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The steps involved for a GNN project are similar to many conventional machine learning pipelines, but we need to 
use graph-specific tools to create them. We start with raw data, which is then transformed into a graph data model 
and that can be stored in a graph database or used in a graph processing system. From the graph processing 
system (and some graph databases), we can do exploratory data analysis and visualization Finally, for the graph 
machine learning, we preprocess the data into a format that can be submitted for training and then train our 
graph machine learning model. In our examples, these will be GNNs.
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foreword
Our world is highly rich in structure, comprising objects, their relations, and hierar-
chies. Sentences can be represented as sequences of words, maps can be broken down
into streets and intersections, the world wide web connects websites via hyperlinks,
and chemical compounds can be described by a set of atoms and their interactions.
Despite the prevalence of graph structures in our world, both traditional and even
modern machine learning methods struggle to properly handle such rich structural
information: machine learning conventionally expects fixed-sized vectors as inputs
and is thus only applicable to simpler structures such as sequences or grids. Conse-
quently, graph machine learning has long relied on labor-intensive and error-prone
handcrafted feature engineering techniques. Graph neural networks (GNNs) finally
revolutionize this paradigm by breaking up with the regularity restriction of conven-
tional deep learning techniques. They unlock the ability to learn representations from
raw graph data with exceptional performance and allow us to view deep learning as a
much broader technique that can seamlessly generalize to complex and rich topologi-
cal structures.

 When I began to dive into the field of graph machine learning, deep learning on
graphs was still in its early stages. Over time, dozens to hundreds of different methods
were developed, contributing incremental insights and refreshing ideas. Tools like
our own PyTorch Geometric library have expanded significantly, offering cutting-edge
graph-based building blocks, models, examples, and scalability solutions. Reflecting
on this growth, it’s clear how overwhelming it can be for newcomers to navigate the
essentials and best practices that have emerged over time, as valuable information is
xi



FOREWORDxii
scattered across theoretical research papers or buried in implementations in GitHub
repositories.

 Now that the power of GNNs has been widely understood, this timely book pro-
vides a well-structured and easy-to-follow overview of the field, providing answers to
many pain points of graph machine learning practitioners. The hands-on approach,
with practical code examples embedded directly within each chapter, invaluably
demystifies the complexities, making the concepts tangible and actionable. Despite
the success of GNNs across all kinds of domains in research, adoption in real-world
applications remains limited to companies that have enough resources to acquire the
necessary knowledge for applying GNNs in practice. I’m confident that this book will
serve as an invaluable resource to empower practitioners to overcome that gap and
unlock the full potential of GNNs.

—MATTHIAS FEY, creator of PyTorch Geometric and founding engineer, Kumo.AI



preface
My journey into the world of graphs began unexpectedly, during an interview at
LinkedIn. As the session wrapped up, I was shown a visualization of my network—a mes-
merizing structure that told stories without a single word. Organizations I had been part
of appeared clustered, like constellations against a dark canvas. What surprised me most
was that this structure was not built using metadata LinkedIn held about my connec-
tions; rather, it emerged organically from the relationships between nodes and edges.

 Years later, driven by curiosity, I recreated that visualization. I marveled once again
at how the underlying connections alone could map out an intricate picture of my
professional life. This deepened my appreciation for the power inherent in graphs—a
fascination that only grew when I joined Cloudera and encountered graph neural net-
works (GNNs). Their potential for solving complex problems was captivating, but div-
ing into them was like trying to navigate an uncharted forest without a map. There
were no comprehensive resources tailored for nonacademics; progress was slow, often
cobbled together from fragments and trial and error.

 This book is the guide I wish I had during those early days. It aims to provide a
clear and accessible path for practitioners, enthusiasts, and anyone looking to under-
stand and apply GNNs without wading through endless academic papers or fragmented
online searches. My hope is that it serves as a one-stop resource for you to learn the
fundamentals and paves the way for deeper exploration.

 Whether you’re here out of professional necessity, sheer curiosity, or the same kind
of amazement that first drew me in, I invite you to embark on this journey. Together,
let’s bring the potential of GNNs to life.

—KEITA BROADWATER
xiii
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about this book
Graph Neural Networks in Action is a book designed for people to jump quickly into this
new field and start building applications. At the same time, we try to strike a balance
by including just enough critical theory to make this book as standalone as possible.
We also fill in implementation details that may not be obvious or are left unexplained
in the currently available online tutorials and documents. In particular, information
about new and emerging topics is very likely to be fragmented. This fragmentation
adds friction when implementing and testing new technologies.

 With Graph Neural Networks in Action, we offer a book that can reduce that friction
by filling in the gaps and answering key questions whose answers are likely scattered
over the internet or not covered at all. We’ve done so in a way that emphasizes
approachability rather than high rigor. 

Who should read this book
This book is designed for machine learning engineers and data scientists familiar with
neural networks but new to graph learning. If you have experience in object-oriented
programming, you’ll find the concepts particularly accessible and applicable.

How this book is organized: A road map
In part 1 of this book, we provide a motivation for exploring GNNs, as well as cover fun-
damental concepts of graphs and graph-based machine learning. In chapter 1, we intro-
duce the concepts of graphs and graph machine learning, providing guidelines for their
use and applications. Chapter 2 covers graph representations up to and including node
xvi



ABOUT THIS BOOK xvii
embeddings. This will be the first programmatic exposure to graph neural networks
(GNNs), which are used to create such embeddings.

 In part 2, the core of the book, we introduce the major types of GNNs, including
graph convolutional networks (GCNs) and GraphSAGE in chapter 3, graph attention
networks (GATs) in chapter 4, and graph autoencoders (GAEs) in chapter 5. These
methods are the bread and butter for most GNN applications and also cover a range
of other deep learning concepts such as convolution, attention, and autoencoders. 

 In part 3, we’ll look at more advanced topics. We describe GNNs for dynamic
graphs (spatio-temporal GNNs) in chapter 6 and give methods to train GNNs at scale
in chapter 7. Finally, we end with some consideration for project and system planning
for graph learning projects in chapter 8.

About the code 
Python is the coding language of choice throughout this book. There are now several
GNN libraries in the Python ecosystem, including PyTorch Geometric (PyG), Deep
Graph Library (DGL), GraphScope, and Jraph. We focus on PyG, which is one of the
most popular and easy-to-use frameworks, written on top of PyTorch. We want this
book to be approachable by an audience with a wide set of hardware constraints, so
with the exception of some individual sections and chapter 7 on scalability, distributed
systems and GPU systems aren’t required, although they can be used for some of the
coded examples.

 The book provides a survey of the most relevant implementations of GNNs, includ-
ing graph convolutional networks (GCNs), graph autoencoders (GAEs), graph atten-
tion networks (GATs), and graph long short-term memory (LSTM). The aim is to
cover the GNN tasks mentioned earlier. In addition, we’ll touch on different types of
graphs, including knowledge graphs.

 This book contains many examples of source code both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/graph-neural-networks-in-action. The
complete code for the examples in the book is available for download from the Man-
ning website at www.manning.com/books/graph-neural-networks-in-action and from
GitHub at https://github.com/keitabroadwater/gnns_in_action.

https://www.manning.com/books/graph-neural-networks-in-action
https://livebook.manning.com/book/graph-neural-networks-in-action
https://github.com/keitabroadwater/gnns_in_action
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liveBook discussion forum
Purchase of Graph Neural Networks in Action includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can
attach comments to the book globally or to specific sections or paragraphs. It’s a snap
to make notes for yourself, ask and answer technical questions, and receive help from
the authors and other users. To access the forum, go to https://livebook.manning.com/
book/graph-neural-networks-in-action/discussion. You can also learn more about Man-
ning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://livebook.manning.com/book/graph-neural-networks-in-action/discussion
https://livebook.manning.com/book/graph-neural-networks-in-action/discussion
https://livebook.manning.com/book/graph-neural-networks-in-action/discussion
https://livebook.manning.com/discussion


about the authors
KEITA BROADWATER, PhD, MBA (https://bsky.app/profile/keitabr.bsky.social), is a data
science and machine learning engineering leader with more than two decades of
experience shaping data and AI-driven value and innovation. As the Director of
Machine Learning Engineering at Hewani Data, he uses his expertise in developing
production-ready solutions to complex business challenges. Keita’s career spans roles
at LinkedIn, Intel, Cloudera, and Disney Streaming. He is a sought-after speaker who
regularly shares insights on leadership, technology, and the emerging machine learn-
ing space in Africa. As a passionate tech investor, he is dedicated to empowering and
inspiring the next generation of technology leaders. When not immersed in code or
mentoring aspiring engineers, you can find him exploring California history or run-
ning in local races from his home in the San Francisco Bay area.

 
NAMID STILLMAN, PhD (https://x.com/nrstillman), is an applied research scientist
focused on integrating AI methods into scientific research. As an active researcher
who has worked on problems in nanoscience, drug discovery, cell biology, and com-
plex systems, he has written more than 20 peer-reviewed articles in top academic jour-
nals, and has received generous funding support while conducting research at the
University of Bristol, University College, London, and the Alan Turing Institute. He is
currently the head of AI at Simudyne, where he helps develop complex models for
industry. In his free time, he enjoys spending time in London or going for hikes out-
side the city. You can learn more at https://nrstillman.github.io.
xix

https://nrstillman.github.io
https://bsky.app/profile/keitabr.bsky.social
https://x.com/nrstillman


about the cover illustration
The figure on the cover of Graph Neural Networks in Action is “Matelot provençal,” or
“Sailor from Provence,” taken from a collection by Jacques Grasset de Saint-Sauveur,
published in 1788. Each illustration is finely drawn and colored by hand. 

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xx



Part 1

First steps

Graphs are one of the most versatile and powerful ways to represent com-
plex, interconnected data. This first part introduces the fundamental concepts
of graph theory, explaining what graphs are, why they matter as a data type, and
how their structure captures relationships that traditional data formats miss.
You’ll explore the building blocks of graphs and different graph types.

 Then, we’ll explore foundational concepts about graph neural networks
(GNNs), beginning with what they are and how they differ from traditional neural
networks. With this foundation, we study graph embeddings, uncovering how to
represent graphs in a way that makes them useful for machine learning. These
concepts set the stage for mastering GNNs and their transformative capabilities in
later chapters. By the end of this part of the book, you’ll have a solid understand-
ing of the basics, preparing you to dive deeper into the mechanics of GNNs.





Discovering graph
neural networks
For data practitioners, the fields of machine learning and data science initially
excite us because of the potential to draw nonintuitive and useful insights from
data. In particular, the insights from machine learning and deep learning promise
to enhance our understanding of the world. For the working engineer, these tools
promise to deliver business value in unprecedented ways. 

 Experience deviates from this ideal. Real-world data is usually messy, dirty and
biased. Furthermore, statistical methods and learning systems come with their own
set of limitations. An essential role of the practitioner is to comprehend these lim-
itations and bridge the gap between real data and a feasible solution. For example,
we may want to predict fraudulent activity in a bank, but we first need to make sure
that our training data has been correctly labeled. Even more importantly, we’ll

This chapter covers
 Defining graphs and graph neural networks

 Understanding why people are excited about 
graph neural networks

 Recognizing when to use graph neural networks

 Taking a big picture look at solving a problem 
with a graph neural network
3



4 CHAPTER 1 Discovering graph neural networks
need to check that our models won’t incorrectly assign fraudulent activity to normal
behaviors, possibly due to some hidden confounders in the data. 

 For graph data, until recently, bridging this gap has been particularly challenging.
Graphs are a data structure that is rich with information and especially adept at
capturing the intricacies of data where relationships play a crucial role. Graphs are
omnipresent, with relational data appearing in different forms such as atoms in mol-
ecules (nature), social networks (society), and even models the connection of web
pages on the internet (technology) [1]. It’s important to note that the term rela-
tional here doesn’t refer to relational databases, but rather to data where relationships
are of significance.

 Previously, if you wanted to incorporate relational features from a graph into a
deep learning model, it had to be done in an indirect way, with different models used
to process, analyze, and then use the graph data. These separate models often couldn’t
be easily scaled and had trouble taking into account all the node and edge properties
of graph data. To make the best use of this rich and ubiquitous data type for machine
learning, we needed a specialized machine learning technique specifically designed
for the distinct qualities of graphs and relational data. This is the gap that graph neu-
ral networks (GNNs) fill.

 The deep learning field often contains a lot of hype around new technologies and
methods. However, GNNs are widely recognized as a genuine leap forward for graph-
based learning [2]. This doesn’t mean that GNNs are a silver bullet. Careful compari-
sons should be done between predictive results derived from GNNs and other machine
learning and deep learning methods. 

 The key thing to remember is that if your data science problem involves data that
can be structured as a graph—that is, the data is connected or relational—then GNNs
could offer a valuable approach, even if you weren’t aware that something was missing
in your approach. GNNs can be designed to handle very large data, to scale, and to
adapt to graphs of different sizes and shapes. This can make working with relationship-
centric data easier and more efficient, as well as yield richer results.

 The standout advantages of GNNs are why data scientists and engineers are
increasingly recognizing the importance of mastering them. GNNs have the ability to
unveil unique insights from relational data—from identifying new drug candidates to
optimizing ETA prediction accuracy in your Google Maps app—acting as a catalyst for
discovery and innovation, and empowering professionals to push the boundaries of
conventional data analysis. Their diverse applicability spans various fields, offering
professionals a versatile tool that is as relevant in e-commerce (e.g., recommendation
engines) as it is in bioinformatics (e.g., drug toxicity prediction). Proficiency in GNNs
equips data professionals with a multifaceted tool for enhanced, accurate, and innova-
tive data analysis of graphs.

 For all these reasons, GNNs are now the popular choice for recommender engines,
analyzing social networks, detecting fraud, understanding how biomolecules behave,
and many other practical examples that we’ll meet over the course of this book. 



51.1 Goals of this book
1.1 Goals of this book
Graph Neural Networks in Action is aimed at practitioners who want to begin to deploy
GNNs to solve real problems. This could be a machine learning engineer not famil-
iar with graph data structures, a data scientist who hasn’t yet tried GNNs, or even a
software engineer who may be unfamiliar with either. Throughout this book, we’ll
be covering topics from the basics of graphs all the way to more complex GNN mod-
els. We’ll be building up the architecture of a GNN, step-by-step. This includes the
overall architecture of a GNN and the critical aspect of message passing. We then go
on to add different features and extensions to these basic aspects, such as introduc-
ing convolution and sampling, attention mechanisms, a generative model, and oper-
ating on dynamic graphs. When building our GNNs, we’ll be working in Python and
using some standard libraries. GNN libraries are either standalone or use Tensor-
Flow or PyTorch as a backend. In this text, the focus will be on PyTorch Geometric
(PyG). Other popular libraries include Deep Graph Library (DGL, a standalone
library) and Spektral (which uses Keras and TensorFlow as a backend). There is also
Jraph for JAX users.

 Our aim throughout this book is to enable you to 

 assess the suitability of a GNN solution for your problem.
 understand when traditional neural networks won’t perform as well as a GNN

for graph structured data and when GNNs may not be the best tool for tabular
data. 

 design and implement a GNN architecture to solve problems specific to you.
 make clear the limitations of GNNs.

This book is weighted toward implementation using programming. We also devote
some time on essential theory and concepts, so that the techniques covered can be
sufficiently understood. These are covered in an “Under the Hood” section at the end
of most chapters to separate the technical reasons from the actual implementation.
There are many different models and packages that build on the key concepts we
introduce in this book. So, this book shouldn’t be seen as a comprehensive review of
all GNN methods and models, which could run to several thousands of pages, but
rather the starting point for the curious and eager-to-learn practitioner. 

 The book is divided into three parts. Part 1 covers the basics of GNNs, especially
the ways in which they differ from other neural networks, such as message passing and
embeddings, which have specific meaning for GNNs. Part 2, the heart of the book, goes
over the models themselves, where we cover a handful of key model types. Then, in
part 3, we’ll go into more detail with some of the harder models and concepts, includ-
ing how to scale graphs and deal with temporal data. 

 Graph Neural Networks in Action is designed for people to jump quickly into this new
field and start building applications. Our aim for this book is to reduce the friction of
implementing new technologies by filling in the gaps and answering key development
questions whose answers may not be easy to find or may not be covered elsewhere at
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all. Each method is introduced through an example application so you can under-
stand how GNNs are applied in practice. We strongly advise you to try out the code for
yourself along the way. 

1.1.1 Catching up on graph fundamentals

Yes, you do need to understand the basics of graphs before you can understand GNNs.
Yet our goal for this book is to teach GNNs to deep learning practitioners and builders
of traditional neural networks who may not know much about graphs. At the same
time, we also recognize that readers of this book may vary enormously in their knowl-
edge of graphs. How to address these differences and make sure everyone has what
they need to make the most of this book? In this chapter, we provide an introduction
to the fundamental graph concepts that are most essential to understanding GNNs. If
you’re well-versed in graphs, you may choose to skip this section, although we recom-
mend skimming through as we cover some specific terminology and use-cases that will
be helpful to understand for the remainder of the book. For those of you who have
more questions about graphs, we’ve also included a full tutorial on basic graph con-
cepts and terminology in appendix A. This primer should also serve as a reference for
looking up specific concepts. 

 After the refresher on key concepts in graphs and graph learning, we’ll look into
some case studies in several fields where GNNs are being successfully applied. Then,
we’ll break down those specific cases to see what makes a good case for using a GNN,
as well as how to know if you have a GNN problem on your hands. At the end of the
chapter, we introduce the mechanics of GNNs, the barebone skeleton that the rest of
the book will add to.

1.2 Graph-based learning
This section defines graphs, graph-based learning, and some fundamentals of GNNs,
including the basic structure of a graph and a taxonomy of different types of graphs.
Then, we’ll review graph-based learning, putting GNNs in context with other learning
methods. Finally, we’ll explain the value of graphs, ending with an example of data
derived from the Titanic dataset.

1.2.1 What are graphs?

Graphs are data structures with elements, expressed as nodes or vertices, and relation-
ships between elements, expressed as edges or links, as shown in figure 1.1. All nodes in
the graph will have additional feature data. This is node-specific data, relating to things
such as the names or ages of individuals in a social network. The links are key to the
power of relational data, as they allow us to learn more about the system, give new
tools for analyzing data, and predict new properties from it. This is in contrast to tabu-
lar data such as a database table, dataframe, or spreadsheet, where the data is fixed in
rows and columns.
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To describe and learn from the edges between the nodes, we need a way to write
them down. This can be done explicitly, stating that the A node is connected to B
and E, and that the B node is connected to A, C, D, and E. Quickly, we can see that
describing things in this way becomes unwieldy and that we might be repeating
redundant information (that A is connected to B and that B is connected to A).
Luckily, there are many mathematical formalisms for describing relations in
graphs. One of the most common is to describe the adjacency matrix, which we write
out in table 1.1. Notice that the adjacency matrix is symmetric across the diagonal
and that all values are ones or zero. 

The adjacency matrix of a graph is an important concept that makes it easy to
observe all the connections of a graph in a single table [3]. Here, we assumed that
there is no directionality in our graph; that is, if 0 is connected to 1, then 1 is also
connected to 0. This is known as an undirected graph. Undirected graphs can be eas-
ily inferred from an adjacency matrix because, in this case, the matrix is symmetric
across the diagonal (e.g., in table 1.1, the upper-right triangle is reflected onto the
bottom left). 

 We also assume here that all the relations between nodes are identical. If we
wanted the relation of nodes B–E to mean more than the relation of nodes B–A, then
we could increase the weight of this edge. This translates to increasing the value in the
adjacency matrix, making the entry for the B–A edge in table 1.1 equal to 10 instead
of 1, for example. 

Table 1.1 The adjacency matrix for the simple graph in figure 1.1 

A B C D E

A 0 1 0 0 1

B 1 0 1 1 1

C 0 1 0 1 0

D 0 1 1 0 1

E 1 1 0 1 0

A

D

C

B

E

Vertex or Node

Edge

Figure 1.1 A graph. Individual 
elements, represented here by 
letters A through E, are nodes, 
also called vertices, and their 
relationships are described by 
edges, also known as links.
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 Graphs where all relations are of equal importance are known as unweighted graphs
and can also be easily observed from the adjacency matrix because all graph entries
are either 1s or 0s. Graphs where edges have multiple values are known as weighted.

 If any of the nodes in the graph don’t have an edge that connects to itself, then the
nodes will also have 0s at their own value in the adjacency matrix (0s along the diago-
nal). This means a graph doesn’t have self-loops. A self-loop occurs when a node has an
edge that connects to that same node. To add a self-loop, we just make the value for
that node nonzero at its position in the diagonal.

