be developed into a DBN. We gave examples as to how both supervised and
unsupervised DBNs can be implemented in TensorFlow, in order to make predictions on a
dataset.

Moving on from this chapter, this book will dive into some more unsupervised learning
approaches in the form of Monte Carlo methods and reinforcement learning.

Further reading
A Fast Learning Algorithm for Deep Belief Nets: http:/​/​www.​cs.​toronto.​edu/
~fritz/​absps/​ncfast.​pdf

Training restricted Boltzmann machines: An Introduction: https:/​/​www.
sciencedirect.​com/​science/​article/​abs/​pii/​S0031320313002495

Deep Boltzmann Machines: http:/​/​proceedings.​mlr.​press/​v5/
salakhutdinov09a/​salakhutdinov09a.​pdf

A Practical Guide to Training Restricted Boltzmann Machines: https:/​/​www.​cs.
toronto.​edu/​~hinton/​absps/​guideTR.​pdf

Deep Belief Networks: https:/​/​link.​springer.​com/​chapter/​10.​1007/​978-​3-​319-
06938-​8_​8

http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
https://www.sciencedirect.com/science/article/abs/pii/S0031320313002495
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8
https://link.springer.com/chapter/10.1007/978-3-319-06938-8_8

10
Reinforcement Learning

So far, we have explored many different ways of learning from observed data. Even
generative algorithms are, after all, based on a dataset that is used to create a very generic
representation of the data that has been used to train them.

Now we are going to examine a completely different learning paradigm, which doesn't
need any training dataset or output label: reinforcement learning (RL). RL operates using a
different paradigm; the main difference is that, with RL, we want to explore different
solutions and, in a certain way, it's the algorithm itself that creates its own dataset.

These learning paradigms appear to be more similar to general human intelligence. This is
because most of our learning does not come from explicit learning and clear labels, but by
trial and error or generalization.

In this chapter, we will present an overview of the main RL algorithms and we will
demonstrate an example of its implementation in Python.

The following topics are covered in this chapter:

Basic definitions
Introduction to Q-learning
Playing with OpenAI Gym
The frozen lake problem

Basic definitions
Recently, RL has been gaining more and more popularity. Notably, many of its
breakthroughs have come from improvements from supervised methods such as deep
learning.

Reinforcement Learning Chapter 10

[225]

At the moment, most RL algorithms are used in virtual environments such as video games.
Luckily, there are companies, such as OpenAI, that have created and released learning
environments where it's easy to test the algorithm in different environments.

It's possible to download this learning environment, called Gym, from OpenAI's website.

Additionally, there are real-world applications on RL, and some of them are incredibly
impactful. For example, DeepMind, after being used to optimize Google's data centers, was
able to reduce the energy consumption and overall energy bill of Google's data centers by
10% and 40%.

A major problem in these algorithms is generalizing the learning. Ultimately, we want to
solve real-world problems, but the most efficient way of exploring RL algorithms is by
applying it to video games.

There are two main ways to make sure that the algorithm will be successfully applied to
real-world issues:

Focusing the simulation: In this way, we want to make sure that the
environment we are running is generic enough so that we will maintain similar
results when switching to the real-world application. This is viable only for very
specific applications, as the cost of reproducing accurately complex
environments increases with their complexity.
Focusing the algorithms: If we follow this path, we will want to make sure that
the algorithm is generic enough to be successfully applied to the real-world
application. This approach is easier to implement for complex problems
compared to the previous method as it's possible to test the algorithm in more
virtual environments to see how it performs in different scenarios.

Before we look at our problems, we should make sure that we have the basic definitions in
place:

Agent: The agent is whatever the algorithm has control over and
receives feedback from. If we think about robotics, clearly the agent is the robot
that needs to perform a certain action. In the case of video games (for example,
Pong), the agent is only the pad of the algorithm controls:

Reinforcement Learning Chapter 10

[226]

Environment: The environment is, essentially, everything that is not the agent,
and the one thing that the algorithms can't control directly. This is a very broad
definition and, sometimes, it's quite difficult to define the environment in
practice. To prove this, let's go back to the previous example, Pong; this game
uses a very simple environment, but we still have a few options in terms of what
to consider as the environment. For example, should we consider every pixel on
the screen as a part of our environment? What about the score and the dotted line
in the middle? More complex examples, such as a robot, require a lot more
thinking, as we want to find the most complete and simple representation to
guide our algorithm to the best solution. How we define it will determine how
complex the algorithms we will use are; therefore, it's one of the most important
problems to solve.
Goal and feedback: The goal refers to what our algorithm wants to achieve, and
the feedback is what is provided to the algorithm to guide it in the right
direction. One of the most important differentiators of RL from other methods is
that RL does not optimize to the next action but to the cumulative sum of all
rewards. Together, with the definition of the environment, this is the most critical
step in defining our problem. For the game of Pong, the goal seems quite clear:
we want to win the game, but there are multiple ways in which this can be
achieved. Let's assume, for example, that we think our agent should be rewarded
when it does not allow the opponent to score a point. We could provide some
positive feedback after any second it has passed, but, in this case, the agent will
try to neither win nor lose the game, as that will limit its reward. Instead, it will
try to keep the game running as long as possible by avoiding scoring or receiving
points.