 In practice, an adjacency matrix is only one of many ways to describe relations in a
graph. Others include adjacency lists, edge lists, or an incidence matrix. Under-
standing these types of data structures well is vital to graph-based learning. If you’re
unfamiliar with these terms, or need a refresher, we recommend looking through
appendix A, which has additional details and explanations. 

1.2.2 Different types of graphs
Understanding the many different types of graphs can help us work out what methods
to use to analyze and transform the graph, and what machine learning methods to
apply. In the following, we give a very quick overview of some of the most common
properties for graphs to have. As before, we recommend you look through appendix
A for further information. 

HOMOGENEOUS AND HETEROGENEOUS GRAPHS

The most basic graphs are homogenous graphs, which are made up of one type of node
and one type of edge. Consider a homogeneous graph that describes a recruitment
network. In this type of graph, the nodes would represent job candidates, and the
edges would represent relationships between the candidates.

 If we want to expand the power of our graph to describe our recruitment network,
we could give it more types of nodes and edges, making it a heterogeneous graph. With this
expansion, some nodes may be candidates and others may be companies. Edges could
now consist of relationships between candidates and current or past employment of
job candidates at the companies. See figure 1.2 for a comparison of a homogeneous

Homogeneous Heterogeneous

Figure 1.2 A homogeneous graph and a heterogeneous graph. Here, the shade of a node or edge represents its 
type or class. For the homogeneous graph, all nodes are of the same type, and all edges are of the same type. 
For the heterogeneous graph, nodes and edges have multiple types. 
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graph (all nodes or edges have the same shade) with a heterogeneous graph (nodes
and edges have a variety of shades). 

BIPARTITE GRAPHS

Similar to heterogeneous graphs, bipartite graphs also can be separated or partitioned
into different subsets. However, bipartite graphs (figure 1.3) have a very specific net-
work structure such that nodes in each subset connect to nodes outside of their subset
and not inside. Later, we’ll be discussing recommendation systems and the Pinterest
graph. This graph is bipartite because one set of nodes (pins) connects another set of
nodes (boards) but not to nodes within their set (pins). 

CYCLIC GRAPHS, ACYCLIC GRAPHS, AND DIRECTED ACYCLIC GRAPHS

A graph is cyclic if it allows you to start at a node, travel along its edges, and return to
the starting node without retracing any steps, creating a circular path within the
graph. In contrast, in an acyclic graph, no matter which path you take from any start-
ing node, you can’t return to the starting point without backtracking. These graphs, as
shown in figure 1.4, often resemble tree-like structures or paths that don’t loop back
on themselves.

 While both cyclic and acyclic graphs can be either undirected or directed, a directed
acyclic graph (DAG) is a specific type of acyclic graph that is exclusively directed. In a
DAG, all edges have a direction, and no cycles are allowed. DAGs represent one-way
relationships where you can’t follow the arrows and end up back at the starting point.
This characteristic makes DAGs essential in causal analysis, as they reflect causal struc-
tures where causality is assumed to be unidirectional. For example, A can cause B, but
B can’t simultaneously cause A. This unidirectional nature aligns perfectly with the
structure of DAGs, making them ideal for modeling workflow processes, dependency
chains, and causal relationships in various fields. 

 
 

Figure 1.3 A bipartite graph. There 
are two types of nodes (two shades 
of circles). In a bipartite graph, 
nodes can’t be connected to nodes 
of the same type. This is also an 
example of a heterogeneous graph.
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KNOWLEDGE GRAPHS

A knowledge graph is a specialized type of heterogeneous graph that represents data
with enriched semantic meaning, capturing not only the relationships between dif-
ferent entities but also the context and nature of these relationships. Unlike conven-
tional graphs, which primarily emphasize structure and connectivity, a knowledge
graph incorporates metadata and follows specific schemas to provide deeper con-
textual information. This allows for advanced reasoning and querying capabilities,
such as identifying patterns, uncovering specific types of connections, or inferring
new relationships.

 In the example of an academic research network at a university, a knowledge graph
might represent various entities such as Professors, Students, Papers, and Research

Cyclic Graph Acyclic Graph

Directed Acyclic Graph (DAG)

C

DB

E

F

A

C

D
G

A

E

F

B

A

E

F

B

C D

Figure 1.4  A cyclic graph (left), an acyclic graph (right), and a DAG (bottom). In the cyclic graph, the cycle is 
shown by the arrows (directed edges) connecting nodes A-E-D-C-B-A. Note that two nodes, G and F are part of the 
graph, but not part of its defining cycle. The acyclic graph is composed of undirected edges, and no cycle is 
possible. In the DAG, all directed edges flow in one direction, from A to F.
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Topics, and explicitly define the relationships between them. For instance, Professors
and Students could be associated with Papers through an Authorship relationship,
while Professors might also Supervise Students. Furthermore, the graph would reflect
hierarchical structures, such as Professors and Students being categorized under
Departments. You can see this knowledge graph depicted in figure 1.5.

A key feature of knowledge graphs is their ability to provide explicit context. Unlike
conventional heterogeneous graphs, which display different types of entities and their
basic connections without detailed semantic meaning, knowledge graphs go further
by defining the specific types and meanings of relationships. For example, while a tra-
ditional graph might show that Professors are connected to Departments or that Stu-
dents are linked to Papers, a knowledge graph would specify that Professors supervise

Dept

Student

Paper

Paper

Name: Physics

Name: Tom

Major: physics

Type: PhD

Name: Jane

Major: physics

Type: Masters

Topic: Wavelets

Name: Ruth

Dept: physics

Type: Tenured

Name: Joe

Dept: physics

Type: Associate

Topic: Wavelets

Subject: signal analysis

Author: Tom

Topic: Wavelets

Subject: anomaly detection

Author: Ruth

supervises

supervises

wrote

wrote

inspire
s
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Prof

Prof

member o
f

m
e
m

b
e
r 

o
f

member of

m
e
m

b
e
r o

f

Figure 1.5 A knowledge graph representing an academic research network within a university’s physics 
department. The graph illustrates both hierarchical relationships, such as professors and students as members 
of the department, and behavioral relationships, such as professors supervising students and authoring papers. 
Entities such as Professors, Students, Papers, and Topics are connected through semantically meaningful 
relationships (Supervises, Wrote, Inspires). Entities also have detailed features (Name, Department, Type) 
providing further context. The semantic connections and features enable advanced querying and analysis of 
complex academic interactions. 
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Students or that Students and Professors Wrote Papers. This added layer of meaning
enables more powerful querying and analysis, making knowledge graphs particularly
valuable in fields such as natural language processing, recommendation systems, and
academic research analysis.

HYPERGRAPHS

One of the more complex and difficult graphs to work with is the hypergraph. Hyper-
graphs are those where a single edge can be connected to multiple different nodes.
For graphs that aren’t hypergraphs, edges are used to connect exactly two nodes (or a
node to itself for self-loops). As shown in figure 1.6, edges in a hypergraph can con-
nect between any number of nodes. The complexity of a hypergraph is reflected in
its adjacency data. For typical graphs, network connectivity is represented by a two-
dimensional adjacency matrix. For hypergraphs, the adjacency matrix extends to a
higher dimensional tensor, referred to as an incidence tensor. This tensor is N-dimensional,
where N is the maximum number of nodes connected by a single edge. An example
of a hypergraph might be a communication platform that allows for group chats as
well as single person conversations. In an ordinary graph, edges would only connect

1
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Vertex or Node

Hyperedge

Hyperedge

a.

a.
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1
2b.
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d. d.

4
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c.

Figure 1.6 One undirected hypergraph, illustrated in two ways. On the left, we have a graph whose edges are 
represented by shaded areas, marked by letters, and whose vertices are dots, marked by numbers. On the right, 
we have a graph whose edge lines (marked by letters) connect up to 3 nodes (circles marked by numbers). Node 
8 has no edge. Node 7 has a self-loop.
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two people. In a hypergraph, one hyperedge could connect multiple people, repre-
senting a group chat.

1.2.3 Graph-based learning

As we’ll see in the rest of this chapter, graphs are ubiquitous in our everyday life. Graph-
based learning takes graphs as input data to build models that give insight into questions
about this data. Later in this chapter, we look at different examples of graph data as well
as at the sort of questions and tasks we can use graph-based learning to answer. 

 Graph-based learning uses a variety of machine learning methods to build represen-
tations of graphs. These representations are then used for downstream tasks such as
node or link prediction or graph classification. In chapter 2, you’ll learn about one of
the essential tools in graph-based learning, building embeddings. Briefly, embeddings
are low-dimensional vector representations. We can build an embedding of different
nodes, edges, or entire graphs, and there are a number of different ways to do this
such as the Node2Vec (N2V) or DeepWalk algorithms. 

 Methods for analysis on graph data have been around for a long time, at least as
early as the 1950s when clique methods used certain features of a graph to identify sub-
sets or communities in the graph data [4]. 

 One of the most famous graph-based algorithms is PageRank, which was devel-
oped by Larry Page and Sergey Brin in 1996 and formed the basis for Google’s search
algorithms. Some believe that this algorithm was a key element in the company’s
meteoric rise in the following years. This highlights that a successful graph-based
learning algorithm can have a huge effect. 

 These methods are only a small subset of graph-based learning and analysis tech-
niques. Others include belief propagation [5], graph kernel methods [6], label prop-
agation [7], and isomaps [8]. However, in this book, we’ll focus on one of the newest
and most exciting additions to the family of graph-based learning techniques: GNNs. 

1.2.4 What is a GNN?

GNNs combine graph-based learning with deep learning. This means that neural net-
works are used to build embeddings and process the relational data. An overview of
the inner workings of a GNN is shown in figure 1.7. 

 GNNs allows you to represent and learn from graphs, including their constituent
nodes, edges, and features. In particular, many methods of GNNs are built specifically
to scale effectively with the size and complexity of a graph. This means that GNNs can
operate on huge graphs, as we’ll discuss. In this sense, GNNs provide analogous advan-
tages to relational data as convolutional neural networks have given for image-based
data and computer vision. 

 Historically, applying traditional machine learning methods to graph data struc-
tures has been challenging because graph data, when represented in grid-like formats
and data structures, can lead to massive repetitions of data. To address this, graph-
based learning focuses on approaches that are permutation invariant. This means that



14 CHAPTER 1 Discovering graph neural networks
the machine learning method is uninfluenced by the ordering of the graph represen-
tation. In concrete terms, it means that we can shuffle the rows and columns of the
adjacency matrix without affecting our algorithm’s performance. Whenever we’re
working with data that contains relational data, that is, has an adjacency matrix, then
we want to use a machine learning method that is permutation invariant to make our
method more general and efficient. Although GNNs can be applied to all graph data,
GNNs are especially useful because they can deal with huge graph datasets and typi-
cally perform better than other machine learning methods. 

 Permutation invariances are a type of inductive bias, or an algorithm’s learning bias,
and are powerful tools for designing machine learning algorithms [1]. The need for
permutation-invariant approaches is one of the central reasons that graph-based
learning has increased in popularity in recent years.

 Being designed for permutation-invariant data comes with some drawbacks
along with its advantages. GNNs aren’t as well suited for other data, such as images
or tables. While this might seem obvious, images and tables are not permutation
invariant and therefore not a good fit for GNNs. If we shuffle the rows and columns
of an image, then we scramble the input. Instead, machine learning algorithms for

?

GNNs build embeddings based

on local (neighborhood) features.

This step is known as message
passing.

Embeddings are then linked to

predicted graph features during

training time.

2. GNN Model

?

1. Input Graph
(with unknown node feature)

3. Output Graph
(with predicted node feature)

Figure 1.7 An overview of how GNNs work. An input graph is passed to a GNN. The GNN then uses 
neural networks to transform graph features such as nodes or edges into nonlinear embeddings through 
a process known as message passing. These embeddings are then tuned to specific unknown properties 
using training data. After the GNN is trained, it can predict unknown features of a graph.



151.2 Graph-based learning
images seek translational invariance, which means that we can translate (shift) the
object in an image, and it won’t affect the performance of the algorithm. Other
neural networks, such as convolutional neural networks (CNNs) typically perform
much better on images. 

1.2.5 Differences between tabular and graph data

Graph data includes all data with some relational content, making it a powerful way to
represent complex connections. While graph data might initially seem distinct from
traditional tabular data, many datasets that are typically represented in tables can be
re-created as graphs with some data engineering and imagination. Let’s take a closer
look at the Titanic dataset, a classic example in machine learning, and explore how it
can be transformed from a table format to a graph format.

 The Titanic dataset describes passengers on the Titanic, a ship that famously met
an untimely end when it collided with an iceberg. Historically, this dataset has been
analyzed in tabular format, containing rows for each passenger with columns repre-
senting features such as age, gender, fare, class, and survival status. However, the data-
set also contains rich, unexplored relationships that aren’t immediately visible in a
table format, as shown in figure 1.8.

RECASTING THE TITANIC DATASET AS A GRAPH

To transform the Titanic dataset into a graph, we need to consider how to represent
the underlying relationships between passengers as nodes and edges:

 Nodes—In the graph, each passenger can be represented as a node. We can also
introduce nodes for other entities, such as cabins, families, or even groups such
as “third-class passengers.”

 Edges—Edges represent the relationships or connections between these nodes.
For example:
– Passengers who are family members (siblings, spouses, parents, or children)

based on the available data
– Passengers who share a cabin or were traveling together
– Social or business relationships that might be inferred from shared ticket

numbers, last names, or other identifying features

Figure 1.8 The Titanic Dataset is usually displayed and analyzed using a table format.
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To construct this graph, we need to use the existing information in the table and
potentially enrich it with secondary data sources or assumptions (e.g., linking last
names to create family groups). This process converts the tabular data into a graph-
based structure, shown in figure 1.9, where each edge and node encapsulates mean-
ingful relational data.

HOW GRAPH DATA ADDS DEPTH AND MEANING

Once the dataset is represented as a graph, it provides a much deeper view of the
social and familial connections between the passengers. For example:

 Family relationships—The graph clearly shows how certain passengers were related
(e.g., as parents, children, or siblings). This could help us understand survival
patterns, as family members might have behaved differently in a crisis than indi-
viduals traveling alone.

 Social networks—Beyond families, the graph could reveal broader social networks
(e.g., friendships or business connections), which could be important factors in
analyzing behavior and outcomes.

 Community insights—The graph structure also allows for community detection
algorithms to identify clusters of related or connected passengers, which may
reveal new insights into survival rates, rescue patterns, or other behaviors.

Graph representations add depth by specifying connections that might not be obvi-
ous in a tabular format. For example, understanding who traveled together, who
shared a cabin, or who had social or family ties can provide more context on survival
rates and passenger behavior. This is crucial for tasks such as node prediction, where
we want to predict attributes or outcomes based on the relationships represented in
the graph.

3rd Class Families

Female

Male

Survived

Died

Unknown

Figure 1.9 The Titanic dataset, 
showing the family relationships of 
the people on the Titanic visualized as 
a graph (Source: Matt Hagy). Here, 
we can see that there was a rich 
social network as well as many 
passengers with unknown family ties. 
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 By creating an adjacency matrix or defining graph edges and nodes based on the
relationships in the dataset, we can transition from simple data analysis to more
sophisticated graph-based learning methods.

1.3 GNN applications: Case studies
As we’ve seen, GNNs are neural networks designed to work on relational data. They
give new ways for relational data to be transformed and manipulated, by being easier
to scale and more accurate than previous graph-based learning methods. In the fol-
lowing, we discuss some exciting applications of GNNs, to see, at a high level, how this
class of models are solving real-world problems. Links to source papers are listed at
the end of the book if you want to learn more about these particular projects.

1.3.1 Recommendation engines

Enterprise graphs can exceed billions of nodes and many billions of edges. On the
other hand, many GNNs are benchmarked on datasets that consist of fewer than a mil-
lion nodes. When applying GNNs to large graphs, adjustments of the training and
inference algorithms and storage techniques all have to be made. (You can learn
more about the specifics of scaling GNNs in chapter 7.)

 One of the most well-known industry examples of GNNs is their use as recommen-
dation engines. For instance, Pinterest is a social media platform for finding and shar-
ing images and ideas. There are two major concepts to Pinterest’s users: collections or
categories of ideas, called boards (like a bulletin board); and objects a user wants to
bookmark called pins. Pins include images, videos, and website URLs. A user board
focused on dogs might then include pins of pet photos, puppy videos, or dog-related
website links. A board’s pins aren’t exclusive to it; a pet drawing that was pinned to the
Dogs board could also be pinned to a Puppies board, as shown in figure 1.10.

 As of this writing, Pinterest has 400 million active users who have likely pinned tens
if not hundreds of items per user. One imperative of Pinterest is to help their users
find content of interest via recommendations. Such recommendations should not
only take into account image data and user tags but also draw insights from the rela-
tionships between pins and boards.

 One way to interpret the relationships between pins and boards is as a bipartite
graph, which we discussed earlier. For the Pinterest graph, all the pins are connected
to boards, but no pin is connected to another pin, and no board is connected to
another board. Pins and boards are two classes of nodes. Members of these classes can
be linked to members of the other class, but not to members of the same class. The
Pinterest graph was reported to have 3 billion nodes and 18 billion edges.

 PinSage, a graph convolutional network (GCN), was one of the first documented
highly scaled GNNs used in an enterprise system [9]. This was used in Pinterest’s rec-
ommendation systems to overcome past challenges of applying graph-learning models
to massive graphs. Compared to baseline methods, tests on this system showed it
improved user engagement by 30%. Specifically, PinSage was used to predict which
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objects should be recommended to be included in a user’s graph. However, GNNs can
also be used to predict what an object is, such as whether it contains a dog or moun-
tain, based on the rest of the nodes in the graph and how they are connected. We’ll be
doing a deep dive on GCNs, of which PinSage is an extension, in chapter 3.

1.3.2 Drug discovery and molecular science

In chemistry and molecular sciences, a prominent problem has been representing
molecules in a general, application-agnostic way, and inferring possible interfaces
between molecules, such as proteins. For molecule representation, we can see that
the drawings of molecules that are common in high school chemistry classes bear
resemblance to a graph structure, consisting of nodes (atoms) and edges (atomic
bonds), as shown in figure 1.11.

 Applying GNNs to these structures can, in certain circumstances, outperform tra-
ditional “fingerprint” methods for determining the properties of a molecule. These
traditional methods involve the creation of features by domain experts to capture a
molecule’s properties, such as interpreting the presence or absence of certain mole-
cules or atoms [10]. GNNs learn new data-driven features that can be used to group
certain molecules together in new and unexpected ways or even to propose new
molecules for synthesis. This is extremely important for predicting whether a chem-
ical is toxic or safe for use or whether it has some downstream effects that can affect

Pins

Boards

DogsPuppies Paws

Figure 1.10 A bipartite graph that is like the Pinterest graph. Nodes in this case are the pins and 
boards. 
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disease progression. Therefore, GNNs have shown themselves to be incredibly use-
ful in the field of drug discovery. 

 Drug discovery, especially for GNNs, can be understood as a graph prediction
problem. Graph prediction tasks are those that require learning and predicting prop-
erties about the entire graph. For drug discovery, the aim is to predict properties
such as toxicity or treatment effectiveness (discriminative) or to suggest entirely new
graphs that should be synthesized and tested (generative). To suggest these new
graphs, drug discovery methods often combine GNNs with other generative models
such as variational graph autoencoders (VGAEs), as shown, for example, in figure 1.12.
We’ll describe VGAEs in more detail in chapter 5 and show how we can use these to
predict molecules. 
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Figure 1.11 In this molecule, we can see 
individual atoms as nodes and the atomic 
bonds as edges.
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Figure 1.12 A GNN system used to predict new molecules [11]. The workflow here starts on the left with a 
representation of a molecule as a graph. In the middle parts of the figure, this graph representation is transformed 
via a GNN into a latent representation. The latent representation is then transformed back to the molecule to 
ensure that the latent space can be decoded (right).
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1.3.3 Mechanical reasoning

We develop rudimentary intuition about mechanics and physics of the world around
us at a remarkably young age and without any formal training in the subject. We don’t
need to write down a set of equations to know how to catch a bouncing ball. We don’t
even have to be in the presence of a physical ball. Given a series of snapshots of a
bouncing ball, we can predict reasonably well where the ball is going to end up. 

 While these problems might seem trivial for us, they are critical for many physical
industries, including manufacturing and autonomous driving. For example, autono-
mous driving systems need to anticipate what will happen in a traffic scene consisting
of many moving objects. Until recently, this task was typically treated as a problem of
computer vision. However, more recent approaches have begun to use GNNs [12].
These GNN-based methods demonstrate that including relational information, such
as how limbs are connected, can enable algorithms to develop physical intuition about
how a person or animal moves with higher accuracy and less data. 

 In figure 1.13, we give an example of how a body can be thought of as a “mechani-
cal” graph. The input graphs for these physical reasoning systems have elements that
reflect the problem. For instance, when reasoning about a human or animal body, a
graph could consist of nodes that represent points on the body where limbs connect.
For systems of free bodies, the nodes of a graph could be individual objects such as
bouncing balls. The edges of the graph then represent the physical relationship (e.g.,
gravitational forces, elastic springs, or rigid connections) between the nodes. Given
these inputs, GNNs learn to predict future states of a set of objects without explicitly
calling on physical/mechanical laws [13]. These methods are a form of edge prediction;
that is, they predict how the nodes connect over time. Furthermore, these models
have to be dynamic to account for the temporal evolution of the system. We consider
these problems in detail in chapter 6.

1.4 When to use a GNN?
Now that we’ve explored real-world applications of GNNs, let’s identify some underly-
ing characteristics that make problems suitable for graph-based solutions. While the
cases of the previous section clearly involved data that was naturally modeled as a

Figure 1.13 A graph representation of a mechanical body, 
taken from Sanchez-Gonzalez [13]. The body’s segments 
are represented as nodes, and the mechanical forces 
binding them are edges.
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graph, it’s crucial to recognize that GNNs can also be effectively applied to problems
where the graph-like nature may not be immediately obvious.

 So, instead of simply stating that GNNs are useful for graph problems, this section
will help you recognize patterns and relationships within your data that could benefit
from graph-based modeling, even if those relationships aren’t immediately apparent.
Essentially, there are three types of criteria for identifying GNN problems: implicit
relationships and interdependencies; high dimensionality and sparsity; and complex
nonlocal interactions. 

1.4.1 Implicit relationships and interdependencies

Graphs are versatile data structures that can model a wide range of relationships.
Even when a problem doesn’t initially appear to be graph-like, even if your dataset is
tabular, it’s beneficial to explore whether implicit relationships or interdependencies
might exist that could be represented explicitly. Implicit relationships are connections
that aren’t immediately documented or obvious within the data but can still play a sig-
nificant role in understanding the underlying patterns and behaviors.

KEY INDICATORS

To determine if your problem might benefit from modeling implicit relationships
with graphs, consider whether there are hidden or indirect connections between enti-
ties in your dataset. For example, in customer behavior analysis, customers may appear
as independent entities in a tabular dataset containing their purchases, demograph-
ics, and other details. However, they could be connected through social media influ-
ence, peer recommendations, or shared purchasing patterns, forming an underlying
network of interactions.

 Another indicator is the presence of entities that share common attributes or
activities without a direct or documented relationship. In the case of investors, for
example, two or more investors may not have any formal connection but might fre-
quently co-invest in the same companies under similar conditions. Such patterns of
co-investment could indicate a shared strategy or influence. In this scenario, a graph
representation can be created where nodes represent individual investors, and edges
are formed between nodes when two or more investors co-invest in the same company.
Additional attributes, such as investment size, timing, or the types of companies invested
in can be added to nodes or edges, allowing GNNs to identify patterns, trends, or even
potential collaboration opportunities.

 Additionally, consider whether the data involves entities that are interconnected
through shared references or co-occurrence patterns. Document and text data may
not immediately suggest a graph structure, but if documents cite each other or share
common topics or authors, they can be represented as nodes in a graph, with edges
reflecting these relationships. Similarly, terms within documents can form co-occur-
rence networks, which are useful for tasks such as keyword extraction, document clas-
sification, or topic modeling.
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 By identifying these key indicators in your data, you can uncover hidden or implicit
relationships that can be represented explicitly through graphs. Such representa-
tions allow for more advanced analyses using GNNs, which can effectively capture and
model these relationships, leading to more accurate predictions and deeper insights
into the data.

1.4.2 High dimensionality and sparsity

Graph-based models are particularly effective in handling high-dimensional data
where many features may be sparse or missing. These models excel in situations where
there are underlying structures connecting sparse entities, allowing for more mean-
ingful analysis and improved performance.

KEY INDICATORS

To determine if your problem involves high-dimensional and sparse data suitable
for GNNs, consider whether your dataset contains numerous entities with limited
direct interactions or relationships. For example, in recommender systems, user-
item interaction data may appear tabular, but it’s inherently sparse—most users only
interact with a small subset of the available items. By representing users and items as
nodes and representing their interactions (e.g., purchases or clicks) as edges, GNNs
can exploit network effects to make more accurate recommendations. These models
can also address the cold-start problem by uncovering both explicit and implicit rela-
tionships, leading to better performance in recommending new items to users or
engaging new users with existing items.

 Another indicator that your problem may be suitable for graph-based models is
when the data represents entities that are sparsely connected but share significant
characteristics. In drug discovery, for example, molecules are represented as graphs,
with atoms as nodes and chemical bonds as edges. This representation captures the
inherent sparsity of molecular structures, where most atoms form only a few bonds,
and large portions of the molecule may be distant from each other in the graph. Tra-
ditional machine learning methods often struggle to predict properties of new mole-
cules due to this sparsity, as they don’t account for the full structural context.

 Graph-based models, particularly GNNs, overcome these challenges by capturing
both local atomic environments and global molecular structures. GNNs learn hierar-
chical features from fine-grained atomic interactions to broader molecular properties,
and their ability to remain invariant to the ordering of atoms ensures consistent pre-
dictions. By using the graph structure of molecules, GNNs make accurate predictions
from sparse, connected data, thereby accelerating the drug discovery process.

 By recognizing these key indicators in your data, you can identify situations where
graph-based models can effectively handle high-dimensional and sparse datasets. Repre-
senting such data as graphs allows GNNs to capture and use underlying structures,
resulting in more accurate predictions and deeper insights across various applications.
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1.4.3 Complex, nonlocal interactions

Certain problems require understanding how distant elements in a dataset influence
each other. In these cases, GNNs provide a framework to capture these complex inter-
actions, where the predicted value or label of a particular data point depends not just
on the features of its immediate neighbors but also on those of other related data
points. This capability is especially useful when relationships extend beyond direct
connections to involve multiple levels or degrees of separation.

 However, some standard GNNs, which rely primarily on local message passing, may
struggle to capture long-range dependencies effectively. Advanced architectures or
modifications, such as those incorporating global attention, nonlocal aggregation, or
hierarchical message-passing, can better address these challenges [14].

KEY INDICATORS

To determine if your problem involves complex, nonlocal interactions suitable for GNNs,
consider whether the outcome or behavior of one entity depends on the attributes or
actions of entities that aren’t directly connected to it but may be indirectly connected
through other entities. For example, in supply chain optimization, a delay in one
supplier may not only affect its immediate downstream customers but could cascade
through multiple levels of the network, influencing distributors and final consumers.

 Another indicator is whether the problem involves scenarios where information,
influence, or effects propagate through a network over time. In healthcare and epide-
miology, for instance, a disease outbreak might spread from a small cluster of patients
through their interactions with shared healthcare providers, common environments,
or overlapping social networks. Such propagation requires an approach that captures
the indirect transmission pathways of information or effects.

 To close this section, in determining whether your problem is a good candidate for
a GNN, ask yourself these questions:

 Are there implicit relationships or interdependencies in my data that I could
model?

 Do the interactions between entities exhibit complex, nonlocal dependencies
that go beyond immediate connections?

 Is the data high-dimensional and sparse, with a need to capture underlying
relational structures?

If the answer to any of these questions is yes, consider framing your problem as a
graph and applying GNNs to unlock new insights and predictive capabilities.

1.5 Understanding how GNNs operate
In this section, we’ll explore how GNNs work, starting from the initial collection of
raw data to the final deployment of trained models. We’ll examine each step, high-
lighting the processes of data handling, model building, and the unique message-
passing technique that sets GNNs apart from traditional deep learning models. 
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1.5.1 Mental model for training a GNN

Our mental model covers the data sourcing, graph representation, preprocessing, and
model development workflow. We start with raw data and end up with a trained GNN
model and its outputs. Figure 1.14 illustrates and visualizes topics related to these
stages, annotated with the chapters in which these topics appear.

While not all workflows include every step or stage of this process, most will incor-
porate at least some elements. At different stages of a model development project,
different parts of this process will typically be used. For example, when training a
model, data analysis and visualization may be needed to make design decisions, but
when deploying a model, it may only be necessary to stream raw data and quickly
preprocess it for ingestion into a model. Though this book touches on the earlier
stages in this mental model, the bulk of the book is focused on how to train differ-
ent types of GNNs. When the other topics are discussed, they serve to support this
main focus.

 The mental model shows the core tasks of applying GNNs to machine learning
problems, and we’ll be returning to this process repeatedly throughout the rest of the
book. Let’s examine this diagram from end to end. 

Graph Representations (ch. 2)

Preprocessed
Data (ch. 8)

Scaling Training for
Large Data (ch. 7)

Training
Loop (ch. 3–7)

Node Embeddings (ch. 2)

Trained Model

Untrained Model

Structural

Data Sources (ch. 8)

Node Features

Edge Features

Figure 1.14 Mental model of the GNN project. We start with raw data, which is transformed into a graph data 
model that can be stored in a graph database or used in a graph processing system. From the graph processing 
system (and some graph databases), exploratory data analysis and visualization can be done. Finally, for graph 
machine learning, data is preprocessed into a form that can be submitted for training.
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 The first step in training a GNN is structuring this raw data into a graph format, if it isn’t
already. This requires deciding which entities in the data to represent as nodes and edges,
as well as determining the features to assign to them. Decisions must also be made about
data storage—whether to use a graph database, processing system, or other formats.

 For machine learning, the data must be preprocessed for training and inference,
involving tasks such as sampling, batching, and splitting the data into training, valida-
tion, and test sets. Throughout this book, we use PyTorch Geometric (PyG), which
offers specialized classes for preprocessing and data splitting while preserving the graph’s
structure. Preprocessing is covered in most chapters, with more in-depth explanations
available in appendix B.

 After processing the data, we can then move on to the model training. In this
book, we cover several architectures and training types:

 Chapters 2 and 3 discuss convolutional GNNs, where we first use a GCN layer to
produce graph embeddings (chapter 2) and then train a full GCN and Graph-
SAGE models (chapter 3).

 Chapter 4 explains graph attention networks (GATs), which adds attention to
our GNNs. 

 Chapter 5 introduces GNNs for unsupervised and generative problems, where
we train and use a variational graph autoencoder (VGAE).

 Chapter 6 then explores the advanced concept of spatiotemporal GNNs, based on
graphs that evolve over time. We train a neural relational inference (NRI) model,
which combines an autoencoder structure with a recurrent neural network. 

Most of the examples provided for the GNNs mentioned so far are illustrated
with code examples which use small-scale graphs that can fit into memory on a
laptop or desktop computer. 

 In chapter 7, we delve into strategies for handling data that exceeds the process-
ing capacity of a single machine. 

 In chapter 8, we close with some considerations for graph and GNN projects,
such as practical aspects of working with graph data, as well as how to convert
nongraph data into a graph format. 

1.5.2 Unique mechanisms of a GNN model

Although there are a variety of GNN architectures at this point, they all tackle the
same problem of dealing with graph data in a way that is permutation invariant. They
do this via encoding and exchanging information across the graph structure during
the learning process.

 In a conventional neural network, we first need to initialize a set of parameters and
functions. These include the number of layers, the size of the layers, the learning rate,
the loss function, the batch size, and other hyperparameters. (These are all treated in
detail in other books on deep learning, so we assume you’re familiar with these
terms.) Once we’ve defined these features, we then train our network by iteratively
updating the weights of the network, as shown in figure 1.15.
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Explicitly, we perform the following steps:

1 Input our data.
2 Pass the data through neural network layers that transform the data according

to the parameters of the layer and an activation rule. 
3 Output a representation from the final layer of the network. 
4 Backpropagate the error, and adjust the parameters accordingly. 
5 Repeat these steps a fixed number of epochs (the process by which data is passed

forward and backward to train a neural network).

For tabular data, these steps are exactly as listed, as shown in figure 1.16. For graph-
based or relational data, these steps are similar except that each epoch relates to one
iteration of message passing, which is described in the next subsection. 

1.5.3 Message passing

Message passing, which is touched on throughout the book, is a central mechanism
in GNNs that enables nodes to communicate and share information across a graph
[15]. This process allows GNNs to learn rich, informative representations of graph-
structured data, which is essential for tasks such as node classification, link predic-
tion, and graph-level prediction. Figure 1.17 illustrates the steps involved in a typi-
cal message-passing layer.

 The message-passing process begins with the Input (step 1) of the initial graph,
where every node and edge have their own features. In the Collect step (step 2), each
node gathers information from its immediate neighbors—these pieces of information
are referred to as “messages.” This step ensures that each node has access to the fea-
tures of its neighbors, which are crucial for understanding the local graph structure.

5. Repeat for a

number of training

loops (epochs).

1. Input data. 3. Output a representation

from the final layer.

2. Pass the data through

neural network layers.

4. Backpropagate the error, and adjust the parameters accordingly.

Figure 1.15 Process for training a GNN, which is similar to training most other deep learning models
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Figure 1.16 Comparison of (simple) non-GNN (above) and GNN (below). GNNs have a layer that distributes data 
among its vertices.

( )( )

1. initial graphInput
with node, edges,

and features.

2. all featuresCollect
from neighboring nodes,

known as messages, for

each node.

3. messagesAggregate
using invariant

functions such as sum,

max, or mean.

4. messagesTransform
using a neural network to

create new node features.

5. all featuresUpdate
in the graph with new

node features.

Figure 1.17 Elements of our message passing layer. Each message passing layer consists of an aggregation, a 
transformation, and an update step.
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Next, in the Aggregate step (step 3), the collected messages from neighboring nodes
are combined using an invariant function, such as sum, mean, or max. This aggrega-
tion consolidates the information from a node’s neighborhood into a single vector,
capturing the most relevant details about its local environment.

 In the Transform step (step 4), the aggregated messages are processed by a neural
network to produce a new representation for each node. This transformation allows
the GNN to learn complex interactions and patterns within the graph by applying
nonlinear functions to the aggregated information.

 Finally, during the Update step (step 5), the features of each node in the graph are
replaced or updated with these new representations. This completes one round of
message passing, incorporating information from neighboring nodes to refine each
node’s features.

 Each message-passing layer in a GNN allows nodes to gather information from
nodes that are further away, or more “hops” away, in the graph. Repeating these steps
over multiple layers enables the GNN to capture more complex dependencies and
long-range interactions within the graph.

 By using message passing, GNNs efficiently encode the graph structure and data
into useful representations for a variety of downstream tasks. Advanced architectures,
such as those incorporating global attention or hierarchical message passing, further
enhance the model’s ability to capture long-range dependencies across the graph,
enabling more robust performance on diverse applications.

Summary
 Graph neural networks (GNNs) are specialized tools for handling relational, or

relationship-centric, data, particularly in scenarios where traditional neural net-
works struggle due to the complexity and diversity of graph structures. 

 GNNs have found significant applications in areas such as recommendation
engines, drug discovery, and mechanical reasoning, showcasing their versatility in
handling large and complex relational data for enhanced insights and predictions.

 Specific GNN tasks include node prediction, edge prediction, graph predic-
tion, and graph representation through embedding techniques.

 GNNs are best used when data is represented as a graph, indicating a strong empha-
sis on relationships and connections between data points. They aren’t ideal for indi-
vidual, standalone data entries where relational information is insignificant.

 When deciding if a GNN solution is a good fit for your problem, consider cases
that have characteristics such as implicit relationships, high-dimensionality,
sparsity, and complex nonlocal interactions. By understanding these fundamen-
tals, practitioners can evaluate the suitability of GNNs for their specific prob-
lems, implement them effectively, and recognize their tradeoffs and limitations
in real-world applications.
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 Message passing is a core mechanism of GNNs, which enables them to encode
and exchange information across a graph’s structure, allowing for meaningful
node, edge, and graph-level predictions. Each layer of a GNN represents one
step of message passing, with various aggregation functions to combine mes-
sages effectively, providing insights and representations useful for machine
learning tasks.



Graph embeddings
Graph embeddings are essential tools in graph-based machine learning. They trans-
form the intricate structure of graphs—be it the entire graph, individual nodes, or
edges—into a more manageable, lower-dimensional space. We do this to compress
a complex dataset into a form that’s easier to work with, without losing its inherent
patterns and relationships, the information to which we’ll apply a graph neural net-
work (GNN) or other machine learning method.

This chapter covers
 Exploring graph embeddings and their 

importance

 Creating node embeddings using non-GNN 
and GNN methods

 Comparing node embeddings on a semi-
supervised problem

 Taking a deeper dive into embedding 
methods
30
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 Graphs, as we’ve learned, encapsulate relationships and interactions within net-
works, whether they’re social networks, biological networks, or any system where enti-
ties are interconnected. Embeddings capture these real-life relationships in a compact
form, facilitating tasks such as visualization, clustering, or predictive modeling.

 There are numerous strategies to derive these embeddings, each with its unique
approach and application: from classical graph algorithms that use the network’s
topology, to linear algebra techniques that decompose matrices representing the
graph, and more advanced methods such as GNNs [1]. GNNs stand out because
they can integrate the embedding process directly into the learning algorithm itself.

 In traditional machine learning workflows, embeddings are generated as a sepa-
rate step, serving as a dimensionality-reduction technique in tasks such as regression
or classification. However, GNNs merge embedding generation with the model’s learn-
ing process. As the network processes inputs through its layers, the embeddings are
refined and updated, making the learning phase and the embedding phase insepara-
ble. This means that GNNs learn the most informative representation of the graph
data during training time. 

 Using graph embeddings can significantly enhance your data science and machine
learning projects, especially when dealing with complex networked data. By capturing
the essence of the graph in a lower-dimensional space, embeddings make it feasible to
apply a variety of other machine learning techniques to graph data, opening up a
world of possibilities for analysis and model building.

 In this chapter, we begin with an introduction to graph embeddings and a case
study on a graph of political book purchases. We start with Node2Vec (N2V) to estab-
lish a baseline with a non-GNN approach, guiding you through its practical applica-
tion. In section 2.2, we shift to GNNs, offering a hands-on introduction to GNN-
based embeddings, including setup, preprocessing, and visualization. Section 2.3 pro-
vides a comparative analysis of N2V and GNN embeddings, highlighting their appli-
cations. The chapter then rounds off with a discussion of the theoretical aspects of
these embedding methods, with a special focus on the principles behind N2V and
the message-passing mechanism in GNNs. The process we take in this chapter is illus-
trated in figure 2.1.

NOTE Code from this chapter can be found in notebook form at the GitHub
repository (https://mng.bz/qxnE). Colab links and data from this chapter
can be accessed in the same location.

https://mng.bz/qxnE
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2.1 Creating embeddings with Node2Vec
Understanding the relationships within a network is a core task in many fields, from
social network analysis to biology and recommendation systems. In this section, we’ll
explore how to create node embeddings using Node2Vec (N2V), a technique inspired
by Word2Vec from natural language processing (NLP) [2]. N2V captures the context
of nodes within a graph by simulating random walks, allowing us to understand the
neighborhood relationships between nodes in a low-dimensional space. This approach
is effective for identifying patterns, clustering similar nodes, and preparing data for
machine learning tasks.

 To make this process accessible, we’ll use the Node2Vec Python library, which is
beginner-friendly, although it may be slower on larger graphs. N2V helps create
embeddings that capture the structural relationships between nodes, which we can
then visualize to uncover insights about the graph’s structure. Our workflow involves
several steps:

1 Load data and set N2V parameters. We start by loading our graph data and initial-
izing N2V with specific parameters to control the random walks, such as walk
length and the number of walks per node.

2 Create embeddings. N2V generates node embeddings by performing random
walks on the graph, effectively summarizing each node’s local neighborhood
into a vector format.

3 Transform embeddings. The resulting embeddings are saved and then trans-
formed into a format suitable for visualization.

Preprocessing

for Embedding

(2.1)

Node2Vec

Embedding

(2.1)

GCN

Embedding

(2.2.1)

1. Preprocess the
Political Books dataset
for embedding.

2. Use N2V and GCN to
create embeddings from
the preprocessed data.

3. Prepare the N2V
embeddings and the GCN
embeddings for semi-
supervised classification.

4. Embeddings are used as
features in a random
forest classifier (tabular
features) and a GCN
classifier (node features).

Random

Forest

Classifier

(2.3.2)

GCN

Classifier

(2.3.3)

Political Books Dataset

Preprocessing

for Classification

(2.3.1)

Figure 2.1 Summary of 
process and objectives in 
chapter 2
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4 Visualize embeddings in two dimensions. We use UMAP, a dimensionality reduction
technique, to project these embeddings into two dimensions, making it easier
to visualize and interpret the results.