Reinforcement Learning Chapter 10

[227]

State: The state is how we represent the current situation of the environment. In
video games, a popular representation is to have the screen in raw pixel values,
as if it was an image. This allows us to use some common computer vision
techniques–in particular, deep learning. For a robot, the state could be
represented by joint angles and velocities.
Action space: This refers to all the possible action our agent can take. It's usually
environment-specific and it can be discrete or continuous. This distinction is
quite important as some algorithms are specific to either a continuous or a
discrete action space.
Policy: This refers to a set of rules that the agent has learned so that it can decide
which action to take in order to maximize the total reward. Policies are usually
denoted with π. We have two different types of policies: deterministic and
stochastic. A deterministic policy, as the name suggests, is a well-defined
mapping from space to action, and it is denoted using the following formula:

A stochastic policy will sample from a distribution that uses the state as a priority in order
to decide what action to take. We can denote these policies as follows:

Stochastic policies are what deep neural networks (DNNs) are used for. They have the
advantage of sampling the action and computing the likelihood of particular actions. With
sampling, we are exploring alternatives that are not maximizing our goals with the current
assumptions, which is one of the main advantages of RL. By computing the maximum
likelihood, we are maximizing our gains, which is another key aspect of RL.

Introducing Q-learning
There are many different types of RL algorithms; the main distinction is between the
model-based and model-free RL algorithms. What we model about the environment is
shown in the following diagram:

Reinforcement Learning Chapter 10

[228]

Some simple examples of RL algorithms

Model-based RL, as the name suggests, already starts with an idea of the world. This allows
the agent to plan and think ahead. One of the problems with this approach is that, usually,
the true model of the environment is not available and the model has to learn it by
experience. An example of this is AlphaZero, from DeepMind, which was trained by self-
play.

On the other hand, we have model-free methods, which, of course, don't use a model. One
of the main advantages of this method is the sample efficiency and the fact that (currently)
these models are easier to work with and improve.

In this chapter, we will focus on model-free methods.

Learning objectives
The second main differentiator of RL is the learning goal. Based on the type of problem and
its complexity, we might want to learn different things. Therefore, the objectives could be as
follows:

Policy optimization
Action value functions
Value functions
Environment models

Reinforcement Learning Chapter 10

[229]

Policy optimization
In this case, we want to find a good policy. In order to accomplish that, we need to
represent the policy by parameterizing it. In this case, we can represent the policy, π, as
follows:

Here, θ is the parameter that our algorithm needs to optimize.

Usually, these algorithms are also on-policy, meaning that the policy is directly updated
while acting on it. We also need an estimation of the policy goodness, and that is obtained
using the value function, V, under the policy, π.

These methods have received a lot of attention recently, as there have been a number of
breakthroughs that have pushed the limits of RL research.

Some examples of policy optimization methods are the actor-critic models, such as A2C
and A3C and Proximal Policy Operation (PPO).

Methods of Q-learning
This family of methods focuses on learning the Q matrix, Q(s,a), which is an approximation
of the optimal action-value function, Qθ(s,a). Usually, these algorithms perform an off-
policy optimization, meaning that each update can be collected at any data point during the
training period. The policy is fixed and is used to choose the next action that's aimed at
maximizing the reward.

An example of Q-learning is a Deep Q Network (DQN).

Reinforcement Learning Chapter 10

[230]

Playing with OpenAI Gym
As we mentioned previously, OpenAI is one of the main research companies that is
working on RL. They released a set of environments to test different algorithms under one
interface. You can find out more information about this at https:/​/​gym.​openai.​com/​.

Installing it on macOS or Linux it's quite straightforward; you can type in the following
command:

pip install gym

At the time of writing this book, it's more complicated to install on Windows. To do so, you
can perform the following steps:

Install VcXsrv Windows X Server from vcXsrv.1.
Run bash.2.
Install all the dependencies listed at https:/​/​github.​com/​openai/​gym/3.
#installing-​everything by using the following command:

pip install gym

After rebooting, invoke VcXsrv.4.
Run the following command:5.

export DISPLAY=:0

Now, it should be possible to run a very simple algorithm, which is just repeating the same
action, to test our installation:

First of all, we need to import the gym library by executing the following1.
command:

import gym

Then, we need to specify the environment. We picked the Cart-Pole environment2.
(CartPole-v0), but there are several others; some of them are also from old
atari arcade games, for example, the beloved Space Invaders (SpaceInvaders-
v0):

env = gym.make('CartPole-v0')

https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://sourceforge.net/projects/vcxsrv/
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything
https://github.com/openai/gym/#installing-everything

Reinforcement Learning Chapter 10

[231]

To test SpaceInvaders, you will need the Atari dependencies, which can be3.
installed using the following command:

pip install -e 'gym[atari]'
env = gym.make('SpaceInvaders-v0')

Now, we can see the basics of the Gym. We can start the game by calling the reset method
on the environment we picked.

In this example, we decided to study 20 different episodes. At the beginning of each one,
we need to reset the environment, which will bring everything to the start:

for i_episode in range(20):
 observation = env.reset()

We picked 100 as the maximum time horizon that we want to study. For the Cart-Pole
problem, it's enough to determine a win if the agent can survive for this long:

for t in range(100):

At the beginning of each time step, we want to update the state of the environment. We
should be able to visualize the following diagram:

Let's take a look at the following code:

CartPole-V0 at the start
env.render()

Here, we decided to simply always pick the same action; in our case, 1 tells the agent to go
right:

action = 1

Reinforcement Learning Chapter 10

[232]

Then, we perform the action. To do that, we can use the step method of the environment
and pass the chosen action as an argument:

observation, reward, done, info = env.step(action)

The environment will return the following four pieces of information:

Observation: The current state of the world
Reward: The feedback from the environment
Done: The Boolean value communicating whether the episode ended
Info: Debugging information

Once the preceding information is returned, execute the following commands:

print("Episode finished after {} timesteps".format(t+1))
Break

To terminate the program, you can call the close() function, as follows:

env.close()

The frozen lake problem
One of the environments that's available is the frozen lake one. The goal of this
environment is quite simple: we want to cross a frozen lake divided into sward blocks, but
there are some holes (H) that we need to avoid. We can walk on top of the frozen parts
(F) without a problem and move in a maximum of four different directions: up, down, left,
and right:

A visualization of the frozen lake problem

Reinforcement Learning Chapter 10

[233]

The Q-learning algorithm needs the following parameters:

Step size: s 𝛼 ∈(0, 1]1.
Small 𝜀 > 02.

Then, the algorithm works as follows:

Initialize Q(s,a) for all s ∈ S+ and a ∈ A(s) arbitrarily, except that Q(terminal,) = 0.1.
Loop for each episode.2.
Initialize S.3.
Choose A from S using the policy derived from Q (for example, -greedy).4.
Loop for each step of the episode, as follows:5.

Choose A' from S' using the policy derived from Q (for example, -1.
greedy).
Take action A and observe R, S':

Update the state and actions, S S' A A';  , until S is terminal.2.

For the implementation in TensorFlow, we will need to import all the required libraries:

import gym
import numpy as np
import random
import tensorflow as tf
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (16,8)

%matplotlib inline

Now, we can load the environment of choice; here, we decided to use the first version of the
frozen lake environment:

env = gym.make('FrozenLake-v0')

We can then check the possible actions and states by using the following code:

n_actions = env.action_space.n
n_states = env.observation_space.n
Actions are left, up, right, down
print(f'Number of actions {n_actions}')
States are the 16 fields
print(f'Number of possible states {n_states}')

Reinforcement Learning Chapter 10

[234]

The preceding commands generates the following output:

Number of actions 4
Number of possible states 16

Let's now visualize the current state of the environment:

SFFF
FHFH
FFFH
HFFG

Here, we can see that we start at the top-left corner; we can also check what happens when
we interact with it:

env.reset()
env.step(1)
env.step(2)
(0, 0.0, False, {'prob': 0.3333333333333333})

env.render()
 (Right)
SFFF
FHFH
FFFH
HFFG

We will now use TensorFlow version 2, which is more integrated with keras; its usages are
as follows:

It clears the default graph stack and resets the global default graph
It is useful during the testing phase while we experiment in Jupyter Notebook

Now, let's take a look at the following command:

Clears the default graph stack and resets the global default graph.
Useful during the testing phase while I experiment in jupyter notebook.
tf.reset_default_graph()

Let's create a placeholder for the inputs, as follows:

Creating a placeholder for the inputs
inputs = tf.placeholder(shape=[1,n_states],dtype=tf.float32)

Reinforcement Learning Chapter 10

[235]

Here, we are creating the initial weight as a small, randomized matrix. In this simple
example, we will use only one set of weights:

Creating the initial weights as a small randomized matrix
In this simple example we will use only one set of weights
mean = 0
std = 0.01
init_weights = tf.random_uniform([n_states, n_actions], mean, std)

TensorFlow uses lazy evaluation, meaning that it computes the values only when
necessary. Because of this, if we want to check whether we can visualize our weights, we
need to wrap them in a session and explicitly evaluate our tensor:

Visualizing the initial weights
with tf.Session() as sess_test:
 print(init_weights.eval())

The preceding commands generate the following output:

We will then create a very simple architecture by hitting only one set of weights. It's
possible to replace this architecture with more complex networks:

weights = tf.Variable(init_weights)

Matrix product of two arrays
q_out = tf.matmul(inputs, weights)
predict = tf.argmax(q_out, 1)

Reinforcement Learning Chapter 10

[236]

To update the weights, as we saw in the previous chapters, we need to calculate the loss
and use it to calculate the update to provide to the network.

We calculate the loss by taking the difference of the sum of the squares between the target
and predicted Q values:

We calculate the loss
by taking the sum of squares difference between the target and prediction
Q values.
next_q = tf.placeholder(shape=[1, n_actions],dtype=tf.float32)
loss = tf.reduce_sum(tf.square(next_q - q_out))
trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
update_model = trainer.minimize(loss)

What we want to approximate is a matrix that, considering states and actions, will calculate
the future as the Q-function. Each state-action will be associated with the prediction of all
the future rewards that the pair will provide to the agent, considering all future actions:

In the highlighted Q-matrix, we can see our options if we are in state S1. This matrix will
guide our agent in taking the action that maximizes the sum of the total rewards, based on
its current knowledge. The matrix will be updated after every reward:

Reinforcement Learning Chapter 10

[237]

Given a state, the Q-matrix will tell us the sum of all future rewards that we can get if we
pick a certain action.

To explore other alternatives, we will use the epsilon-greedy algorithm, which, given a
state, takes the action that will provide the highest reward, except for a small amount of
time (determined by the value of epsilon).

To implement this, we will need to use the network we created before and compute a
random variable to include the stochastic element. This stochasticity is fundamental in RL
as it gives the agent the ability to explore different solutions:

def epsilon_greedy(predict, q_out, s, epsilon):
 a, q_matrix = sess.run([predict, q_out],
 feed_dict={inputs: np.identity(n_states)
 [s:s + 1]})
 if np.random.rand(1) < epsilon:
 a[0] = env.action_space.sample()
 return a, q_matrix

We will need a few parameters for our algorithms:

Gamma, which is the weight episode, is as follows:

y = .99

Epsilon, which determines how often we will pick a random action:

epsilon = 0.3

We want to include a discount factor to decrease our epsilon as our agent learns:

epsilon_decay = 0.999

Here, we decide to learn for 1,000 episodes, and consider it a failure if we don't solve the
problem within 20 steps:

num_episodes = 1000
max_steps = 20

We will store the history of the learning path in some vectors:

#create lists to contain total rewards and steps per episode
step_list = []
reward_list = []

Reinforcement Learning Chapter 10

[238]

Like we did previously, we need to start a session and reinitialize the graph by running the
initialization procedure we defined earlier using init:

with tf.Session() as sess:
sess.run(init)
for i in range(num_episodes):

We then need to reset the environment to start from scratch; we will need to do this at the
end of every episode:

#Reset environment and get first new observation
s = env.reset()
total_reward = 0
done = False

For each time step in the episode, we need to decide the action and find the updated
q_matrix given the current status and the expected rewards. To achieve this, we will be
using the epsilon-greedy function that we created earlier:

for step in range(max_steps):
Choose an action using epsilon greedy using the Q-network
a, q_matrix = epsilon_greedy(predict, q_out, s, epsilon)

After this, we interact with the environment that can check the next step. The environment
will return the next state but also the reward we got regarding whether the episode is over
or not. In this case, we have a reward only when we reach the goal:

Receive new state and reward from environment
s_prime, reward, done, _ = env.step(a[0])

Then, we can use the network again to estimate the q function.