Our data is the Political Books dataset, which comprises books (nodes) connected by
frequent co-purchases on Amazon.com during the 2004 US election period (edges)
[3]. Using this dataset provides a compelling example of how N2V can reveal underly-
ing patterns in co-purchasing behavior, potentially reflecting broader ideological
groupings among book buyers [4]. Table 2.1 provides key information about the Polit-
ical Books graph.

The Political Books dataset contains the following:

 Nodes—Represent books about US politics sold by Amazon.com.
 Edges—Indicate frequent co-purchasing by the same buyers, as suggested by

Amazon’s “customers who bought this book also bought these other books”
feature.

In figure 2.2, books are shaded based on their political alignment—darker shade for
liberal, lighter shade for conservative, and striped for neutral. The categories were
assigned by Mark Newman through a qualitative analysis of book descriptions and
reviews posted on Amazon.

 This dataset, compiled by Valdis Krebs and available through the GNN in Action
repository (https://mng.bz/qxnE) or the Carnegie Mellon University website (https://
mng.bz/mG8M), contains 105 books (nodes) and 441 edges (co-purchases). If you
want to learn more about the background of this dataset, Krebs has written an article
with this information [4].

 Using N2V, we aim to explore the structure of this collection of books, uncovering
insights based on political leanings and the potential associations between different
book categories. By visualizing the embeddings created by N2V, we can gain a better
understanding of how books are grouped and which ones might share a common
audience, providing valuable insights into consumer behavior during a politically
charged period.

Table 2.1 Overview of the Political Books dataset 

Books in the political genre co-purchased on Amazon.com

Number of nodes (books) 105

Left-leaning nodes 41.0%

Right-leaning nodes 46.7%

Neutral nodes 12.4%

Number of edges
Edges represent the prevalence of a co-purchase between two books.

441

https://mng.bz/qxnE
https://mng.bz/mG8M
https://mng.bz/mG8M
https://mng.bz/mG8M
http://Amazon.com
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From the visualization, note that the data is already clustered in a logical way. This is
thanks to the Kamada-Kawai algorithm graph algorithm, which exploits the topological
data only without the metadata and is useful for visualizing the graph. This graph visu-
alization technique positions nodes in a way that reflects their connections, aiming for
an arrangement where closely connected nodes are near each other but less con-
nected nodes are farther apart. It achieves this by treating the nodes like points con-
nected by springs, iteratively adjusting their positions until the “tension” in the springs
is minimized. This results in a layout that naturally reveals clusters and relationships
within the graph based purely on its structure.

Figure 2.2 Graph visualization of the Political Books dataset. Right-leaning books (nodes) are in a lighter shade 
and are clustered in the top half of the figure, left-leaning are darker shaded circles and clustered in the lower half 
of the figure, and neutral political stance are dark squares and appear in the middle. When two nodes are connected, 
it indicates that they have been purchased together frequently on Amazon.com.
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 For the Political Books dataset, the Kamada-Kawai algorithm helps us visualize
books (nodes) based on how often they are co-purchased on Amazon, without using
any external information such as political alignment or book titles. This gives us an
initial view of how books are grouped together by buying behavior. In the next steps,
we’ll use methods such as N2V to create embeddings that capture more detailed pat-
terns and further distinguish different book groups.

2.1.1 Loading data, setting parameters, and creating embeddings

We use the Node2Vec and NetworkX libraries for our first hands-on encounter with
graph embeddings. After installing these packages using pip, we load our dataset’s
graph data, which is stored in .gml format (Graph Modeling Language, GML), using
the NetworkX library and generate the embeddings with the Node2Vec library.

 GML is a simple, human-readable plain text file format used to represent graph struc-
tures. It stores information about nodes, edges, and their attributes in a structured way,
making it easy to read and write graph data. For instance, a .gml file might contain a list
of nodes (e.g., books in our dataset) and edges (connections representing co-purchases)
along with additional properties such as labels or weights. This format is widely used for
exchanging graph data between different software and tools. By loading the .gml file
with NetworkX, we can easily manipulate and analyze the graph in Python.

 In the Node2Vec library’s Node2Vec function, we can use the following parameters
to specify the calculations done and the properties of the output embedding: 

 Size of the embedding (dimensions)—Think of this as how detailed each node’s
profile is, as in how many different traits you’re noting down. The standard
detail level is 128 traits, but you can tweak this based on how complex you want
each node’s profile to be.

 Length of each walk (Walk Length)—This is about how far each random walk
through your graph goes, with 80 steps being the usual journey. If you want to
see more of the neighborhood around a node, increase this number.

 Number of walks per node (Num Walks)—This tells us how many times we’ll take a
walk starting from each node. Starting with 10 walks gives a good overview, but
if you want a fuller picture of a node’s surroundings, consider going on more
walks.

 Backtracking control (Return Parameter, p)—This setting helps decide if our walk
should circle back to where it’s been. Setting it at 1 keeps things balanced, but
adjusting it can make your walks more or less exploratory.

 Exploration Depth (In-Out Parameter, q)—This one’s about choosing between tak-
ing in the broader neighborhood scene (e.g., a breadth-first search with q
greater than 1) or diving deep into specific paths (e.g., a depth-first search with
q less than 1), with 1 being a mix of both.

Adjust these settings based on what you’re looking to understand about your nodes
and their connections. Want more depth? Tweak the exploration depth. Looking for
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broader context? Adjust the walk length and the number of walks. In addition, keep
in mind that the size of your embeddings should match the level of detail you need. In
general, it’s a good idea to try different combinations of these parameters to see the
effect on the embeddings. 

 For this exercise, we’ll use the first four parameters. Deeper details on these
parameters are found in section 2.4.

 The code in listing 2.1 begins by loading the graph into a variable called books_
graph, using the read_gml method from the NetworkX library. Next, a N2V model is
initialized with the loaded graph. This model is set up with specific parameters: it will
create 64-dimensional embeddings for each node, use walks of 30 steps long, perform
200 walks starting from each node to gather context, and run these operations in par-
allel across four workers to speed up the process.

 The N2V model is then trained with additional parameters defined in the fit
method. This involves setting a context window size of 10 nodes around each target
node to learn the embeddings, considering all nodes at least once (min_count=1),
and processing four words (nodes, in this context) each time during training.

 Once trained, we access the node embeddings using the model’s wv method
(reflecting its NLP heritage, wv stands for word vectors). For our downstream tasks, we
map each node to its embedding using a dictionary comprehension.

import NetworkX as nx
from Node2Vec import Node2Vec
books_graph = nx.read_gml('PATH_TO_GML_FILE')  
node2vec = Node2Vec(books_graph, dimensions=64,
 walk_length=30, num_walks=200, workers=4)  
model = node2vec.fit(window=10, min_count=1,\
batch_words=4)  
embeddings = {str(node): model.wv[str(node)]\
 for node in gml_graph.nodes()}  

2.1.2 Demystifying embeddings

Let’s explore what these embeddings are and why they are valuable. An embedding is a
dense numerical vector that represents the identity of a node, edge, or graph in a way
that captures essential information about its structure and relationships. In our con-
text, an embedding created by N2V captures a node’s position and neighborhood
within the graph using topological information. This means it summarizes how the
node is connected to others, effectively capturing its role and importance in the net-
work. Later, when we use GNNs to create embeddings, they will also encapsulate the
node’s features, providing an even richer representation that includes both structure
and attributes. We get deeper into theoretical aspects of embeddings in section 2.4. 

Listing 2.1 Generating N2V embeddings

Loads the graph data from a 
GML file into a NetworkX 
graph object

Initializes the N2V model 
with specified parameters 
for the input graph

Trains the N2V model

Extracts and stores the node embeddings 
generated by the N2V model in a dictionary
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 These embeddings are powerful because they transform complex, high-dimensional
graph data into a fixed-size vector format that can be easily used in various analyses
and machine learning tasks. For example, they allow us to perform exploratory data
analysis by revealing patterns, clusters, and relationships within the graph. Beyond
this, embeddings can be directly used as features in machine learning models, where
each dimension of the vector represents a distinct feature. This is particularly useful
in applications where understanding the structure and connections between data
points, such as in social networks or recommendation systems, can significantly improve
model performance.

 To illustrate, consider the node representing the book Losing Bin Laden in our
Political Books dataset. Using the command model.wv['Losing Bin Laden'], we
retrieve its dense vector embedding. This vector, shown in figure 2.3, captures various
aspects of the book’s role within the network of co-purchased books, providing a com-
pact, informative representation that can be used for further analysis or as input to
other models.

These embeddings can be used for exploratory data analysis to see the patterns and
relationships in a graph. However, their usage extends further. One common applica-
tion is to use these vectors as features in a machine learning problem that uses tabular
data. In that case, each element in our embedding array will become a distinct feature
column in the tabular data. This can add a rich representation of each node to com-
plement other attributes in model training. In the next section, we’ll look at how to
visualize these embeddings to gain deeper insights into the patterns and relationships
they represent.

Figure 2.3 Extracting the embedding for the node associated with the political book Losing 
Bin Laden. The output is a dense vector represented as a Python list.
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2.1.3 Transforming and visualizing the embeddings

Visualization methods such as Uniform Manifold Approximation and Projection
(UMAP) are powerful tools for reducing high-dimensional datasets into lower-
dimensional space [5]. UMAP is particularly effective for identifying inherent clusters
and visualizing complex structures that are difficult to perceive in high-dimensional
data. Compared to other methods, such as t-SNE, UMAP excels in preserving both
local and global structures, making it ideal for revealing patterns and relationships
across different scales in the data.

 While N2V generates embeddings by capturing the network structure of our
data, UMAP takes these high-dimensional embeddings and maps them onto a lower-
dimensional space (typically two or three dimensions). This mapping aims to keep
similar nodes close together while also preserving broader structural relationships,
providing a more comprehensive visualization of the graph’s topology. After obtaining
our N2V embeddings and converting them into a numerical array, we initialize the
UMAP model with two components to project our data onto a 2D plane. By carefully
selecting parameters such as the number of neighbors and minimum distance, UMAP
can balance between revealing fine-grained local relationships and maintaining global
distances between clusters.

 By using UMAP, we gain a more accurate and interpretable visualization of our
graph embeddings as shown in the following listing, allowing us to explore and ana-
lyze patterns, clusters, and structures more effectively than with traditional methods
such as t-SNE.

node_embeddings = [embeddings[str(node)] \
for node in gml_graph.nodes()]  
node_embeddings_array = np.array(node_embeddings)  

umap_model = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, \
random_state=42)
umap_features = umap_model.fit_transform\
(node_embeddings_array) 

plt.scatter(umap_features[:, 0], \
umap_features[:, 1], color=node_colors, alpha=0.7) 

The resultant figure 2.4 encapsulates the political book graph’s embeddings as distilled
by N2V and subsequently visualized through UMAP. The nodes appear in different
shades according to their political alignment. The visualization unfolds a discernible
structure, with potential clusters that correspond to the various political leanings.

 You might wonder why we don’t just reduce the dimensions of the N2V embeddings
from 64 to 2 and visualize them directly, bypassing UMAP altogether? In listing 2.3, we

Listing 2.2 Visualizing the embeddings using UMAP 

Transforms the embeddings 
into a list of vectors for UMAP

Initializes and fits UMAP

Plots the nodes with 
UMAP embeddings and 
color by their value
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show this approach, applying a 2D N2V transformation directly to our books_graph
object. (For more technical detail and theory of these methods, see section 2.4.) 

 The dimensions parameter is set to 2, aiming for a direct 2D representation suit-
able for immediate visualization without further dimensionality reduction. The other
parameters are kept the same.

 Once the model is fitted with the specified window and word batch settings, we
extract the 2D embeddings and store them in a dictionary keyed by the string repre-
sentation of each node. This enables a direct mapping from the node to its embed-
ding vector.

 The extracted 2D points are compiled into a NumPy array and plotted. We use the
standard Matplotlib library to create a scatterplot of these points using the prepared
color scheme to represent the political leaning of each node visually.

node2vec = Node2Vec(gml_graph, dimensions=2, \
walk_length=30, num_walks=200, workers=4)  

Listing 2.3 Visualizing 2D N2V embeddings without t-SNE

Figure 2.4 Embeddings of the Political Books dataset graph generated by N2V and visualized using UMAP. 
Shape and shading variations distinguish the three political classes.

Initializes N2V with 2D 
embeddings for visualization
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model = node2vec.fit(window=10, min_count=1,\
 batch_words=4)  

embeddings_2d = {str(node): model.wv[str(node)] \
for node in gml_graph.nodes()}  

points = np.array([embeddings_2d[node] \
for node in gml_graph.nodes()])  

plt.scatter(points[:, 0], points[:, 1], \
color=node_colors, alpha=0.7)  

The outcome shows how the books are separated by political leanings, similar to the
UMAP result, but where the books are more bunched together (see figure 2.5). The
two embeddings are then shown in figure 2.6.

Trains N2V model with specified 
window and walks settings

Maps nodes to their 
2D embeddings

Forms an array of 2D points 
for each node’s embedding

Plots the 2D embeddings 
with specified node colors

Figure 2.5 Embeddings of the Political Books dataset graph generated and visualized by N2V for two dimensions. 
Shape and shading variations distinguish the three political classes. Here, we see a similar clustering by political 
leaning as earlier in figure 2.4 but more bunched together. 
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It’s clear that both methods know to separate the books into groups based on political
leanings. N2V is less expressive in how it separates the books, bunching them together
across the two dimensions. Meanwhile, UMAP is better for spreading out the books in
two dimensions. The relevant benefit or information contained within these dimen-
sions depends on the task at hand. 

2.1.4 Beyond visualization: Applications and considerations 
of N2V embeddings

While visualizing N2V embeddings offers intuitive insights into the dataset’s structure,
their usage extends far beyond graphical representation. N2V is an embedding method
designed specifically for graphs; it captures both the local and global structural prop-
erties of nodes by simulating random walks through the graph. This process allows

Figure 2.6 Comparison of embeddings generated by N2V and t-SNE and a direct visualization of 2D Node2Vec
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N2V to create dense, numerical vectors that summarize the position and context of
each node within the overall network. 

 These embeddings can then serve as feature-rich inputs for a variety of machine
learning tasks, such as classification, recommendation, or clustering. For example, in
our Political Books dataset, embeddings could help predict a book’s political leaning
based on its co-purchase patterns or could recommend books to users with similar
political interests. They might even be used to forecast future sales based on the con-
tent of a book.

 However, it’s important to understand the nature of N2V’s learning approach,
which is transductive. Transductive learning is designed to work only with the specific
dataset it was trained on and can’t generalize to new, unseen nodes without retraining
the model. This characteristic makes N2V highly effective for static datasets where all
nodes and edges are known up front but less suitable for dynamic settings where new
data points or connections frequently appear. Essentially, N2V focuses on extracting
detailed patterns and relationships from the existing graph rather than developing a
model that can easily adapt to new data.

 While this transductive nature has its limitations, it also offers significant advan-
tages. Because N2V uses the full structure of the graph during training, it can capture
intricate relationships and dependencies that might be missed by more generalized
methods. This makes N2V particularly powerful for tasks where the complete, fixed
structure of the data is known and stable. However, to apply N2V effectively, it’s crucial
to ensure that the graph data is represented in a way that captures all relevant fea-
tures. In some cases, additional edges or nodes may need to be added to the graph to
fully represent the underlying relationships.

 For those interested in a deeper understanding of transductive models and how
N2V’s approach compares to other methods, further details are provided in section
2.4.2. That section will explore the tradeoffs between transductive and inductive
learning in greater depth [6, 7], helping you understand when each approach is
most appropriate.

 While N2V is effective for generating embeddings that capture the structure of a
fixed graph, real-world data often demands a more flexible and generalizable approach.
This need brings us to our first GNN architecture for creating node embeddings.
Unlike N2V, which is a transductive method limited to the specific nodes and edges in
the training data, GNNs can learn in an inductive manner. This means GNNs are capa-
ble of generalizing to new, unseen nodes or edges without requiring retraining on the
entire graph.

 GNNs achieve this by not only understanding the network’s complex structure but
also by incorporating node features and relationships into the learning process. This
approach allows GNNs to adapt dynamically to changes in the graph, making them
well-suited for applications where the data is continually evolving. The shift from N2V
to GNNs represents a key transition from focusing on deep analysis within a static
dataset to a broader applicability across diverse, evolving networks. This adaptability
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sets the stage for a wider range of graph-based machine learning applications that
require flexibility and scalability. In the next section, we’ll explore how GNNs go beyond
the capabilities of N2V and other transductive methods, allowing for more versatile
and powerful models that can handle the dynamic nature of real-world data.

2.2 Creating embeddings with a GNN
While N2V provides a powerful method for generating embeddings by capturing the
local and global structure of a graph, it’s fundamentally a transductive approach,
meaning it can’t easily generalize to unseen nodes or edges without retraining.
Although there have been extensions to N2V that enable it to work in inductive set-
tings, GNNs are inherently designed for inductive learning. This means they can learn
general patterns from the graph data that allow them to make predictions or to gener-
ate embeddings for new nodes or edges without needing to retrain the entire model.
This gives GNNs a significant edge in scenarios where flexibility and adaptability are
crucial.

 GNNs not only incorporate the structural information of the graph, like N2V, but
they also use node features to create richer representations. This dual capacity allows
GNNs to learn both the complex relationships within the graph and the specific char-
acteristics of individual nodes, enabling them to excel in tasks where both types of
information are important. 

 That said, while GNNs have demonstrated impressive performance across many
applications, they don’t universally outperform methods such as N2V in all cases. For
instance, N2V and other random walk-based methods can sometimes perform better
in scenarios where labeled data is scarce or noisy, thanks to their ability to work with
just the graph structure without needing additional node features.

2.2.1 Constructing the embeddings

Unlike N2V, GNNs learn graph representations and perform tasks such as node classi-
fication or link prediction simultaneously during training. Information from the
entire graph is processed through successive GNN layers, each refining the node
embeddings without requiring a separate step for their creation.

 To demonstrate how a GNN extracts features from graph data, we’ll perform a
straightforward pass-through using an untrained model to generate preliminary embed-
dings. Even without the optimization typically involved in training, this approach will
show how GNNs use message passing (explored further in section 2.4.4) to update
embeddings, capturing both the graph’s structure and its node features. When opti-
mization is added, these embeddings become tailored to specific tasks such as node
classification or link prediction.

DEFINING OUR GNN ARCHITECTURE

We initiate our process by defining a simple GCN architecture, as shown in listing 2.4.
Our SimpleGNN class inherits from torch.nn.Module and is composed of two GCN-
Conv layers, which are the building blocks of our GNN. This architecture is shown in
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s 

on 
figure 2.7, consisting of the first layer, a message passing layer (self.conv1), an acti-
vation (torch.relu), a dropout layer (torch.dropout), and a second message pass-
ing layer.

class SimpleGNN_embeddings(torch.nn.Module):
    def __init__(self, num_features, hidden_channels):  
        super(SimpleGNN, self).__init__()
        self.conv1 = GCNConv(num_features, \
hidden_channels)  
        self.conv2 = GCNConv(hidden_channels,\
 hidden_channels) 

    def forward(self, x, edge_index):  
        x = self.conv1(x, edge_index) 
        x = torch.relu(x)  
        x = torch.dropout(x, p=0.5, train=self.training)  
        x = self.conv2(x, edge_index)   
        return x  

Listing 2.4 Our SimpleGNN class 

Initializes the GNN class with input
and hidden layer sizes

First GCN 
layer from input 
features to 
hidden channels

Second GCN 
layer within the 
hidden space

Forward pass 
function define
data flow

First GCN layer 
processing

Activation function 
for nonlinearity

Dropout for regularizati
during trainingSecond GCN layer processing

Returns the final node embeddings

Activation

Message-Passing Layer

Message-Passing Layer

Dropout

Input Graph

Embedding
Figure 2.7 Architecture diagram of 
the SimpleGNN model
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Let’s talk about the architecture aspects specific to GNNs. The activation and drop-
out are common in many deep learning scenarios. The GNN layers, however, are dif-
ferent from conventional deep learning layers in a fundamental way. The core
principle that allows GNNs to learn from graph data is message passing. For each
GNN layer, in addition to updating the layer’s weights, a “message” is gathered from
every node or edge neighborhood and used to update an embedding. Essentially,
each node sends messages to its neighbors and simultaneously receives messages
from them. For every node, its new embedding is computed by combining its own
features with the aggregated messages from its neighbors, through a combination of
nonlinear transformations. 

 In this example, we’re going to be using a graph convolutional network (GCN) to
act as our message-passing GNN layers. We describe GCNs in much more detail in
chapter 3. For now, you just need to know that GCNs act as message-passing layers that
are critical in constructing embeddings. 