Calculate Q using the network, as follows:

q_prime = sess.run(q_out, feed_dict={inputs:
np.identity(16)[s_prime:s_prime + 1]})

Obtain max_q_prime and set our target value for the chosen action:

max_q_prime = np.max(q_prime)
target_q = q_matrix

Reinforcement Learning Chapter 10

[239]

To calculate the update, we need to take the reward into consideration; additionally, we
need to consider the following command:

target_q[0, a[0]] = reward + y * max_q_prime

Then, we will train our network using the target and predicted Q values, as follows:

_, w_prime = sess.run([update_model, weights], feed_dict={
inputs: np.identity(n_states)[s:s + 1], next_q: target_q
})

Now, we can update the reward and the state:

total_reward = total_reward + reward
s = s_prime

We also want to reduce the probability of choosing a random action with time, as our agent
is supposed to get more and more knowledgeable. To accomplish this, we will carry out a
very simple strategy, that is, at every step, we will use a very small discount factor. We
could also apply this discount at the end of each episode.

As we train, the model reduces epsilon to reduce the random actions:

epsilon = epsilon * epsilon_decay
if done == True:
break
step_list.append(step)
reward_list.append(total_reward)

To check the performance, we can plot the number of steps that an episode lasts for and the
number of rewards that our agent can get for each episode.

By checking the rewards that our agent is getting, we can see that the network begins to
consistently reach the goal around the 300 episode mark:

fig = plt.figure()
plt.plot(reward_list)
fig.suptitle('Reward per episode', fontsize=20)
plt.xlabel('Episode number', fontsize=18)
plt.ylabel('Reward', fontsize=16)
plt.show()

Reinforcement Learning Chapter 10

[240]

The preceding commands generate the following output:

The agent is learning to get the rewards better and better with each episode.

By checking the number of steps that the agent is able to do per episode, we can see that it
increases with each episode. In particular, after the 400 episode mark, we can see that the
agent becomes quite good at avoiding the holes and is able to survive for the maximum
number of steps:

fig = plt.figure()
plt.plot(step_list)
fig.suptitle('Number of steps completed per episode', fontsize=20)
plt.xlabel('Episode number', fontsize=18)
plt.ylabel('Number of steps', fontsize=16)

Reinforcement Learning Chapter 10

[241]

The preceding commands generate the following output:

The agent is becoming better and better at avoiding the holes.

With a better network, our agent would be able to learn things much better and faster.

Summary
In this chapter, we explored the nomenclature and main concepts of RL. We also learned
how to use OpenAI Gym to test our RL algorithms.

Additionally, we examined how to use TensorFlow to create a simple network to solve a
simple task.

DNNs are now used in RL to solve more complex tasks that can be easily tested in Gym.

The next chapter is a summary of what we have learned in this book; reading it will be a
refresher of all the concepts that we have covered so far.

11
Whats Next?

We now reach the end of our journey in deep learning. We touched on many different
topics, starting from the fundamentals of machine learning and ending with more modern
and advanced topics, such as GANs and Deep reinforcement learning.

In this book, we have tried to always give a concrete example after laying down the theory,
and we hope that this approach has benefited the reader's learning experience.

The following topics covered in this chapter:

Summarizing the book
Future of machine learning
Artificial general intelligence

Summarizing the book
We started with supervised learning approaches and focused on how to create classification
models. In particular, we saw how it's possible to do the following:

Use a perceptron for a linearly separable problem (Chapter 2, Neural Network
Fundamentals)
Use feedforward neural networks (FFNNs) for non-linearly separable tasks
(Chapter 3, Convolutional Neural Networks for Image Processing)
Use embeddings to extract useful information from text (Chapter 4, Exploiting
Text Embedding)
Use Convolutional Neural Networks (CNNs) for tasks whose inputs have a
spatial relationship (Chapter 5, Working with RNNs)

Whats Next? Chapter 11

[243]

Use pre-trained (Neural Network) (NN) as a feature extractor (Chapter 6,
Reusing Neural Networks with Transfer Learning)
Use generative models to reproduce the creativity process (Chapter 7, Working
with Generative Algorithms, Chapter 8, Implementing Autoencoders, and Chapter 9,
Deep Belief Networks)
Use reinforcement learning (RL) to explore different solutions (Chapter 10,
Reinforcement Learning)

Let's take a look at the following diagram, which illustrates this:

A simple classification of the supervised learning methods

Some of these methods are quite old, while some of them are quite new and are very
promising for the future of machine learning and artificial intelligence (AI). And in
particular, GANs are an innovation because, for the first time, the loss function is learned
and not given. The other topic we would like to highlight is Deep RL, in particular Actor
Critic models, which follow a similar concept as Adversarial Networks, that is, dividing the
tasks to estimate the reward function into one network, and the policy into the other
network.

Future of machine learning
Machine learning has the potential to improve almost every field of our society. Anywhere
where learning, optimization, and decision-making are involved, there is a chance for
machine learning to improve the current state of that particular field. With more recent
technologies, such as GANs, more and more fields are going to opt for machine learning.

Whats Next? Chapter 11

[244]

Some of the most promising research applications can be found in the following fields:

Drug discovery
Healthcare
Self-driving cars
Translation
Legal
Art:

A picture modified using transfer learning using a style from Asterix

Generative methods, such as GANs, are now being explored in drug discovery, potentially
making the process much cheaper than it was earlier. In healthcare, deep learning methods
are now able to automate a lot of visual diagnostic tasks, for example, radiologists' tasks.

By analyzing the examples explained in the book, it's possible to notice that there are a few
main factors that have contributed to the sudden explosion of AI:

New and innovative algorithms that have achieved unprecedented performance
Higher data quality
New and more powerful hardware to process the data

Surprisingly, the last two are the most important factors for the quick development of the
field, and for attracting a large amount of investment from major companies. It's a constant
cycle of improvements; investment in data increases investment in hardware and research.
Better results lead to more investment.

Whats Next? Chapter 11

[245]

AI has already been through many boom and bust cycles. When there is a lot of hype, like
now, there is always a justifiable concern. The field seems to have been in a bull run since
early 2010, passing through different hypes, from big data to streaming, from data science
to AI. Now the word AI is everywhere, and it's often improperly used in many products
and services just for marketing purposes.

This is almost offensive to the people who are actually using these techniques and
progressing the field, but most importantly, it is confusing the general public and
misinforming them, increasing the risk of another hype and bust cycle.

Artificial general intelligence
Artificial general intelligence (AGI) is the ability of a machine to successfully perform any
given intellectual task that humans can perform.

If we buy in to the theory that animals, and therefore humans as well, are biological
machines, there is no reason to believe an artificial machine could not surpass our
computational capabilities relatively soon. Our species' intellectual growth to develop
requires much longer than the growth that is required from a machine. It seems just a
question of time for machines to catch up and overtake us.

At the moment, we seem pretty far away from AGI, preferring a type of intelligence that is
specific to each single task it's required to solve. The most promising field for AGI seems to
be RL, where we are now seeing algorithms that can solve different tasks (such as
successfully solving different video games) without requiring human intervention. It's
worth noting that improvements in RL techniques were not sufficient in themselves to
achieve this breakthrough. Deep learning methods helped enormously, and probably the
future requires more and more collaboration between machine learning subfields. For
example, stronger unsupervised learning techniques could also help RL get closer to AGI.

There are several questions that will arise if we ever achieve an AI that is equal to, or even
better than, human intelligence. At this level, the discussion is not technical anymore, but
philosophical and ethical. Everyone should be included in this discussion, as it's something
that can potentially change human life and society like no other technological discovery.

Whats Next? Chapter 11

[246]

Ethics in AI
The fact that machines can make decisions independently has raised quite a few issues.
Some of them are justified; some of them seem a bit far-fetched. We will limit our
discussion for this book to the topics we feel are most important:

Interpretability
Automation and its effect on society
AI safety
AI ethics
Accountability

Interpretability
There is a lot of research at the moment on how to make machine learning more
interpretable. In many fields, being able to interpret and perfectly understand all decisions
made by a machine is mandatory. Usually, it's the case because these decisions require
some sort of ethics or will have an important impact on someone's life. A classic example is
mortgages, where the decision must be easy to understand and explainable to make sure
people are not denied a loan because of reasons out of their control. These problems can
arise from using the wrong input data and considering variables such as gender or country
of origin for the algorithm. Other times, the problem lies in an unfair society that created a
biased dataset. Machine learning in this case might amplify these differences by
blindly perpetuating the injustices in society.

On the other hand, certain decisions are even now impossible to explain, because the
systems can be very complex and can influence each other in ways that a human would not
understand. And that can be an extremely good thing, as we are able to explore solutions
that otherwise we would never be able to achieve. RL is now used in video games by
human players to discover new strategies to win the game.

Automation
One of the main fears that the media propagates is the automation that the AI will be able
to achieve, which might make most of us unemployed, if not all of us.

If we look historically, most important innovations have had a big impact in the job market
in the short term, but in the long term people rebalance, and overall there is a positive
impact on society.

Whats Next? Chapter 11

[247]

It's also true that even the industrial revolution required human operators to operate the
machines, but AI has the potential to eliminate any human intervention.

In the future society, if resources stop being a problem, the world will not need to work as
it does currently because it will not need money to function. Money is just the most widely
acceptable resource allocator, which in this case will cease to exist. Governments might not
be necessary anymore, because AI should be able to organize society as well.

On the other hand, this change can't happen straight away; therefore, there must be a
transition period that might be quite delicate. Large corporations that can leverage large
datasets and AI research will receive all the benefits, while common people will pay the
price.

Also, governments will not need a large number of people to defend its interests. Therefore,
the democratic paradigm might be challenged before the need for governments ceases to
exist.

AI safety
Another big topic for debate is AI safety. A common fear is that machines will rise against
their human enslavers and exterminate our species. A different concern is that AI will lose
control and terminate us in the quest to optimize our society.

My personal opinion is that it's good to have an open debate on these topics, and involve
not only technical people but the whole of society; at least those that are concerned and
curious.

At this point in time, this scenario seems quite far off, not only because it will require a
huge technological jump, but also because AI is used mostly in tools that optimize specific
functions.

A much more concrete risk is weaponized AI. With AI, it is possible to create better and
more autonomous weapons, which will require less manpower and money to operate, and
which might be more effective. An example is drone strikes. In this case, we always have a
human operator that takes the final decision, but it's easy to imagine that the whole process
could be automated.

Whats Next? Chapter 11

[248]

AI ethics
The more decisions AI will be able to take, the more dilemmas it will face. If we take self-
driving cars as an example, sometimes the car will be asked to take a decision that will
determine the life or death of human beings. There may be cases in which it will have to
choose to save one person, such as the driver, over another person, such as the driver of
another car coming from the opposite direction.

Some humans in that instant will either take conscious or not different decision, based on
their belief and their altruism, but how a machine should take that decision is an open topic
of discussion.