DATA PREPARATION

Next, we prepare our data. We’ll start with the same graph from the previous section,
books_gml, in its NetworkX form. We have to convert this NetworkX object into a tensor
form that is suitable to use with PyTorch operations. Because PyTorch Geometric
(PyG) has many functions that convert graph objects, we can do this quite simply with
data = from_NetworkX(gml_graph). Method from_NetworkX specifically translates the
edge lists and node/edge attributes into PyTorch tensors. 

 For GNNs, generating node embeddings requires initializing node features. In our
case, we don’t have any predefined node features. When no node features are avail-
able or they aren’t informative, it’s common practice to initialize the node features
randomly. A more effective approach is to use Xavier initialization, which sets the initial
node features with values drawn from a distribution that keeps the variety of activa-
tions consistent across layers. This technique ensures that the model starts with a bal-
anced representation, preventing problems such as vanishing or exploding gradients.

 By initializing data.x with Xavier initialization, we provide the GNN with a starting
point that allows it to learn meaningful node embeddings from noninformative fea-
tures. During training, the network adjusts these initial values to minimize the loss
function. When the loss function is aligned with a specific target, such as node predic-
tion, the embeddings learned from the initial random features will become tailored to
the task at hand, resulting in more effective representations. We randomize the node
features using the following:

data.x = torch.randn((data.num_nodes, 64), dtype=torch.float)
'nn.init.xavier_uniform_(data.x) '

We could have also used the embeddings from the N2V exercise to use as node fea-
tures. Recall the node_embeddings object from section 2.1.3:

node_embeddings = [embeddings[str(node)] for node in gml_graph.nodes()]
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From this, we can convert the node embedding to a PyTorch tensor object and assign
it to the node feature object, data.x:

node_features = torch.tensor(node_embeddings, dtype=torch.float) 
data.x = node_features

PASSING THE GRAPH THROUGH THE GNN
With the structure of our GNN model defined and our graph data formatted for PyG,
we proceed to the embedding generation step. We initialize our model, SimpleGNN,
specifying the number of features for each node and the size of the hidden channels
within the network. 

model = SimpleGNN(num_features=data.x.shape[1], hidden_channels=64)

Here, we specify 64 hidden channels because we want to compare the resulting embed-
dings to the ones we produced using the node2vec method, which had 64 dimensions.
Because the second GNN layer is the last layer, the output will be a 64-element vector.

 Once initialized, we switch the model to evaluation mode using model.eval().
This mode is used during inference or validation phases when we want to make pre-
dictions or assess model performance without modifying the model’s parameters. Spe-
cifically, model.eval() turns off certain behaviors specific to training, such as dropout,
which randomly deactivates some neurons to prevent overfitting, and batch normaliza-
tion, which normalizes inputs across a mini-batch. By disabling these features, the model
provides consistent and deterministic outputs, ensuring that the evaluation accurately
reflects its true performance on unseen data.

 It’s important to disable gradient computations because they’re not necessary for
the forward pass and embedding generation. So, we employ torch.no_grad(), which
ensures that the computational graph that records operations for backpropagation
isn’t constructed, preventing us from accidentally changing performance. 

 Next, we pass our node-feature matrix (data.x) and the edge index (data.edge_
index) through the model. The result is gnn_embeddings, a tensor where each row
corresponds to the embedding of a node in our graph—a numerical representation
learned by our GNN, ready for downstream tasks such as visualization or classification:

model.eval()
with torch.no_grad():
    gnn_embeddings = model(data.x, data.edge_index)

After producing these embeddings, we use UMAP to visualize them, as we did in sec-
tion 2.1.3. Since we’ve been working with PyTorch tensor data types running on a
GPU, we need to convert our embeddings to a NumPy array data type to use analysis
methods outside of PyTorch, which are done on a CPU:

gnn_embeddings_np = gnn_embeddings.detach().cpu().numpy()
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With this conversion, we can produce the UMAP calculations and visualization follow-
ing the process we used in the N2V case. The resulting scatterplot (figure 2.8) is a first
glimpse at the clusters within our graph. We add different shadings based on each
node’s label (left-, right-, or neutral-leaning) to see that similar leaning books are fairly
well grouped, given that these embeddings were constructed from topology alone. 

 Next, let’s discuss both how GNN embeddings are used and how they differ from
those produced with N2V.

Figure 2.8 Visualization of embeddings generated from passing a graph through a GNN
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2.2.2 GNN vs. N2V embeddings

Throughout this book, we predominantly use GNNs to generate embeddings because
this embedding process is intrinsic to a GNN’s architecture. While embeddings play a
pivotal role in the methodologies and applications we explore in the rest of the book,
their presence is often subtle and not always highlighted. This approach allows us to
focus on the broader concepts and applications of GNN-based machine learning with-
out getting slowed down by the technicalities. Nonetheless, it’s important to acknowl-
edge that the underlying power and adaptability of embeddings are central to the
advanced techniques and insights we get into throughout the text.

 GNN-produced node embeddings are particularly powerful because they enable
us to tackle a broad range of graph-related tasks by using their inductive nature. Induc-
tive learning allows these embeddings to generalize to new, unseen nodes or even
entirely new graphs without needing to retrain the model. In contrast, N2V embeddings
are limited to the specific graphs they were trained on and can’t easily adapt to new
data. Let’s reiterate the key ways in which GNN embeddings differ from other embed-
ding methods, such as N2V [1, 3].

ADAPTABILITY TO NEW GRAPHS

One of the critical features of GNN embeddings is their adaptability. Because GNNs
learn a function that maps node features to embeddings, this function can be applied
to nodes in new graphs without needing to be retrained, provided the nodes have sim-
ilar feature spaces. This inductive capability is particularly valuable in dynamic envi-
ronments where the graph may evolve over time or in applications where the model
needs to be applied to different but structurally similar graphs. N2V, on the other
hand, needs to be reapplied for each new graph or set of nodes. 

ENHANCED FEATURE INTEGRATION

GNNs inherently consider node features during the embedding process, allowing for
a complex and nuanced representation of each node. This integration of node fea-
tures, alongside the structural information, offers a more comprehensive view com-
pared to N2V and other methods that focus on a graph’s topology. This capability
makes GNN embeddings particularly suited for tasks where node features contain sig-
nificant additional information.

TASK-SPECIFIC OPTIMIZATION

GNN embeddings are trained alongside specific tasks, such as node classification, link
prediction, or even graph classification. Through end-to-end training, the GNN model
learns to optimize the embeddings for the task at hand, leading to potentially higher
performance and efficiency compared to using pre-generated embeddings such as
those from N2V.

 That said, while GNN embeddings offer clear advantages in terms of adaptability
and applicability to new data, N2V embeddings have their strengths, particularly in
capturing nuanced patterns within a specific graph’s structure. In practice, the
choice between GNN and N2V embeddings may depend on the specific requirements
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of the task, the nature of the graph data, and the constraints of the computational
environment.

 For tasks where the graph structure is static and well-defined, N2V might provide a
simpler and computationally efficient solution. Conversely, for dynamic graphs, large-
scale applications, or scenarios requiring the incorporation of node features, GNNs
will often be the more robust and versatile choice. Additionally, when the task itself is
not well-defined and the work is exploratory, N2V is likely faster and easier to use.

 We’ve now successfully built our first GNN embedding. This is the key first step for
all GNN models, and everything from this point will build on it. In the next section,
we give an example of some of these next steps and show how to use embeddings to
solve a machine learning problem.

2.3 Using node embeddings
Semi-supervised learning, which involves a combination of labeled and unlabeled
data, provides a valuable opportunity to compare different embedding techniques. In
this chapter, we’ll explore how GNN and N2V embeddings can be used to predict
labels when the majority of the data lacks labels.

 Our task involves the Political Books dataset (books_graph), where nodes repre-
sent political books and edges indicate co-purchase relationships. To make the pro-
cess clearer, let’s review the steps taken so far and outline our next steps, as illustrated
in figure 2.9.

Preprocessing

for Embedding

(2.1)

Node2Vec

Embedding

(2.1)

GCN

Embedding

(2.2.1)

1. Preprocess the
Political Books dataset
for embedding.

2. Use N2V and GCN to
create embeddings from
the preprocessed data.

3. Prepare the N2V
embeddings and the GCN
embeddings for semi-
supervised classification.

4. Embeddings are used as
features in a random
forest classifier (tabular
features) and a GCN
classifier (node features).

Random

Forest

Classifier

(2.3.2)

GCN

Classifier

(2.3.3)

Political Books Dataset

Preprocessing

for Classification

(2.3.1)

Figure 2.9 Overview of steps taken in chapter 2
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We began with the books_graph dataset in graph format and performed light prepro-
cessing to prepare the data for embedding. For N2V, this involved converting the data-
set from a .gml file to a NetworkX format. For the GNN-based embeddings, we converted
the NetworkX graph into a PyTorch tensor and initialized the node features using
Xavier initialization to ensure balanced variability across layers.

 After preparing the data, we generated embeddings using both N2V and GCNs.
Now, in this section, we’ll apply these embeddings to a semi-supervised classification
problem. This involves further processing to define the classification task, where
only 20% of the book labels are retained, simulating a realistic scenario with sparse
labeled data.

 We’ll use the two sets of embeddings (N2V and GCN) with two different classifiers:
a random forest classifier (to use the embeddings as tabular features) and a GCN clas-
sifier (to use the graph structure and node features). The goal is to predict the politi-
cal orientation of the books, with the remaining 80% of the labels inferred based on
the given embeddings.

2.3.1 Data preprocessing

To start, we do a little more preprocessing to our books_gml dataset (see listing 2.5).
We must format the labels in a suitable way for the learning process. Because all the
nodes are labeled, we also have to set up the semi-supervised problem by randomly
selecting the nodes from which we hide the labels.

 Nodes associated with attribute 'c' are classified as 'right', while those with 'l'
are classified as 'left'. Nodes that don’t fit these criteria, including those with neu-
tral or unspecified attributes, are categorized as 'neutral'. These classifications are
then placed into a NumPy array, labels, for optimized computational handling.

 Then, an array, indices, is created, representing the positional indexes of all nodes
within the dataset. A subset of these indices, corresponding to 20% of the total node
count, is designated as our labeled data.

 To manage the labeled and unlabeled data, Boolean masks, labelled_mask and
unlabelled_mask, are initialized and populated. The labelled_mask is set to True for
indices selected as labeled; these are the ground truth labels for corresponding nodes.
Similarly, unlabelled_mask is set to False. These masks segment the dataset for train-
ing and evaluation, ensuring that algorithms are correctly trained and validated on
the correct subsets of data.

labels = []
for node, data in gml_graph.nodes(data=True):  
    if data['value'] == 'c':
        labels.append('right')
    elif data['value'] == 'l':
        labels.append('left')
    else:  
        labels.append('neutral')

Listing 2.5 Preprocessing for semi-supervised problem

Extracts labels 
and handles 
neutral values
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labels = np.array(labels)

random.seed(52)  

indices = list(range(len(labels)))  

labelled_percentage = 0.2   

labelled_indices = random.sample(indices, \
int(labelled_percentage * len(labels)))  

labelled_mask = np.zeros(len(labels), dtype=bool)  
unlabelled_mask = np.ones(len(labels), dtype=bool)

labelled_mask[labelled_indices] = True  
unlabelled_mask[labelled_indices] = False

labelled_labels = labels[labelled_mask]  
unlabelled_labels = labels[unlabelled_mask]

label_mapping = {'left': 0, 'right': 1, 'neutral': 2}  
numeric_labels = np.array([label_mapping[label] for label in labels])

Now we transform the data for model training, as shown in listing 2.6. For the GNN-
derived embeddings, X_train_gnn and y_train_gnn are assigned arrays of embed-
dings and corresponding numeric labels filtered by a labelled_mask. This mask is a
Boolean array indicating which nodes in the graph are part of the labeled subset,
ensuring that only data points with known labels are included in the training set.

 For N2V embeddings, a similar approach is adopted with an added preprocessing
step to align the embeddings with their corresponding labels. The embeddings for
each node are aggregated into NumPy array X_n2v in the same order as the nodes
appear in the books_graph. This ensures consistency between the embeddings and
their labels, a crucial step for supervised learning tasks. Subsequently, X_train_n2v
and y_train_n2v are populated with N2V embeddings and labels, again applying the
labelled_mask to filter for the labeled data points.

X_train_gnn = gnn_embeddings[labelled_mask]  
Y_train_gnn = numeric_labels[labelled_mask]  

X_n2v = np.array([embeddings[str(node)] \
for node in gml_graph.nodes()]) 
X_train_n2v = X_n2v[labelled_mask]             
y_train_n2v = numeric_labels[labelled_mask]    

The extra alignment step for the N2V embeddings isn’t necessary for the GNN embed-
dings because GNN models inherently maintain the order of nodes as they process

Listing 2.6 Preprocessing: constructing training data

Random seed for 
reproducibility

Indices of all nodes

20% of data to 
keep as labeled

Selects a subset of indices 
to remain labeled

Initializes masks for 
labeled and unlabeled data

Updates masks

Uses masks to split the dataset

Transformed labels to numerical form

For GNN embeddings

For N2V embeddings

Ensures N2V embeddings are in 
the same order as labels
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the entire graph in a structured manner. As a result, the output embeddings from a
GNN are naturally ordered in correspondence with the input graph’s node order.

 In contrast, N2V generates embeddings through independent random walks start-
ing from each node, and the order of the resulting embeddings doesn’t necessarily
match the order of nodes in the original graph data structure. Therefore, an explicit
alignment step is required to ensure that each N2V embedding is correctly associated
with its corresponding label, as extracted from the graph. This step is critical for
supervised learning tasks where the correct matching of features (embeddings) to
labels is essential for model training and evaluation. For this task, we use the attribute
index_to_key, which contains the identifiers of the nodes in the order they are pro-
cessed and stored within the model.

2.3.2 Random forest classification

With our data prepped, we use GNN and N2V embeddings from sections 2.1 and 2.2
as input features for a RandomForestClassifier, as shown in listing 2.7. 

clf_gnn = RandomForestClassifier()  
clf_gnn.fit(X_train_gnn, y_train_gnn)

clf_n2v = RandomForestClassifier() 
clf_n2v.fit(X_train_n2v, y_train_n2v)

This approach allows us to directly compare the embeddings’ predictive power, where
we compare results in table 2.2.

For this basic classification exercise, we’ll evaluate the performance of our models
using two fundamental metrics:

 Accuracy—This metric measures the proportion of correct predictions made by
the model out of all predictions. It provides a straightforward assessment of how
often the classifier correctly identifies the political orientation of the books. For
instance, an accuracy of 84.52% means that the model correctly predicted the
orientation of the books approximately 85 times out of 100.

 F1 score—This is a more nuanced metric that balances precision and recall,
which is particularly useful in cases where the data is imbalanced—meaning the
classes aren’t equally represented. It provides a harmonic mean of precision

Listing 2.7 Preprocessing: constructing training data

Table 2.2 Classification performance 

Embedding Type Accuracy F1 Score

GNN 83.33% 82.01%

N2V 84.52% 80.72%

Classifier for GNN 
embeddings

Classifier for N2V 
embeddings
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(the number of true positive predictions divided by the total number of positive
predictions) and recall (the number of true positive predictions divided by the
total number of actual positives). A higher F1 score indicates a model’s robust
performance in correctly identifying both the presence and absence of the dif-
ferent classes, minimizing both false positives and false negatives.

The performance metrics reveal that N2V embeddings yield a slightly higher accuracy
of 84.52% when used within a RandomForestClassifier, compared to 83.33% for
GNN embeddings. However, GNN embeddings achieve a marginally better F1 score of
82.01%, compared to 80.72% for N2V embeddings. This nuanced difference under-
scores potential tradeoffs between the two embedding types: while N2V provides
slightly better overall prediction accuracy, GNN embeddings may offer a more bal-
anced performance across both the majority and minority classes.

 In general, the inductive nature of GNNs presents a robust framework for learning
node representations for graphs of many different sizes. Even on smaller graphs,
GNNs can effectively learn the underlying patterns and interactions between nodes, as
evidenced by the higher F1 score, indicating a better balance between precision and
recall in classification tasks.

 In this context, the choice between GNN and N2V embeddings might also hinge
on the specific goals of the analysis and the performance metrics of greatest interest.
If the priority is achieving the highest possible accuracy and the dataset is unlikely to
expand significantly, N2V could be the more suitable option. Conversely, if the task
values a balance between precision and recall and there’s potential for applying the
learned model to similar but new graphs, GNNs offer valuable flexibility and robust-
ness, even for smaller datasets. Having used the N2V and GNN embeddings as inputs
to a random forest model, let’s next study what happens when we use them as inputs
to a full end-to-end GNN model.

2.3.3 Embeddings in an end-to-end model

In the previous section, we used GNN and N2V embeddings as static inputs to a tradi-
tional machine learning model, namely a random forest classifier. Here, we use an
end-to-end GNN model applied to the same problem of label prediction. By end-to-end,
we mean that the embeddings will be generated while we also predict labels. This
means that the embeddings here won’t be static because, as the GNN learns, it will
update the node embeddings.

 To build this model, we’ll use the same tools as before—the books_gml dataset, and
the SimpleGNN architecture. We’ll change the GNN slightly, by adding a log softmax
activation at the end, to facilitate the output for a three-label classification problem.
We’ll also slightly modify the output of our SimpleGNN class, allowing us to observe the
embeddings as well as the predictive output. Our process includes the following: 

 Data prep
 Model/architecture modification
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 Establish the training loop
 Study performance
 Study embeddings pre-training and post-training

DATA PREP

Assuming we use the books_gml data set, the process to transform it for use within the
PyG framework remains the same. We’ll train two versions of the data: one with node
features initialized randomly, and one with node features using the N2V embeddings.

MODEL MODIFICATION

We use the same SimpleGNN class with modifications. First, in this enhanced version
of the SimpleGNN class, we extend its functionality to provide a predictive output for
each node. This is achieved by applying a log softmax activation to the embeddings
produced by the second GCN layer. The log softmax output provides a normalized
log probability distribution over the potential classes for each node for the classifica-
tion task.

 Second, we introduce dual outputs. The method returns two values: the raw
embeddings from the conv2 layer, which capture the node representations, and the
log softmax of these embeddings. For us to observe both the embedding and the pre-
dictions, we have the forward method return both. In addition to this two-layer model,
we added two layers to this architecture to have a four-layer model for comparison, as
shown in listing 2.8.

class SimpleGNN_inference(torch.nn.Module):
    def __init__(self, num_features, hidden_channels):
        super(SimpleGNN, self).__init__()
        self.conv1 = GCNConv(num_features, hidden_channels)
        self.conv2 = GCNConv(hidden_channels, hidden_channels)

    def forward(self, x, edge_index):
        # First Graph Convolutional layer
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = F.dropout(x, training=self.training)
        
        # Second Graph Convolutional layer
        x = self.conv2(x, edge_index)
        predictions = F.log_softmax(x, dim=1)   
        
        return x, predictions  

ESTABLISH THE TRAINING LOOP

We program the training loop for the GNN model in a semi-supervised learning con-
text, as shown in listing 2.9. This loop iterates over a specified number of epochs,
where an epoch represents a complete pass through the entire training dataset.

Listing 2.8 Preprocessing: Constructing training data

Predicts classes by passing 
the final conv layer through 
a log softmax 

The class returns both the 
last embedding and the 
prediction.
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Within each epoch, the model’s parameters are updated to minimize a loss function,
which quantifies the difference between the predicted outputs and the actual labels
for the nodes in the training set. For those familiar with programming deep learning
training loops, this should be very familiar. For those who could do with a quick
reminder, the following describes some of the key steps in initializing and running the
training loop:

 Optimizer initialization—The optimizer is initialized with a specific learning rate
when it’s created. For example, here we use the Adam optimizer, with an initial
learning rate of 0.01.

 Zeroing the gradients—optimizer.zero_grad() ensures that the gradients are
reset before each update, preventing them from accumulating across epochs.

 Model forward pass—The model processes the node features (data.x) and the
graph structure (data.edge_index) to produce output predictions. In semi-
supervised settings, not all nodes have labels, so the model’s output includes
predictions for both labeled and unlabeled nodes.

 Applying the training mask—out_masked = out[data.train_mask] applies a mask
to the model’s output to select only the predictions corresponding to labeled
nodes. This is crucial in semi-supervised learning, where only a subset of nodes
has known labels.

 Loss computation and backpropagation—Loss function loss_fn compares the
selected predictions (out_masked) with the true labels of the labeled nodes
(train_labels). The loss.backward() call computes the gradient of the loss
function with respect to the model parameters, which is then used to update
these parameters via optimizer.step().