Accountability
By the end of this book, it should not come as a surprise that AI also makes mistakes. The
more responsibilities machines have, the more serious mistakes they will commit. In that
case, who will be accountable? The company that created the algorithm, or the person that
owns the tool that was running the algorithm? And what if the algorithm was fooled by an
adversarial attack?

Conclusions
We are still at the very beginning of an exciting journey. AI is an emerging field in which a
lot has yet to be discovered and proven mathematically. Just by looking back to 2010, which
is nine years ago at the time of writing, the landscape is totally different. At that time, data
science and machine learning were just foggy terms for a few researchers, and most people
were extremely skeptical about machines taking autonomous decisions. Now, mathematics
and a data-driven culture are considered almost universally to be the basis of any
respectable business, from large to small.

Lastly, I just want to say that it's incredibly exciting to be part of this revolution, which will
surely be regarded by our descendants as one of the most important moments in human
history. I hope we have conveyed the main concepts and ideas behind some of the most
important algorithms, but also our passion for this fascinating field.

Thanks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Neural Network Projects with Python
James Loy

ISBN: 978-1-78913-890-0

Learn various neural network architectures and its advancements in AI
Master deep learning in Python by building and training neural network
Master neural networks for regression and classification
Discover convolutional neural networks for image recognition
Learn sentiment analysis on textual data using Long Short-Term Memory
Build and train a highly accurate facial recognition security system

https://www.packtpub.com/big-data-and-business-intelligence/neural-network-projects-python

Other Books You May Enjoy

[250]

Neural Networks with Keras

Niloy Purkait

ISBN: 978-1-78953-608-9

Understand the fundamental nature and workflow of predictive data modeling
Explore how different types of visual and linguistic signals are processed by
neural networks
Dive into the mathematical and statistical ideas behind how networks learn from
data
Design and implement various neural networks such as CNNs, LSTMs, and
GANs
Use different architectures to tackle cognitive tasks and embed intelligence in
systems
Learn how to generate synthetic data and use augmentation strategies to
improve your models
Stay on top of the latest academic and commercial developments in the field of
AI

https://www.packtpub.com/big-data-and-business-intelligence/hands-data-science-sql-server-2017

Other Books You May Enjoy

[251]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
action space 227
activation functions
 about 46
 Rectified Linear Unit (ReLU) 48, 49
 softmax 47
 tanh 47, 48
Adaptive Instance Normalization (AdaIN) 172
agent 225
alpha 155
Anaconda 14
Area Under the Curve (AUC) 57
artificial general intelligence (AGI) 245
Artificial Intelligence (AI)
 about 7
 accountability 248
 automation 246
 ethics 246, 248
 history 8, 9
 interpretability 246
 safety 247
Artificial Neural Networks (ANNs) 30
autoencoders
 about 11, 175
 applications 181
 bottleneck 181
 contractive autoencoder (CAE) 193
 convolutional autoencoders 187
 decoder 180
 denoising autoencoders 192
 encoder 180
 loss function 182
 multilayer autoencoders 186
 overview 180
 sparse autoencoders 190
 types 182

 undercomplete autooencoders 182

B
backpropagation 43, 44, 45, 196
Bayesian Belief Networks (BBNs)
 about 204, 205
 predictive propagation 205
 retrospective propagation 205
BigGAN model
 about 169
 robustness 170
 scalability 169
 stability 170
Boston house prices dataset 220

C
callbacks 27
categories 16
chain rule 50, 51, 52
classification 16
classification metrics
 about 24
 binary accuracy 24
 categorical accuracy 25
 ROC AUC 25
 sparse categorical accuracy 25
 sparse top k categorical accuracy 25
 top k categorical accuracy 25
clustering 11
CNNs, in Keras
 about 75
 data, loading 75, 76
 model, creating 76, 77
conditional GANs 153
containerization 15
continuous bag-of-words (CBOW) 93, 94
continuous skip-gram 94

[253]

contractive autoencoder (CAE) 193
contrastive divergence 209
convolutional autoencoders
 about 187
 example 187, 189, 190
Convolutional Neural Networks (CNNs)
 about 65, 66, 110, 153, 242
 convolutional layers 67, 69, 70
 different lag 116
 dropout layers 73
 input layers 66, 67
 loss functions 116, 117
 network configuration 77, 78, 79
 network, optimizing 86, 87, 88
 normalization layers 73
 output layers 74
 pooling layers 71
 same lag 116
 theory 112
cross-validation 26
Cycle-Consistent Adversarial Networks

(CycleGANs)
 about 163
 reference 165

D
data cleaning 17
decoder 180
Deep Belief Networks (DBNs)
 about 203
 applications 203
 architecture 215, 216
 Bayesian Belief Networks (BBNs) 204
 negative phase 217
 overview 203
 positive phase 217
 properties 216
 Restricted Boltzmann machines (RBMs) 206
 training 216, 218
Deep Convolutional Generative Adversarial

Network (DCGAN)
 about 153
 architecture 155
 coded example 156, 157, 158, 159
deep learning

 feature engineering, performing 20
Deep Neural Networks (DNNs) 9, 227
Deep Q Network (DQN) 229
deep residual learning 140
Deepfake 175
denoising autoencoders
 about 192
 example 192
detector stage 70
discriminative algorithms
 versus generative algorithms 145
discriminative classifiers
 examples 146
discriminative model 145
Docker 15
dying state 155
Dynamic Computational Graph (DCG) 125

E
edge-maps 161
embedding layer
 creating 96, 97, 99
encoder 180
Energy-Based Models (EBMs) 206
environment
 about 226
 setting up 12
epsilon-greedy algorithm 237
experience replay 152

F
Facial Expression Recognition (FER) 2013 dataset

80

feature engineering
 about 18, 19
 in Keras 21, 22
 performing 20
feature extraction 135
feature extractors
 networks, reusing as 133
feature scaling 20
feedback 226
feedforward neural network (FFNN)
 about 41, 42, 43, 66, 112, 242
 in Python 54, 56, 57

[254]

FFNN Keras implementation 58, 59
fine-tuning 218
forget layer 119
frozen lake problem 232, 233, 234, 235, 236,

237, 238, 239, 240, 241

G
Gated Recurrent Units (GRUs) 121
Gaussian 195
Generative Adversarial Networks (GANs)
 about 11, 144, 146, 147, 148
 challenges 150, 151
 conditional GANs 153
 Cycle-Consistent Adversarial Networks

(CycleGANs) 163
 Deep Convolutional Generative Adversarial

Network (DCGAN) 153
 Pix2Pix GAN 161
 Progressive Growing of GAN (ProGAN) 165
 StackGAN 162
 StarGAN 167
 timelines 152
 training 149
 variations 152
generative algorithms
 about 144
 versus discriminative algorithms 145
generative classifiers
 examples 146
generative model 144, 145
Gibbs sampling 208
GloVe model
 text classification 107
 using 103, 104, 105
GloVe
 about 100
 global matrix factorization 100
goal 226
Graphic Processing Unit (GPU) 9, 39, 125

H
Hidden Markov Models (HMMs) 146
Hyperspace Analogue to Language (HAL) 101

I
image classification 21
Independent Component Analysis (ICA) 11
inductive learning 11
Internet of Things (IoT) 9

J
Jensen-Shannon divergence 152

K
Keras implementation
 about 49
 chain rule 50, 51, 52
 XOR problem 52
Keras
 about 12, 38
 feature engineering 21
 for expression recognition 80, 82, 83, 84, 85
 perceptron, implementing 39, 40
 word embeddings 95

L
Latent Semantic Analysis (LSA) 101
latent variable model 100
Leaky ReLU
 versus ReLU 155
learning rate 45
lemmatization 90
Long Short-Term Memory (LSTM)
 about 117, 118, 176
 architecture 118, 119, 120, 121
 Forget Gate 118
 in Keras 121, 123, 124
 Input Gate 118
 Output Gate 118
 time series prediction 126, 127, 129

M
Machine Learning (ML)
 about 9
 for NLP 90
 future 243, 244, 245
 overview 9
 reinforcement learning (RL) 11

[255]

 semi-supervised learning 11
 supervised learning 10
 unsupervised learning 10
matrix factorization 100
max pooling 71
metrics
 about 24
 classification metrics 24
 regression metrics 24
Microsoft Cognitive Toolkit 12
minibatch discrimination 152
miniconda 14
MinMax scaling 20
MNIST dataset 147, 219
model
 evaluating 25
Modified National Institute of Standards and

Technology (MNIST) dataset 75
Multi-task learning (MTL)
 about 132
 advantages 134
 hard parameter sharing 133
 implementing 133, 134
 soft parameter sharing 134
multilayer autoencoders
 about 186
 example 186
Multilayer Neural Networks 42
multinomial 16

N
n-grams 20
Natural Language Processing (NLP) 20, 125
Natural Language Toolkit (NLTK) 90
networks
 reusing, as feature extractors 133
Neural Networks (NNs) 12, 30, 109, 132
NLP
 about 90
 methods 90
 rule-based methods 90, 91
 sub-fields 90
numerical transformations 21

O
object-oriented programming (OOP) 54
OpenAI Gym
 working with 230, 231, 232
OpenAI
 reference 9

P
Part-of-Speech (PoS) tagging 91, 126
PatchGAN 161
perceptron convergence theorem 35
Perceptron Learning Rule 36
perceptron
 about 30, 31
 implementing 32, 34, 35, 37, 38
 implementing, in Keras 39, 40
Pix2Pix GAN 161
policy 227
pooling layers, CNNs
 max pooling 71
 stride 71
 zero padding 72
pre-trained models 100
Principal Component Analysis (PCA) 11
Progressive Growing of GAN (ProGAN)
 about 165, 166
 reference 167
Proximal Policy Operation (PPO) 229
Python 12
PyTorch
 basics 125
 transfer learning (TL), implementing in 135, 138,

140, 141

Q
Q matrix 229
Q-learning
 about 227, 228
 learning objectives 228
 methods 229
 policy optimization 229

[256]

R
R language 12
RadialGAN 176
random forest 23
RBM recommender system (coded)
 example 210, 211, 213, 214, 215
RBM recommender system (theoretical)
 example 209, 210
receptive field 66
Rectified Linear Unit (ReLU) 43, 48, 49, 70, 155,

212

Recurrent Neural Networks (RNNs)
 about 109, 110, 111
 many-to-many 115
 one-to-many 115
 one-to-one 115
 types 113, 114
Region-CNN (R-CNN) 74
regression metrics
 about 24
 Cosine Proximity 24
 Mean Absolute Error 24
 Mean Absolute Percentage Error 24
 Mean Squared Error 24
regression
 about 16
 linear regression 16
 logistic regression 16
reinforcement learning (RL) 11, 224, 227, 243
ReLU
 versus Leaky ReLU 155
reparameterization trick 196
Restricted Boltzmann Machines (RBMs)
 about 206, 207, 208
 contrastive divergence 209
 Gibbs sampling 208
 training 208
root mean square error (RMSE) 43

S
scale method 20
Scale-Invariant Feature Transform (SIFT) 18
semi-supervised learning 11
sequence vectors 95

sigmoid function 47
softmax function 47
sparse autoencoders
 about 190
 example 191
StackGAN 162, 163
StarGAN
 about 167
 discriminator objectives 168
 generator functions 169
 reference 169
state 227
Stochastic Gradient Descent (SGD) 40
stride 71
StyleGAN
 about 170
 implementing 174
 style modules 172
supervised DBN classification
 example 220, 221
supervised DBN regression
 example 221
supervised learning
 about 10
 algorithms 22, 23
 binary classification 16
 data cleaning 17
 metrics 24
 model, evaluating 25
 multiclass classification 16
 multilabel classification 16
 predicting phase 10
 scoring phase 10
 training phase 10
 types 16
 with Python 16
Support vector machines (SVMs) 146