 Logging—The training loop prints the loss at regular intervals (every 10 epochs
in this case) to monitor the training progress.

for epoch in range(3000):   
    optimizer.zero_grad()
   
    _, out = model(data.x, data.edge_index)  
    
    out_masked = out[data.train_mask]  
    
    loss = loss_fn(out_masked, train_labels)  
    loss.backward()
    optimizer.step()

    if epoch % 10 == 0:   
        print(f'Epoch {epoch}, Log Loss: {loss.item()}')

Listing 2.9 Training loop

Number of epochs

Passes both node features and 
edge_index to the model

Applies the training 
mask to select only 
the outputs for the 
labeled nodes

Computes the loss 
using only the labeled 
nodes

Prints the loss
every 10 epochs
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This process iteratively refines the model’s parameters to improve its predictions on
the labeled portion of the dataset, with the goal of learning a model that can general-
ize well to the unlabeled nodes and potentially to new, unseen data.

GNN RESULTS: RANDOMIZED VS. N2V NODE FEATURES

Let’s compare the classification task comparing the GNN performance from the ran-
domized node features versus the N2V node features, as shown in table 2.3.

The table summarizes the performance of different GNN models based on their accu-
racy and F1 score. It highlights that GNNs using N2V features consistently outperform
those using randomized features across all model configurations. Specifically, the
four-layer GNN with N2V features achieves the highest accuracy and F1 score, indicat-
ing the effectiveness of incorporating meaningful node representations derived from
N2V embeddings. If we had more information about specific features for the node, as
we do in chapter 3, the GNN embeddings may further improve accuracy for the GNN
model. 

RESULTS: GNN VS. RANDOM FOREST

We now compare the performance of the GNN model from this section with the ran-
dom forest model from the previous section (see table 2.4). 

Figure 2.10 visualizes the results from table 2.4. Overall, the GNN models outper-
formed the random forest models.

Table 2.3 Classification performance of the GNN model where the input graph uses different node features

Model GNN Accuracy GNN F1 Score

Two-layer, randomized features 82.27% 82.14%

Two-layer, N2V features 87.79% 88.10%

Four-layer, randomized features 86.58% 86.90%

Four-layer, N2V features 88.99% 89.29%

Table 2.4 Comparison of classification performance between the GNN model and the random forest model

Model Data Input Accuracy F1 Score

Random forest Embedding from GNN 83.33% 82.01%

Random forest Embedding from N2V 84.52% 80.72%

Two-layer simple GNN Graph with randomized node features 82.27% 82.14%

Two-layer simple GNN Graph with n2v embeddings as node features 87.79% 88.10%

Four-layer simple GNN Graph with randomized node features 86.58% 86.90%

Four-layer simple GNN Graph with n2v embeddings as node features 88.99% 89.29%
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When comparing the performance of the GNN models with the random forest
models, we can make several observations. Random forest, when trained on embed-
dings derived from GNN pass-through or N2V embeddings, achieves comparable
accuracy to the two-layer simple GNN model. However, when considering the F1
score, both GNN models outperform random forest. Notably, the four-layer simple
GNN model, especially when using N2V embeddings as features, exhibits signifi-
cantly better performance than the random forest model, showcasing higher accu-
racy and F1 score.

 This indicates that while random forest may outperform simpler GNN architec-
tures such as the two-layer model in terms of accuracy, the more complex GNN archi-
tectures demonstrate superior performance in terms of F1 score, especially when
using sophisticated node embeddings such as N2V. Therefore, the choice between
random forest and GNN should consider both accuracy and F1 score, as well as the
complexity of the model architecture and the nature of the input features, to achieve
optimal performance for the given task and dataset.

 It’s important to note that this short example didn’t extensively fine-tune either
the GNN or the random forest models. Further optimization of both types of models
could potentially lead to significant improvements in their performance. Fine-tun-
ing hyperparameters, adjusting model architectures, and optimizing training pro-
cesses could all contribute to enhancing the accuracy and F1 score of both GNNs
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Figure 2.10 Chart comparing the classification performance of the random forest with the GNN. Only 
one GNN model is outperformed by the random forest: The two-layer model trained on graph data with 
randomized node features is outperformed in terms of accuracy. 
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and random forest classifiers. Therefore, while the results presented here provide start-
ing insights into the performance on a small graph dataset, we suggest you try out the
models and experiment with performance.

2.4 Under the Hood
This section gets deeper into the theoretical foundations of graph representations
and embeddings, particularly in the context of GNNs. It emphasizes the importance
of embeddings in transforming complex graph data into lower-dimensional, manage-
able forms that retain essential information. 

 We distinguish between two primary types of learning: transductive and inductive.
Transductive methods, such as N2V, optimize embeddings specifically for the training
data, making them effective within a known dataset but less adaptable to new data. In
contrast, inductive methods, as exemplified by GNNs, enable generalization to new,
unseen data by integrating both graph structure and node features during training.
This section also examines the mechanisms behind N2V (random walk) and GNNs
(message passing). 

2.4.1 Representations and embeddings

Understanding graph representations and the role of embeddings is crucial for effec-
tively applying GNNs in machine learning. Representations convert complex graph
data into simpler, manageable forms without losing essential information, facilitating
analysis and interpretation of the underlying structures within graphs. In the context
of GNNs, representations enable the processing of graph data in a way that is compat-
ible with machine learning algorithms, ensuring that the rich and complex structures
of graphs are preserved.

 Traditional methods such as adjacency matrices and edge lists provide a founda-
tional way to represent graph structures, but they often fall short in capturing richer
information, such as node features or subtle topological details. This limitation is
where graph embeddings come into play. A graph embedding is a low-dimensional
vector representation of a graph, node, or edge that retains essential structural and
relational information. Much like reducing a high-resolution image to a compact fea-
ture vector, embeddings condense the graph’s complexity while preserving its distin-
guishing characteristics.

 Embeddings simplify data handling and open new possibilities for machine learn-
ing applications. They enable visualization of complex graphs in two or three dimen-
sions, allowing us to explore their inherent structures and relationships more
intuitively. Furthermore, embeddings serve as versatile inputs for various downstream
tasks, such as node classification and link prediction, as demonstrated in earlier sec-
tions of this chapter. By providing a bridge between raw graph data and machine
learning models, embeddings are key to unlocking the full potential of GNNs.
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THE SIGNIFICANCE OF NODE SIMILARITY AND CONTEXT

An important use of graph embeddings is to encapsulate the notion of similarity and
context within the graph. In a spatial context, proximity (or similarity) often trans-
lates to a measurable distance or angle between points. 

 For graphs, however, these concepts are redefined in terms of connections and
paths. The similarity between nodes can be interpreted through their connectivity,
that is, how many “hops” or steps it takes to move from one node to another, or the
likelihood of traversing from one node to another during random walks on the graph
(figure 2.11).

Another way to think about proximity is in terms of probability: Given two nodes
(node A and node B), what is the chance that I will encounter node B if I start to hop
from node A? In figure 2.12, if the number of hops is 1, the probability is 0, as there is
no way to reach node B from node A in one hop. However, if the number of hops is 2,

B(x2, y2)

A(x1, y1)
Distance 0

Distance 1

Distance 2

Distance 3

Distance 4

Figure 2.11 Comparison of similarity concepts: using distance on a plane (left) and using steps 
along a graph (right)

B

A

Staring from vertex A,

probabilities of encountering vertex B:

In 1 Hop: 0%

In 2 Hops: 33%

Figure 2.12 Illustrating the notion of proximity computed in terms of probability: given a 
walk from node A, the probability of encountering node B is a measure of proximity. 
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then we need to first count to see how many different possible routes there are. Let’s
also assume that no node can be encountered twice in a traversal and that each direc-
tion is equally likely. With these assumptions, there are three unique routes of 2 hops
starting from node A. Of those, only one leads to node B. Thus, the probability is one
out of three, or 33%. This probabilistic approach to measuring proximity between
nodes offers a nuanced understanding of the graph’s topology, meaning that graph
structures can be encoded within a probability space.

 The ideas explained here are relevant as we approach the topic of inductive and
transductive methods as applied to graph embeddings. Both of these methodologies
use the notion of node proximity, although in distinct ways, to generate embeddings
that capture the essence of node relationships and graph structure. Inductive meth-
ods excel in generalizing to accommodate new, unseen data, enabling models to
adapt and learn beyond their initial training set. Conversely, transductive methods
specialize in optimizing embeddings specifically for the training data itself, making
them highly effective within their learned context but less flexible when introduced
to new data.

2.4.2 Transductive and inductive methods

The way an embedding is created determines the scope of its subsequent usage. Here
we examine embedding methods that can be broadly classified as transductive and
inductive. Transductive embedding methods learn representations for a fixed set of
nodes in a single, static graph:

 These methods directly optimize individual embeddings for each node.
 The entire graph structure must be available during training.
 These methods can’t naturally generalize to unseen nodes or graphs.
 Adding new nodes requires retraining the entire model.
 Examples include DeepWalk [8], N2V, and matrix factorization approaches.
 Transductive methods allow us to reduce the scope of the prediction problem.

For transduction, we’re only concerned with the data we’re presented with. 
 These methods are computationally costly for large amounts of data.

Inductive embedding methods learn a function to generate embeddings, allowing
generalization to unseen nodes and even entirely new graphs:

 These methods learn to aggregate and transform node features and local graph
structure.

 These methods can generate embeddings for previously unseen nodes without
retraining.

 Node attributes or structural features are often used.
 These methods are more flexible and scalable for dynamic or expanding graphs.
 Examples include GraphSAGE, GCNs, and graph attention networks (GATs).
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Let’s illustrate this with two examples:

 Example 1: Email spam detection—An inductive model for email spam detection is
trained on a dataset of labeled emails (spam or not spam) and learns to gener-
alize from the training data. Once trained, the model can classify new incoming
emails as spam or not spam without needing to retrain.

Transductive wouldn’t be better in this example because models would require
retraining with every new batch of emails, making them computationally expen-
sive and impractical for real-time spam detection.

 Example 2: Semi-supervised learning for community detection in social networks—A
transductive model uses the entire graph to identify communities within a social
network. Using a combination of labeled and unlabeled nodes, the model
exploits the network in a better way: inductive models wouldn’t take full advan-
tage of the specific network structure and node interconnections because they
only process part of the data—the training set. This isn’t enough information
for accurate community detection.

Table 2.5 compares the types of graph representation we’ve learned so far, consist-
ing of representations generated by both nonembedding methods, and embedding
methods.

Table 2.5 Different methods of graph representation

Representation Description Examples

Basic data representations  Great for analytical methods that 
involve network traversal

 Useful for some node classifica-
tion algorithms

 Information provided: Node and 
edge neighbors

 Adjacency list
 Edge list
 Adjacency matrix

Transductive (shallow) 
embeddings

 Useless for data not trained on
 Difficult to scale

 DeepWalk
 N2V
 TransE
 RESCAL
 Graph factorization
 Spectral techniques

Inductive embeddings  Models can be generalized to 
new and structurally different 
graphs

 Represents data as vectors in 
continuous space

 Learns a mapping from data 
(new and old) to positions within 
the continuous space

 GNNs can be used to inductively 
generate embeddings

 Transformers
 N2V with feature concatenation
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2.4.3 N2V: Random walks across graphs

Random walk approaches construct embeddings by using random walks across the
graph. With these, the similarity between two nodes, A and B, is defined as the proba-
bility that one will encounter node B on a random graph traversal from node A (as we
described in section 2.4.1). These walks are unrestricted, with no restriction prevent-
ing a walk from backtracking or encountering the same node multiple times. 

 For each node, we perform a random walk within its neighborhood. As we per-
form more and more random walks, we begin to notice similarities in the types of
nodes we encounter. A potential mental model is exploring a city or forest. In a dis-
tinct neighborhood, for example, as we take the same streets or paths multiple times,
we begin to notice that houses have a similar style and trees have a similar species. 

 The result of a random walk method is a vector of nodes visited for each walk, with
different starting nodes. In the upcoming figure 2.13, we show some examples of how
we can walk (or search) across a graph. 

 DeepWalk is one method that creates embeddings by performing several random
walks of a fixed size for each node and calculating embeddings from each of these.
Here, any path is equally likely to occur, making the walks unbiased and meaning that
all nodes connected by an edge are equally likely to be encountered at each step. The
output for a DeepWalk on the graph in figure 2.13 might be the vector [u, s1, s3] or
the vector [u, s1, s2, s4, s5]. Each of these vectors contains the unique nodes visited in
a random walk.

Summary of terms related to transductive embedding methods
Two additional terms related to embedding methods and sometimes used inter-
changeably with it are shallow methods and encoders. Here, we’ll briefly distinguish
these terms.

Transductive methods, explained earlier, are a large class of methods of which graph
embedding is one application. So, outside of our present context of representation
learning, the attributes of transductive learning remain the same.

In machine learning, shallow is often used to refer to the opposite of deep learning
models or algorithms. Such models are distinguished from deep learning models in
that they don’t use multiple processing layers to produce an output from input data.
In our context of graph/node embeddings, this term also refers to methods that
aren’t based on deep learning, but more specifically points to methods that mimic a
simple lookup table, rather than a generalized model produced from a supervised
learning algorithm. 

Any method that reproduces a low dimensional representation of data, an embed-
ding, is often known as an encoder. This encoder simply matches a given data point
such as a node (or even an entire graph) to its respective embedding in low dimen-
sional space. GNNs can be broadly understood as a class of encoders, similar to
Transformers. However, there are specific GNN encoders, such as the graph autoen-
coder (GAE), which you’ll meet in chapter 5. 
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 N2V improved on DeepWalk by introducing tunable bias in these random walks.
The idea is to be able to trade off learnings from a node’s close-by neighborhood and
from further away. N2V captures this in two parameters:

 p—Controls the probability that the path walked will return to the previous
node. 

 q—Controls the probability of whether a depth-first search (DFS, a hopping
strategy that emphasizes faraway nodes) or breadth-first search (BFS, a strategy
that emphasizes nearby nodes). DFS and BFS are illustrated in figure 2.13,
where we demonstrate what happens for four hops. 

To mimic the DeepWalk algorithm, both p and q would be set to 0 such that the search
is unbiased. So, for figure 2.13, the output for N2V could be [u, s1,s2] or [u,s4,s5,s6]
depending on whether the walks are BFS or DFS. 

Once we have the vector of nodes, we create embeddings by using a neural network to
predict the most likely neighboring node for a given node. Usually, this neural net-
work is shallow, with one hidden layer. After training, the hidden layer becomes that
node’s embedding.

2.4.4 Message passing as deep learning

Deep learning methods in general are composed of building blocks, or layers, that
take some tensor-based input and then produce an output that is transformed as it
flows through the various layers. At the end, more transformations and aggregations
are applied to yield a prediction. However, often the output of the hidden layers is
directly exploited for other tasks within the model architecture or are used as inputs
to other models. This is what we saw in our classification problem in section 2.3. We

s7

s2

s6

s4

s3

s5
U

s1

BFS

DFS

Figure 2.13 Depth-first search (DFS) and breadth first search (BFS) on a graph where 
embeddings are generated based on random walks using these graph-traversal strategies. 
DFS (light arrows) prioritizes going deep down one path, while BFS (dark arrows) prioritizes 
checking all adjacent and nearby paths.
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constructed a vector of visited nodes, and these nodes were then passed to a deep
learning model. The deep learning model learned to predict future nodes based on
a starting node. But the actual embeddings were contained within the hidden layer of
the network. 

TIP For a refresher on deep learning, read Deep Learning with Python by
François Chollet (Manning, 2021). 

We show the classic architecture for a deep feed-forward neural network, specifically a
multilayer perceptron (MLP), in figure 2.14. Briefly, the network takes a node vector
as input, and the hidden layers are trained to produce an output vector that achieves
some task, such as identifying a node class. The input vector may be flattened images,
and the output may be a single number reflecting where there is a dog or cat in the
image. For the N2V example, the input is a vector of starting nodes, and the output is
the corresponding other node vectors that are visited after traversing the graph from
the starting node. In the image example, the output is the explicit task function,
namely to classify images based on whether they contain a dog or cat. In N2V, the out-
put is implicit in the graph structure. We know the subsequent nodes that are visited,
but we’re interested in the way the network has encoded the data, that is, how it has
built an embedding of the node data. This is contained within the hidden layer, where
typically we just take the last layer.

For GNNs, the input will be the entire graph structure, and the output will be the
embeddings. Therefore, the model is explicit in how it constructs the embeddings.
However, the output isn’t restricted to embeddings. Instead, we can have the out-
put as a classification, such as whether the book has a specific political affiliation in
that node in the graph. The embeddings are again implicit in the hidden layers.
However, the entire process is wrapped into a single model, so we don’t need to
extract this data. Instead, we’ve used the embeddings to achieve our goal, such as
node classification. 

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

Figure 2.14 Structure of a 
multilayer perceptron 
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 While the architecture of GNNs is very different from feed-forward neural net-
works, there are some parallels. In many of the GNNs we learn about, a graph in ten-
sor form is passed into the GNN architecture, and one or more iterations of message
passing is applied. The message-passing process is shown in figure 2.15.

In chapter 1, we first discussed the idea of message passing. In its simplest form, mes-
sage passing reflects that we’re taking information or data from nodes or edges and
sending it somewhere else [1]. The messages are the data, and we’re passing the mes-
sages across the structure of our graph. Each message can contain information from
either sender or receiver, or often both. 

 We can now explain further why message passing is so important to GNNs. The
message passing step updates the information about each node by using the node infor-
mation and nodes neighborhood information (both in terms of nearby node data and
the edge data connecting them). Message passing is how we construct representations
about our graph. These are the critical mechanisms that build graph embeddings,
which inform other tasks such as node classification. There are two important aspects
to consider when constructing these node (or edge) embeddings. 

 First, we need to think about what is inside a message. In our earlier example, we
had a list of books on political topics. This dataset only had information about the
books’ co-purchasing connections and their political leaning labels. However, if we
had additional information such as the book length, author name, or even the synop-
sis, then those node features could be contained within our messages. However, it’s
important to remember that it could also be edge data, such as when another book
was bought together, that could also be contained in messages. In fact, sometimes
messages can contain both node and edge data. 

 Second, we need to think about how much local information we want to consider
when making each embedding. We want to know how much of the neighborhood to
sample. We already discussed this when we introduced random walk methods. We
need to define how many hops to take when sampling our graph.

( )( )

1. initial graphInput
with node, edges,

and features.

2. all featuresCollect
from neighboring nodes,

known as messages, for

each node.

3. messagesAggregate
using invariant

functions such as sum,

max, or mean.

4. messagesTransform
using a neural network to

create new node features.

5. all featuresUpdate
in the graph with new

node features.

Figure 2.15 Elements of our message-passing layer. Each message-passing layer consists of an aggregation, a 
transformation, and an update step.
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 Both the data and the number of hops are critical to message passing in GNNs.
The features, either node or edge data, are the messages, and the number of hops is
the number of times we pass a message. Both of these are controlled by the layers of
a GNN. The number of hidden layers is the number of hops that we’ll be sending
messages. The input to each hidden layer is the data contained in a message. This is
almost always the case for GNNs but it’s worth noting that it isn’t always true. Some-
times, other mechanisms such as attention can determine the depth of message-
passing samples from the neighborhood. We’ll discuss graph attention networks
(GATs) in chapter 4. Until then, understanding that the number of layers in a GNN
reflects the number of hops undertaken during message passing is a good intuition
to have. 

 For a feed-forward network, like the one on the left in figure 2.15, information is
passed between the nodes of our neural network. In a GNN, this information com-
prises the messages that we send over our graph. For each message-passing step, the
vertex in our neural network collects information from nodes or edges one hop away.
So, if we want our node representations to take account of nodes from three hops
away from each node, we need three hidden message-passing layers. Three layers may
not seem like very many, but the amount of a graph we cover scales exponentially with
the number of hops. Intuitively, we can understand this as a type of six degrees of sep-
aration principle—that all people are only six degrees of social separation apart from
each other. This would mean that you and I could be connected by six short hops
across the global combined social network. 

 Different message-passing schemes lead to different flavors of GNNs. So, for each
GNN we study in this book, we’ll pay close attention to the math and code implemen-
tation for message passing. One important aspect is how we aggregate messages,
which we’ll discuss in chapter 3 when we discuss GCNs in depth. 

 After message passing, the resulting tensor is passed through feed-forward layers
that result in a prediction. In the left of figure 2.16, which illustrates a GNN model for
node prediction, the data flows through message-passing layers, the tensor then passes
through an additional MLP and activation function to output a prediction. For exam-
ple, we could use our GNN to classify whether employees are likely to join a new com-
pany or have good recommendations. 

 However, as with the feed-forward neural network illustrated previously, we can
also output just the hidden layers and work directly with that output. For GNNs, this
output is the graph, node, or edge embeddings.

 One final note on message passing in GNNs is that in each step in the message-
passing layer of our GNNs, we’ll be passing information from nodes to another node
one hop away. Importantly, a neural network then takes the data from the one-hop
neighbors and applies a nonlinear transformation. This is the beauty of GNNs; we’re
applying many small neural networks at the level of individual nodes and/or edges to
build embeddings of the graph features. Therefore, when we say that a message-passing
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layer is like the first layer of a neural network, we’re really saying that it’s the first layer
of many individual neural networks that are all learning on local node data or edge-
specific data. In practice, the overall code constructing and training is the same as if it
were one single transformation, but the intuition that we’re applying individual non-
linear transformations will become useful as we travel deeper into the workings of
complex GNN models. 

Prediction

Embedding Vector

Message-Passing Layer

Message-Passing Layer

Message-Passing Layer

Message-Passing Layer

Message-Passing Layer

Message-Passing Layer

Multilayer Perception (MLP)

ŷ

Figure 2.16 A simple GNN architecture diagram (left). A graph is input on 
the left, encountering node-information-passing layers. This is followed by 
MLP layers. After an activation is applied, a prediction is yielded. A GNN 
architecture (right).
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Summary
 Node and graph embeddings are powerful methods to extract insights from

our data, and they can serve as inputs/features in our machine learning mod-
els. There are several independent methods for generating such embeddings.
GNNs have embedding built into the architecture.

 Graph embeddings, including node and edge embeddings, serve as founda-
tional techniques to transform complex graph data into structured formats suit-
able for machine learning tasks.

 We explored two main types of graph embeddings: N2V, a transductive method,
and GNN-based embeddings, an inductive method, each with distinct charac-
teristics and applications.

 N2V operates on fixed datasets using random walks to establish node contexts
and similarities, but it doesn’t generalize to unseen data or graphs.

 GNNs, on the other hand, are versatile, inductive frameworks that can generate
embeddings for new, unseen data, making them adaptable across different
graph structures.

 The comparison of embeddings in machine learning tasks, such as semi-super-
vised learning, reveals the importance of choosing the right embedding
method based on the data size, complexity, and specific problem at hand.

 Despite the effectiveness of random forest classifiers in handling both N2V
and GNN embeddings for smaller graphs, GNNs demonstrate a unique ability
to use graph topology and node features, particularly in larger and more com-
plex graphs.

 Embeddings can be used as features in traditional machine learning models
and in graph data visualization and insight extraction.



Part 2

Graph neural networks

Now that you understand the basics, it’s time to roll up your sleeves and
dive into the core architectures that make graph neural networks (GNNs) work.
This section bridges the theoretical and practical by introducing key GNN archi-
tectures and applying them to real-world problems. You’ll explore foundational
models such as graph convolutional networks (GCNs), GraphSAGE, and graph
attention networks (GATs), as well as graph autoencoders (GAEs)—each designed
to harness the unique structure of graph data.

 These architectures come to life through real-world applications. They have
been used for fake review detection, product category prediction, and molecular
graph generation for drug discovery. By blending cutting-edge models with highly
effective use cases, this part of the book provides both the understanding and
practical tools needed to unlock the transformative potential of GNNs in your
projects.





Graph
convolutional networks

and GraphSAGE
In the first two chapters of this book, we explored fundamental concepts related
to graphs and graph representation learning. All of this served to set us up for
part 2, where we’ll explore distinct types of graph neural network (GNN) archi-
tectures, including convolutional GNNs, graph attention networks (GATs), and
graph autoencoders (GAEs). 

 In this chapter, our goal is to understand and apply graph convolutional net-
works (GCNs) and GraphSAGE [1, 2]. These two architectures are part of a larger
class of GNNs that approach deep learning by applying convolutions to graph data. 

This chapter covers
 Introducing GraphSAGE and graph convolutional 

networks 

 Applying convolutional graph neural networks 
to generate product bundles from Amazon 

 Key parameters and settings for graph 
convolutional networks and GraphSAGE

 More theoretical insights, including convolution 
and message passing
71
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 Convolutional operations are relatively common in deep learning models, particu-
larly for image-based tasks that rely heavily on convolutional neural networks (CNNs).
To learn more about CNNs and their application to computer vision, we recommend
checking out Deep Learning with Python (Manning, 2024) or Deep Learning with PyTorch
(Manning, 2023).

 We provide a short primer on convolutions later in the chapter, but essentially con-
volutional operations can be understood as performing a spatial or local averaging
across entities. For example, in images, CNN layers form representations at incremen-
tally larger pixel subdomains. For GCNs, we’ll apply the same idea of a local averag-
ing, but with neighborhoods of nodes. 

 In this chapter, you’ll learn how to apply convolutional GNNs to a node prediction
problem, key parameters and settings for GCN and GraphSAGE, ways to optimize per-
formance for convolutional GNNs, and relevant theoretical topics, including graph
convolution and message passing. Additionally, we’ll explore the Amazon Products
dataset. This chapter is structured as follows: first, we jump into the product category
prediction problem and create baseline models (section 3.1); then we adjust our mod-
els using neighborhood aggregation (section 3.2); next, we optimize our models using
general deep learning methods (section 3.3); following that, we explain relevant the-
ory in more detail (section 3.4); and finally, we dig deeper into the Amazon Products
dataset used in this chapter and later in the book (section 3.5).

 This chapter is designed to immerse you immediately in the application of convo-
lutional GNNs, equipping you with the essential knowledge needed to deploy these
models effectively. The initial sections provide you with the minimum toolkit for a
functioning understanding of convolutional GNNs in practice.

 However, when facing challenging modeling problems, deeper comprehension
becomes invaluable. The latter sections of the chapter cover underlying principles
of the layers, settings, and parameters introduced earlier. They are crafted to enhance
your conceptual grasp, ensuring that your practical skills are complemented by a
thorough theoretical understanding. This holistic approach aims to not only enable
you to apply GNNs but to innovate and adapt them to the nuanced demands of real-
world problems.

NOTE While GraphSAGE refers to a specific individual architecture, it may be
confusing that GCN also refers to a specific architecture and not the entire
class of GNNs based on convolutions. So, in this chapter, we’ll use convolu-
tional GNNs to refer to this entire class of GNNs, which include GraphSAGE
and GCN. We’ll use GCN to refer to the individual architecture introduced by
Thomas Kipf and Max Welling [1]. 

NOTE Code from this chapter can be found in notebook form at the GitHub
repository (https://mng.bz/wJMW). Colab links and data from this chapter
can be accessed in the same locations.

https://mng.bz/wJMW
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3.1 Predicting consumer product categories
Let’s start our exploration of convolutional GNNs with a product management problem
using the Amazon Products dataset (see table 3.1). Imagine you’re a product manager
aiming to enhance sales by identifying and promoting emerging trends in product bun-
dles. You have a dataset derived from Amazon’s product co-purchasing network, con-
taining a rich set of relationships between products based on customer buying behavior.
Your task is to use insights about product categories and co-purchasing patterns to
uncover hidden and appealing product bundles that resonate with your customers.

To tackle this, we introduce GCNs and GraphSAGE—two convolutional GNN archi-
tectures. This section will guide you through training these models on the Amazon
Products dataset. We’ll focus on two tasks: identifying a product’s category and finding
sets of product bundles by analyzing the similarity between product embeddings pro-
duced by the trained models.

NOTE If you want to get deeper into the theory behind GCN and GraphSAGE,
see section 3.4. For details about the Amazon Products dataset, see section 3.5.

Following our model training process, in this section, we’ll do the following: 

 Preprocess our dataset—We’ll take the Amazon Products dataset and reduce its
size to work with systems with minimal resources.

 Construct our model classes—We’ll focus on two convolutional GNNs: GCN and
GraphSAGE. We’ll initially create model classes and instantiate them with
default parameters.

 Code our training and validation loops—We’ll train the models with a validation
step for each epoch. To compare the two models, we’ll train them simultane-
ously with the same batches.

 Assess model performance—We’ll take a look at training curves. Then, we’ll use tra-
ditional classification metrics and observe the ability of the model to predict
particular categories.

Our immediate goal is to develop first passes of our trained models. So, at this point,
the emphasis isn’t on performance optimization but on covering the essential steps to
get a baseline model working. Subsequent sections will refine these approaches, enhanc-
ing performance and efficiency.

Table 3.1 Overview of the Amazon Products dataset 

Amazon co-purchases organized by product category

Number of nodes (products) ~2,500,000

Node features 100

Node categories 47

Total number of edges ~61,900,000
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3.1.1 Loading and processing the data

We start by downloading the Amazon Products dataset from the Open Graph Bench-
mark (OGB) site (https://ogb.stanford.edu/). This dataset is large for a single machine,
taking up 1.3 GB. This includes 2.5 million nodes (products) and 61.9 million edges
(co-purchases).

 To make working with this data manageable for systems with smaller memory
capacity and less powerful processors, we’ll reduce its size. We simply take the nodes
that have the first 10,000 node indices in the original graph and create a subgraph
based on those. Depending on your problem, there are other strategies to create sub-
graphs. In chapter 8, we look at creating subgraphs in more depth.

 In creating a subset graph, there is often bookkeeping that must be done to ensure
our node subset has a consistent and logical ordering and is connected to the cor-
rect labels and features. We must also filter out edges that are connected to nodes
from outside the subset. Lastly, we want to make sure we can call back the original
indices of the subset in case we want to call back useful information; for example,
for the Amazon Products dataset, we can access the SKU (Amazon Standard Identifi-
cation Number, ASIN) numbers and product categories of each node using their
original indices.

 So, we relabel the nodes with a consistent ordering. Then, we reassign the respec-
tive node features and labels to correspond to the new indices. Even though we
choose nodes with the first 10,000 indices, this may not be so in any particular case.
Here’s how we’ll refine and prepare the data for modeling in four steps:

1 Initialize the subset graph—We create a new graph object that will store our subset
of data. This graph will hold the edges, features, and labels of the nodes that
have indices 0–9,999 in our original graph.

2 Relabel node indices—To ensure consistency and avoid index mismatches, we
relabel the node indices within our subset graph. This relabeling is crucial
because operations within GNNs depend heavily on indexing to process node
and edge information.

3 Feature and label assignment—We assign node features (x) and labels (y) to our
new graph object. These features and labels are sliced from the original dataset,
corresponding to our specified subset indices.

4 Edge mask utilization—The return_edge_mask option, used during the subgraph
extraction, lets us identify which edges were selected during the subgraph cre-
ation. This is useful for tracing back to the original graph’s structure or for any
structural analysis required later.

By restructuring the data in this manner, we not only make it manageable but also tailor
it specifically for efficient processing in subsequent graph-based learning tasks. This
setup is foundational as we proceed to construct and evaluate our GNN models in the fol-
lowing sections. The following listing shows the code for implementing that process.

 

https://ogb.stanford.edu/
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s 
, 

 

dataset = PygNodePropPredDataset(name='ogbn-products',\
 root=root)  
data = dataset[0]  
 
subset_indices = torch.arange(0, 10000)  
 
subset_edge_index, edge_attr, edge_mask = \
subgraph(subset_indices, data.edge_index, \
None, relabel_nodes=True, num_nodes=\
data.num_nodes, return_edge_mask=True)  
 
subset_features = data.x[subset_indices]  
subset_labels = data.y[subset_indices]  
 
subset_graph = data.__class__()  
subset_graph.edge_index = subset_edge_index  
subset_graph.x = subset_features  
subset_graph.y = subset_labels  

3.1.2 Creating our model classes

After setting up our dataset and preparing a manageable subgraph, we transition to
the core of our graph machine learning pipeline: defining the models. In this section,
we focus on two popular types of GNNs provided by the PyTorch Geometric (PyG)
library: GCN and GraphSAGE.

UNDERSTANDING OUR MODEL ARCHITECTURES

PyG simplifies the construction of GNNs through modular layer objects, each encap-
sulating a specific type of graph convolution. These layers can be stacked and inte-
grated with other PyTorch modules to build complex architectures tailored to various
graph-based tasks.

GCN MODEL 
The GCN model uses the GCNConv layer, which implements the graph convolution
operation as described by Kipf and Welling in their seminal paper [1]. It takes advan-
tage of the spectral properties of graphs to facilitate information flow between nodes,

Listing 3.1 Reading in data and creating a subgraph

Loads dataset from the specified root
directory and specifies ogbn-products to

indicate which dataset is being loaded
The first graph object 
from the dataset is 
selected for processing.

Creates an array of indice
for the first 10,000 nodes
which defines our subset 
for the experiment

Calls the subgraph function 
with subset_indices to extract
edges and attributes relevant 
to these indices. The nodes 
are relabeled to maintain a 
consistent zero-based index 
in the new graph.

Indexes node features from 
the original data according to 
subset_indices to ensure that 
only relevant features are 
transferred to the new graph

Similarly, indexes node labels 
to maintain correspondence 
with the subset features

Creates a new instance of the data 
class to store our subset graph

Assigns the edge index array created
during the subgraph extraction to

the new graph

Assigns subset features to the new
graph’s node feature matrix

Assigns node labels corresponding
to the subset to the new graph
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allowing the model to learn representations that embed both local graph structure
and node features.

 In listing 3.2, the GCN class sets up a two-layer model. Each layer is represented by
the GCNConv module, which processes graph data by applying a convolution operation
that directly uses the graph’s structure. 

 To summarize its workings, from an input set of node features and the graph struc-
ture (edge_index), the network will update node features by aggregating the neigh-
borhood information from each respective node. After the first layer, we apply a
rectified linear unit (ReLU) activation function, which adds nonlinearity to the model.
The second layer refines these features further. 

 If we want to look at the node embeddings directly—for instance, to visualize them
or to use them in some other analysis—we can just return them right after the second
layer. Otherwise, we apply another activation function—in this case, a softmax func-
tion—to normalize the outputs for our classification problem.

class GCN(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
    super(GCN, self).__init__()
    self.conv1 = GCNConv(in_channels, hidden_channels) 
    self.conv2 = GCNConv(hidden_channels, out_channels)
 
    def forward(self, x, edge_index, \
return_embeds=False): 
        x = self.conv1(x, edge_index)
        x = torch.relu(x) 
        x = self.conv2(x, edge_index)
        if return_embeds: 
             return x

    return torch.log_softmax(x, dim=1) 

GRAPHSAGE MODEL 
Much like the GCN model, the GraphSAGE model class in our code also sets up a two-
layer network, but with the SAGEConv layers. While structurally similar in code, Graph-
SAGE is a significant shift from GCN in theory. Unlike GCN’s full reliance on the
entire graph’s adjacency matrix, GraphSAGE is designed to learn from randomly sam-
pled neighborhood data, making it particularly well-suited for large graphs. This sam-
pling approach allows GraphSAGE to scale effectively by focusing on localized regions
of the graph.

Listing 3.2 GCN class

Initializes the first graph convolution layer that
transforms input features (in_channels) into

hidden features (hidden_channels)

Forward method that dictates 
how data flows through the 
model from input to output

Applies the ReLU activation 
function after the first convolution 
to add nonlinearity to the model

Optionally returns the raw embeddings 
from the network, which can be useful 
for tasks that require raw node 
representations without classification, 
such as visualization or further processing

Applies a log softmax activation
to the final layer’s output
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 GraphSAGE uses the SAGEConv layer, which supports various aggregation func-
tions—mean, pool, and long short-term memory (LSTM)—offering flexibility in how
node features are aggregated. After each SAGEConv layer, similar to the GCN model, a
nonlinearity is applied. If node embeddings are required directly for tasks such as
visualization or further analysis, they can be returned immediately following the sec-
ond layer. Otherwise, a softmax function is applied to normalize the outputs for classi-
fication tasks.

 The key difference in PyG’s implementation of these models lies in their efficiency
and scalability with large datasets. Both models learn node representations, but
GraphSAGE provides a significant advantage for practical applications involving very
large graphs. Unlike GCN, which can operate on sparse data representations but still
processes information from the entire graph structure, GraphSAGE doesn’t require
the entire adjacency matrix. Instead, it samples local neighborhoods, which allows it
to handle vast networks efficiently without overwhelming memory resources by having
to load the entire graph representation. 

class GraphSAGE(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
    super(GraphSAGE, self).__init__()
    self.conv1 = SAGEConv(in_channels, \
    hidden_channels) 
    self.conv2 = SAGEConv(hidden_channels, out_channels)
 
    def forward(self, x, edge_index, \
    return_embeds=False): 
        x = self.conv1(x, edge_index)
        x = torch.relu(x) 
        x = self.conv2(x, edge_index)
        if return_embeds: 
            return x

     return torch.log_softmax(x, dim=1) 

INTEGRATION AND CUSTOMIZATION

While we use default settings in this introductory example, both models are highly cus-
tomizable. Parameters such as the number of layers, hidden dimensions, and types of
aggregation functions (for GraphSAGE) can be adjusted to optimize performance for
specific datasets or tasks. Next, we’ll train these models on our subset graph and evalu-
ate their performance to demonstrate their practical applications and effectiveness.

Listing 3.3 GraphSAGE class

Initializes the first graph convolution layer
that transforms input features (in_channels)

into hidden features (hidden_channels)

Forward method that dictates 
how data flows through the 
model from input to output

Applies the ReLU activation function 
after the first convolution to add 
nonlinearity to the model

Optionally returns the raw 
embeddings from the network, 
which can be useful for tasks that 
require raw node representations 
without classification, such as 
visualization or further processing

Applies a log softmax
activation to the final

layer’s output
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3.1.3 Model training

With our data ready and our models set up, let’s get into the training process. Train-
ing is relatively straightforward, as it follows typical machine learning routines but
applied to graph data. We’ll be training two models simultaneously—GCN and Graph-
SAGE—by feeding them the same data each epoch. This parallel training allows us to
directly compare the performance and efficiency of these two model types under
identical conditions. Here’s a concise breakdown of the training loop:

 Initialize optimizers—Set up Adam optimizers with a learning rate of 0.01. This
helps us fine-tune the model weights effectively during training.

 Training and validation loops—For each epoch, run the training function, which
processes the data through the model to compute losses and update weights.
Concurrently, validate the model on unseen data to monitor overfitting and
adjust training strategies accordingly.

 Track progress—Record losses for both training and validation phases to visualize
the learning curve and adjust parameters if needed.

 Conclude with testing—After training, the models are evaluated on a separate test
set to gauge their generalization capabilities.

By maintaining a consistent training regimen for both models, we ensure that any dif-
ferences in performance can be attributed to the models’ architectural differences
rather than varied training conditions. The following listing contains the annotated
code of our training logic.

gcn_model = GCN(in_channels=dataset.num_features,\
 hidden_channels=64, out_channels=\
dataset.num_classes) 
graphsage_model = GraphSAGE(in_channels=d\
ataset.num_features, hidden_channels=64, \
out_channels=dataset.num_classes) 

optimizer_gcn = torch.optim.Adam\
(gcn_model.parameters(), lr=0.01)  
optimizer_sage = torch.optim.Adam(\
graphsage_model.parameters(), lr=0.01)  
criterion = torch.nn.CrossEntropyLoss()  

def train(model, optimizer, data): 
    model.train()  
    optimizer.zero_grad() 
    out = model(data.x, data.edge_index)  
    loss = criterion(out[data.train_mask], data.y[data.train_mask].squeeze()) 
    loss.backward()  
    optimizer.step()  
    return loss.item()  

Listing 3.4 Training loop

Initializes models for 
the GCN and GraphSAGE 

Initializes models for 
the GCN and GraphSAGE 

Sets up optimizers for the 
GCN and GraphSAGE models

Sets up optimizers for the 
GCN and GraphSAGE models 

Initializes the cross-entropy loss 
function for the classification task

Train functions used every epoch
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def validate(model, data): 
    model.eval()  
    with torch.no_grad():  
        out = model(data.x, data.edge_index)  
        val_loss = criterion(out[data.val_mask], 

data.y[data.val_mask].squeeze())  
    return val_loss.item()  

train_loss_gcn = []  
val_loss_gcn = []  
train_loss_sage = []  
val_loss_sage = []  

for epoch in range(200): 
    loss_gcn = train(gcn_model, optimizer_gcn, subset_graph)  
    train_loss_gcn.append(loss_gcn)  
    val_loss_gcn.append(validate(gcn_model, subset_graph))  

    loss_sage = train(graphsage_model, optimizer_sage, subset_graph)  
    train_loss_sage.append(loss_sage)  
    val_loss_sage.append(validate(graphsage_model, subset_graph))  

    if epoch % 10 == 0:  
        print(f'Epoch {epoch}, GCN Loss: \
{loss_gcn:.4f}, GraphSAGE Loss: \
{loss_sage:.4f}, GCN Val Loss: \
{val_loss_gcn[-1]:.4f}, GraphSAGE \
Val Loss: {val_loss_sage[-1]:.4f}')

Now that we’ve set up and trained our models, it’s time to see how well they perform.
The next section will look at the training and validation loss curves to understand how
the models learned over time. It will check out key metrics such as accuracy, precision,
recall, and F1 scores to evaluate how well our models can predict product categories
based on our graph data. All of this is to understand our models and to figure out
where we can improve them in later sections. 