T
tanh function 47, 48
TensorBoard
 about 27, 59
 on XOR problem 60, 61, 62
TensorFlow
 datasets 219

 libraries 219
text 90
text classification
 with GloVe 107
time series prediction 126, 129
Toronto Face dataset 147
training set 17
transductive learning 11
transfer learning (TL)
 about 24, 131, 132
 implementing, in PyTorch 135, 138, 140, 141
transformations
 PowerTransformer 21
 QuantileTransformer 21
Turing machine 8

U
undercomplete autooencoders
 about 182
 example 182, 183, 184
 reconstructed images, visualizing 185
 visualization, with TensorBoard 184
Universal Approximation Theorem 20
unsupervised DBN classification
 example 222
unsupervised learning 10

V
VAEs
 about 193
 example 198, 200, 201, 202
 training 196, 197
 using 194, 195
virtual environments 13, 14

W
Wasserstein GANs (WGANs) 152
word embeddings
 about 91, 92
 applications 92
 in Keras 95
 types 92
Word2vec 92

X
XOR problem 52

Y
You Only Look Once (YOLO) 74

Z
zero padding 72

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Getting Started
	Chapter 1: Getting Started with Supervised Learning
	History of AI
	An overview of machine learning
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning

	Environment setup
	Understanding virtual environments
	Anaconda
	Docker

	Supervised learning in practice with Python
	Data cleaning

	Feature engineering
	How deep learning performs feature engineering
	Feature scaling
	Feature engineering in Keras

	Supervised learning algorithms
	Metrics
	Regression metrics
	Classification metrics

	Evaluating the model
	TensorBoard

	Summary

	Chapter 2: Neural Network Fundamentals
	The perceptron
	Implementing a perceptron

	Keras
	Implementing perceptron in Keras

	Feedforward neural networks
	Introducing backpropagation
	Activation functions
	Sigmoid
	Softmax
	Tanh

	ReLU
	Keras implementation
	The chain rule
	The XOR problem

	FFNN in Python from scratch
	FFNN Keras implementation
	TensorBoard
	TensorBoard on the XOR problem

	Summary

	Section 2: Deep Learning Applications
	Chapter 3: Convolutional Neural Networks for Image Processing
	Understanding CNNs
	Input data

	Convolutional layers
	Pooling layers
	Stride
	Max pooling
	Zero padding

	Dropout layers
	Normalization layers
	Output layers

	CNNs in Keras
	Loading the data
	Creating the model
	Network configuration

	Keras for expression recognition
	Optimizing the network
	Summary

	Chapter 4: Exploiting Text Embedding
	Machine learning for NLP
	Rule-based methods

	Understanding word embeddings
	Applications of words embeddings
	Word2vec
	Word embedding in Keras
	Pre-trained network

	GloVe
	Global matrix factorization
	Using the GloVe model
	Text classification with GloVe

	Summary

	Chapter 5: Working with RNNs
	Understanding RNNs
	Theory behind CNNs
	Types of RNNs
	One-to-one
	One-to-many
	Many-to-many

	The same lag
	A different lag
	Loss functions

	Long Short-Term Memory
	LSTM architecture

	LSTMs in Keras
	PyTorch basics
	Time series prediction

	Summary

	Chapter 6: Reusing Neural Networks with Transfer Learning
	Transfer learning theory
	Introducing multi-task learning
	Reusing other networks as feature extractors

	Implementing MTL
	Feature extraction
	Implementing TL in PyTorch
	Summary

	Section 3: Advanced Applications
	Chapter 7: Working with Generative Algorithms
	Discriminative versus generative algorithms
	Understanding GANs
	Training GANs
	GAN challenges

	GAN variations and timelines
	Conditional GANs
	DCGAN
	ReLU versus Leaky ReLU
	DCGAN – a coded example

	Pix2Pix GAN
	StackGAN
	CycleGAN
	ProGAN
	StarGAN
	StarGAN discriminator objectives
	StarGAN generator functions

	BigGAN
	StyleGAN
	Style modules
	StyleGAN implementation

	Deepfakes
	RadialGAN
	Summary
	Further reading

	Chapter 8: Implementing Autoencoders
	Overview of autoencoders
	Autoencoder applications
	Bottleneck and loss functions
	Standard types of autoencoder
	Undercomplete autoencoders
	Example
	Visualizing with TensorBoard
	Visualizing reconstructed images

	Multilayer autoencoders
	Example

	Convolutional autoencoders
	Example

	Sparse autoencoders
	Example

	Denoising autoencoders
	Example

	Contractive autoencoder

	Variational Autoencoders
	Training VAEs
	Example

	Summary
	Further reading

	Chapter 9: Deep Belief Networks
	Overview of DBNs
	BBNs
	Predictive propagation
	Retrospective propagation

	RBMs
	RBM training
	Example – RBM recommender system
	Example – RBM recommender system using code

	DBN architecture
	Training DBNs
	Fine-tuning
	Datasets and libraries
	Example – supervised DBN classification
	Example – supervised DBN regression
	Example – unsupervised DBN classification

	Summary
	Further reading

	Chapter 10: Reinforcement Learning
	Basic definitions
	Introducing Q-learning
	Learning objectives
	Policy optimization
	Methods of Q-learning

	Playing with OpenAI Gym
	The frozen lake problem
	Summary

	Chapter 11: Whats Next?
	Summarizing the book
	Future of machine learning
	Artificial general intelligence
	Ethics in AI
	Interpretability
	Automation
	AI safety
	AI ethics
	Accountability

	Conclusions

	Other Books You May Enjoy
	Index