3.1.4 Model performance analysis

For the next section, we’ll look at the model performance of the GCN and Graph-
SAGE models. We’ll first examine the training curves and point out that we have to
improve the overfitting in a subsequent chapter. Then, we’ll look at the F1 and log
loss scores, followed by examining accuracy for the product categories.

TRAINING CURVES

During the training process, we saved the losses for each model for every epoch. Loss
is a measure of how well our model is able to make correct predictions, with lower val-
ues being better. 

 Using Matplotlib, we use this data to plot training loss and validation loss curves,
shown in figure 3.1. Such curves track the performance of the model on training and

Validation functions 
used every epoch

Sets up arrays to capture 
losses for each model

Training and 
validation loop
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GCN Training and Validation Loss Curves

GCN Training Loss

GCN Validation Loss

GraphSAGE Training and Validation Loss Curves

GraphSAGE Training Loss

GraphSAGE Validation Loss

Epoch

Epoch
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Figure 3.1 Training and validation loss curves for the GCN model (left) and GraphSAGE model (right) trained 
in this section. The divergence of the validation from the training curve signals over-fitting, where the model 
learns the training data too well and at the expense of generalizing to new data.
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validation datasets over the course of the training process. Ideally, both losses should
decline over time. However, in our curves, we see a divergence beginning near epoch
20. The validation loss curves reach a nadir and then begin to climb. Meanwhile, the
training loss continues to decline. Our models’ performance continues to improve on
the training data but degrades on the validation data past some optimal point. This is
the classic overfitting problem, which we’ll address later in the chapter. 

 In our training process, we’ve saved the instance of the model with the best perfor-
mance, which is the instance with the lowest validation loss. Next, we look at two classi-
fication metrics to assess performance: log loss and F1 score.

CLASSIFICATION PERFORMANCE: F1 AND LOG LOSS

Given the overfitting problems shown earlier, we turn to the classification perfor-
mance of our models to establish a baseline for our improvement efforts. We use our
validation sets to establish F1 and log loss scores, shown in table 3.2. (The F1 score is
weighted, which measures F1 for each class separately, then averages them, weighing
each class by its proportion of the total data.)

 The middling scores indicate that the models have much room for improvement.
Our F1 scores don’t exceed 80%, while the log loss scores are no lower than 1.25. 

In this case, GCN performs better for both metrics. To improve these scores for a mul-
ticlass problem, we could look more deeply at the model’s capability to predict indi-
vidual classes and examine its performance for imbalanced classes. 

MODEL PERFORMANCE AT A CLASS LEVEL

The Amazon Products dataset comes with two useful files that map each node with its
class, and each node with its individual Amazon product number (ASIN). To evaluate
the performance of our baseline models by class, we take the node class information
and create a table, as shown in figure 3.2, summarizing prediction accuracy for the 25
classes containing the most items. 

 Along with accuracy, in this table, we examine the biggest mispredictions for each
class. From this information, let’s make some high-level observations:

 Performance by category—Both models show variability in their prediction accuracy
across different product categories. The Books category and CDs & Vinyl cate-
gory have high accuracy rates. This can be due to their relatively high number of
samples. It could also indicate that these categories are more distinct or well-
defined, making it easier for the model to distinguish them. The first factor,
number of samples, is easy to adjust because we’re using 10,000 product nodes

Table 3.2 Classification performance of our models, by F1 score and log loss

F1 Score Log Loss

GCN 0.781 1.25

GraphSAGE 0.733 1.88
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and can draw millions more from our dataset. You can give it a try by adjusting
the size of the subset in the provided code.

To improve less distinctive classes, we need to make a deeper exploration of
the node features to determine how distinctive the classes are relative to each
other and to brainstorm ways to enhance those features to bring out their novelty.

 Performance by model—Looking over all the classes, GraphSAGE generally appears
to perform better than GCN in most categories, as seen from the higher per-
centages of correct predictions. This suggests that GraphSAGE’s approach of
aggregating features from a node’s neighborhood might be more effective for
this dataset.

 Misclassifications—Common misclassifications tend to occur between categories
that might share similar characteristics or be frequently purchased together. For
example, the misclassification between Books and Movies & TV or between Elec-
tronics and Cell Phones & Accessories suggests that items in these categories may
share overlapping features or are often bought by similar customer segments.

Though we generally don’t want misclassifications, observing the classes most likely to
be misconstrued for another could inform us about common customer perceptions or
confusions between product categories, highlighting potential areas for marketing
and product placement strategies.

 The next two sections will improve the models’ performance from these baseline
results by taking advantage of the properties of our GNNs (section 3.2) and by using

Figure 3.2 Classification performance (accuracy) by product category, comparing GCN and GraphSAGE

% of Correct Predictions Most Frequent Incorrect Prediction

Category N GCN GraphSage GCN GraphSage

Books 3077 96.30% 95.52% CDs & Vinyl CDs & Vinyl

CDs & Vinyl 887 95.83% 97.18% Movies & TV Books

Toys & Games 753 88.84% 87.78% Books Books

Sports & Outdoors 658 83.89% 83.43% Toys & Games Clothing, Shoes & Jewelry

Health & Personal Care 601 81.53% 83.19% Beauty Beauty

Home & Kitchen 577 87% 84.75% Toys & Games Sports & Outdoors

Cell Phones & Accessories 568 95.60% 94.37% Books Books

Movies & TV 559 89.98% 88.37% Books Books

Beauty 531 87.76% 89.83% Health & Personal Care Health & Personal Care

Grocery & Gourmet Food 317 92.11% 93.69% Health & Personal Care Health & Personal Care

Pet Supplies 243 95.06% 90.95% Books Health & Personal Care

Patio, Lawn & Garden 219 87.67% 79% Sports & Outdoors Books

Arts, Crafts & Sewing 218 81.65% 81.65% Toys & Games Books

Clothing, Shoes & Jewelry 160 68.75% 77.50% Sports & Outdoors Sports & Outdoors

Electronics 139 61.87% 68.35% Books Books

Video Games 123 86.18% 84.55% Toys & Games Books
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well-known deep learning methods (section 3.3). To end this section, let’s use our
models to come up with a product bundle for our product manager.

3.1.5 Our first product bundle

In the beginning of this section, we discussed our use case of a product manager who
wants to enhance sales by introducing product bundles. Let’s use one of our newly
trained models to suggest a bundle for a given product. We’ll group together the
nodes whose embeddings are most similar to a selected node, forming a bundle based
on their similarity. Later in the chapter, as we improve the models, we’ll come back to
the exercise. 

NOTE The code won’t be reviewed extensively here but can be found in the
repository. 

NODE ID TO PRODUCT NUMBER

One key file provided in the Amazon Products dataset is a comma-separated values
(CSV) file mapping for node index to Amazon product ID (ASIN). In the repository,
this is used to create a Python dictionary of node ID (key) to ASIN (value). Using a
node’s ASIN, we can access information about the product using a URL in this format:
www.amazon.com/dp/{ASIN}. (Given the age of the dataset, a few ASINs don’t have
web pages currently, but the vast majority we tested do at the time of writing.)

 To create a product bundle, we work with node embeddings. We choose an individ-
ual product node and then find the six most similar products to it. This takes four steps:

1 Produce node embeddings by running our nodes through our trained GNN.
2 Create a similarity matrix using the node embeddings.
3 Sort the top five embeddings by similarity to our chosen product. 
4 Convert the node indices of these top embeddings to product IDs.

A seed may be set to ensure reproducibility. Otherwise, your results will differ with
every run of your program.

PRODUCE NODE EMBEDDINGS

Like chapter 2, we run our nodes through the model to produce an embedding instead
of a prediction. In contrast to chapter 2, we have a trained model for this purpose that
has learned from the node features and the co-purchasing relationships of our data-
set. To accomplish this, we put our model into evaluation mode (eval()), disable gra-
dient computations that support backpropagation (no_grad()), and then run a
forward pass of the graph data through the model. Earlier, when defining the model
class, we enabled an option to return an embedding or a prediction (return_embeds):

gcn_model.eval()
 
with torch.no_grad():
     gcn_embeddings = gcn_model(subset_graph.x, \
subset_graph.edge_index, return_embeds=True)

http//www.amazon.com/dp/{ASIN}
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CREATE A SIMILARITY MATRIX

A similarity matrix is a set of data, usually in tabular form, that contains the similarities
between all pairs of items in a set. In our case, we use cosine similarity, and compare
the embeddings of all the nodes in our set. SciKit Learn’s cosine_similarity func-
tion accomplishes this:

gcn_similarity_matrix = cosine_similarity(gcn_embeddings.cpu().numpy())

LIST THE ITEMS CLOSEST IN SIMILARITY TO A CHOSEN NODE

To identify items most similar to a specific node, we begin by selecting a node—
referred to by its index as product_idx. Using the cosine similarity matrix, we exam-
ine how closely related each node is to our chosen node by sorting the similarities in
descending order. The top entries from this sorting (specifically, the first six, where
top_k is set to 6) represent the nodes most similar to our selected node. Notably, the
list includes the selected node itself, So, for practical purposes, we consider the next
five nodes to effectively create a bundle of similar items:

product_idx = 123 
top_k = 6
top_k_similar_indices_gcn = np.argsort(-
gcn_similarity_matrix[product_idx])[:top_k]

CONVERT THE NODE INDICES TO PRODUCT IDS

From here, using the index-to-ASIN dictionary will identify the product bundle from
the node indices. With this done, let’s pick a product node at random and generate a
product bundle around it.

PRODUCT BUNDLE DEMO

At random, we pick node #123. Using our index-to-ASIN dictionary, we get ASIN:
B00BV1P6GK. This ASIN belongs to the product Funko POP Television: Adventure
Time Marceline Vinyl Figure, as shown in figure 3.3. The category of this product is
Toys & Games.

Figure 3.3 Our selected product, 
Funko POP Television: Adventure 
Time Marceline Vinyl Figure. In this 
section, a product bundle will be 
generated for this product.
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Marceline, the hundreds-of-years-old Vampire Queen, is one of the main characters in
the popular animated TV series Adventure Time. Marceline is known for her rock star
persona, love of music, and playing her bass guitar, which is often a focal point in her
appearances. Her persona is reflected in the figurine, which is smiling and has a
relaxed but confident pose.

 Adventure Time is an animated series that follows the surreal and epic adventures of
a boy named Finn and his magical dog Jake in the mystical Land of Ooo, filled with
princesses, vampires, ice kings, and many other bizarre characters.

 For a collection based on the Adventure Time series, one may expect a variety of
vinyl figures representing the show’s eclectic cast of characters. Let’s see what our
system generates.

 Using the process outlined earlier, the bundle shown in figure 3.4, was gener-
ated. There is one Adventure Time vinyl figure included. The rest of the choices seem
unrelated at first glance, but maybe this set is a nonintuitive bundle. Let’s take a
closer look:

 First ranked similarity: Funko POP Television: Adventure Time Finn with Accessories—
Finn is the central character from Adventure Time, a recommendation we
expected. This suggests that fans of Marceline might also appreciate or collect
merchandise related to other main characters from the same show.

 Second ranked similarity: Funko My Little Pony: DJ Pon-3 Vinyl Figure—This item
might seem out of context at first glance, but it may indicate a crossover interest
in animated series. DJ Pon-3, or Vinyl Scratch, from My Little Pony is a musical
character like Marceline, appealing to those who enjoy characters associated
with music.

Figure 3.4 A product bundle centered on the Marceline product. The recommendations are members of the Toy 
& Games category. The themes of these products connect loosely to the selected product.

Selected Product Funko POP Television: Adventure Time Marceline Vinyl Figure

1st Ranked Similarity Adventure Time 5" Finn with Accessories

2nd Ranked Similarity Funko My Little Pony: DJ Pon-3 Vinyl Figure

3rd Ranked Similarity My Little Pony: Twilight Sparkle

4th Ranked Similarity Plastic Gold Coins 288ct With 24 Pirate Themed Tattoos

5th Ranked Similarity Handheld Brass Telescope with Wooden Box - Pirate Navigation

1 2 3 4 5
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 Third ranked similarity: Funko My Little Pony: Twilight Sparkle Vinyl Figure—Similar
to DJ Pon-3, Twilight Sparkle from My Little Pony represents another connection
to a popular animated series. This inclusion could appeal to collectors who
enjoy fantasy themes and strong female characters.

 Fourth and fifth ranked similarities: Pirate-themed accessories (Gold Coins, Tattoos,
Handheld Brass Telescope with Wooden Box)—These items are less directly related
to “Adventure Time” or “My Little Pony”, but they enhance the theme of adven-
ture and exploration, which is a significant element of both series.

All in all, this is not a bad product bundle from our baseline models! Wrapping up
this introductory section on model training and evaluation, we’ve now established a
solid foundation for understanding and using GNNs. This understanding is crucial as
we progress to section 3.2, where we’ll dive deeper into neighborhood aggregation, an
effective tool to enhance performance. Then, in section 3.3, we’ll draw from general
deep learning approaches to further optimize the models’ performances. 

3.2 Aggregation methods
In this section, we extend the product category analysis from the previous section and
take a deeper look into the characteristics of GNNs that influence their performance
on tasks such as product categorization. Specifically, we explore aggregation methods,
techniques that have a large influence on the performance of convolutional GNNs.
Neighborhood aggregation allows nodes to gather and integrate feature information
from their local node neighborhoods, capturing contextual relevance within the
larger network.

 We start with the simple aggregations mean, sum, and max, each applied over all
layers of a model. Then, we survey a few more advanced implementations in PyG:
unique aggregations applied per layer, list aggregations, aggregation functions, and a
layer-wise aggregation known as jumping knowledge networks (JK-Nets). Finally, we
provide some guidelines on applying such methods.

3.2.1 Neighborhood aggregation

One way graph data structures are different is that nodes are interconnected through
edges, creating a network where nodes can be directly linked or separated by several
degrees. This spatial arrangement means that any given node may be in close proxim-
ity to certain other nodes, forming what we call its neighborhood. The concept of a
node’s neighborhood is critical as it often holds key insights into the node’s character-
istics and that of the overall graph.

 In convolutional GNNs, node neighborhoods are used through a process known as
neighborhood aggregation. This technique involves gathering and combining feature
information from a node’s immediate neighbors to capture both their individual and
collective properties. By doing so, a node’s representation is enriched with the contex-
tual information provided by its surroundings, which enhances the model’s capability
to learn more complex and nuanced patterns within the graph.
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 Neighborhood aggregation operates under the premise that nodes in proximity to
each other are likely to influence each other more significantly than those farther
away. This is particularly advantageous for tasks where the relationship and interac-
tion between nodes are predictive of their behaviors or properties.

NEIGHBORHOOD AGGREGATION IN PYG
In the PyG layers GCN (GCNconv) and GraphSAGE (SAGEConv), neighborhood aggre-
gation is implemented in different ways. In GCN, a weighted average aggregation is
built into the layer; if you want to tweak it, you must create a customized version of this
layer. In this section, we’ll mostly focus on GraphSAGE, which allows you to set an
aggregation via a parameter. An upcoming section will examine a layer-wise aggrega-
tion used in GCN.  

 In SAGEConv, the aggr parameter specifies the type of aggregation. The options
include, but are not limited to the following:

 Sum aggregation—A simple aggregation that sums up all neighbor node features.
 Mean aggregation—Computes the mean of the neighbor node features. This is

often used for its simplicity and effectiveness in averaging feature information,
helping to smooth out anomalies in the data.

 Max aggregation—Takes the maximum feature value among all neighbors for
each feature dimension. This can help when the most prominent features are
more informative than average features, capturing the most significant signals
from the neighbors.

 LSTM aggregation—A relatively compute- and memory-intensive method that
uses an LSTM network to process features of the ordered sequence of neighbor
nodes. It considers the sequence of nodes, which can be crucial for tasks where
the order of node processing affects the results. As such, special care must be
taken to arrange a dataset’s nodes and edges for training.

Choosing among these types will depend on the characteristics of a given graph, and
the prediction goals. If you don’t have a good feel for which method will be more
effective for your graph and your use case, trial and error can suffice to choose the
aggregation method. In addition, while some of the aggregation options can be
applied out of the box, others—such as LSTM aggregation, which relies on a trained
LSTM network—require some thought to be put into data preparation.

 To see the effect of different aggregations, we add the aggr parameter to our
model class and then proceed to train as in section 3.1, swapping out the mean, sum,
and max aggregations. It should be noted that the mean aggregation is the default for
the SAGEConv layer, so it’s equivalent to our GraphSAGE baseline model. Creating a
GraphSAGE class with aggregations would look like the following listing.

class GraphSAGE(torch.nn.Module):
    def __init__(self, in_channels, \

Listing 3.5 GraphSAGE class with aggregation parameter
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hidden_channels, out_channels, agg_func='mean'): 
        super(GraphSAGE, self).__init__()
        self.conv1 = SAGEConv(in_channels, \
hidden_channels, aggr=agg_func)  
        self.conv2 = SAGEConv(hidden_channels, \
out_channels, aggr=agg_func)  
 
    def forward(self, x, edge_index):
         x = self.conv1(x, edge_index)
         x = F.relu(x)
         x = self.conv2(x, edge_index)

    return F.log_softmax(x, dim=1)

RESULTS OF USING MEAN, MAX, AND SUM AGGREGATIONS

Table 3.3 compares the models using F1 score and log loss as performance metrics.
The table shows that the model using max aggregation is the best under both mea-
sures. The results for the model using max aggregation shows the highest F1 score of
0.7449 and the lowest log loss of 2.1039, suggesting that max aggregation is a little
more capable at identifying and using the most influential features in the prediction
task. The model that uses mean aggregation is equivalent to the model trained in sec-
tion 3.1. We observe that the max aggregation out-performs the other two. Overall,
the performance using different aggregations is very similar to that of our baseline
GraphSAGE model.

What model should be chosen if separate models had the highest F1 score and log
loss? For example, what if the max aggregation model scored highest for F1, but the
mean aggregation model took the highest for log loss? This will depend on the con-
text of your application, your requirements for prediction, and the consequences of
potential errors. 

 In a healthcare situation, such as predicting patient readmissions within 30 days of
discharge, for example, the choice of model can significantly affect patient outcomes
and resource allocation. A model with a high F1 score would have a more balanced
precision and recall, making it better in situations where missing a readmission could
be costly or dangerous. It would be expected to identify more patients at risk, allowing
for timely interventions. However, this could also result in higher false positives, lead-
ing to unnecessary treatments and increased costs.

Table 3.3 Classification performance for GraphSAGE models with different settings for 
neighborhood aggregation

Aggregation Type F1 Score Log Loss

Mean (default) 0.7406 2.1214

Sum 0.7384 2.2496

Max 0.7449 2.1039

Sets keyword parameter 
for aggregation

First GraphSAGE layer with 
specified aggregation

Second GraphSAGE layer 
with specified aggregation
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 A model that exhibits low log loss, on the other hand, offers high confidence in its
predictions, prioritizing the accuracy of each prediction over the number of positive
cases detected. This model is useful when resource allocation needs to be precise or
when treatments have substantial side effects. 

 Coming back to our product manager who is deciding which products and prod-
uct bundles to allocate marketing dollars to, having more confident predictions
would be desirable in preventing wasted marketing efforts. The lower likelihood of
false positives helps in efficiently using resources, but at the risk of missing some revenue-
generating bundle configurations due to conservative predictions. 

 In this section, we used a simple string argument for the aggr parameter. PyG,
however, has a wide set of tools to incorporate a variety of aggregation methods into
your models. We explore these in the next section.

3.2.2 Advanced aggregation tools

This section explores more advanced aggregation tools within PyG. We begin by
assigning distinct aggregation methods to different layers within a multilayer architec-
ture. Next, we explore the combination of various aggregation strategies—such as
'mean', 'max', and 'sum'—within a single layer. Finally, we revisit GCNs to examine
the jumping knowledge (JK) method.

USING MULTIPLE AGGREGATIONS ACROSS LAYERS

In a multilayer GraphSAGE model, you can of course adjust the aggregation function
at each layer independently. For example, you might use mean aggregation at the first
layer to smooth features but switch to max aggregation at a subsequent layer to high-
light the most significant of the resulting neighbor features.

 As a first exercise in our exploration, let’s apply a couple of permutations of
aggregations to two layers and see if these configurations outperform our previous
results. We use the code from before, swapping out the aggr settings for conv1 and
conv2. For one model, we use mean for the first layer and max at the second. For the
other model, we use sum for the first layer and max at the second. Table 3.4 summa-
rizes the results.

Table 3.4 Classification performance for GraphSAGE models with different settings for neighborhood
aggregation

Aggregation Type F1 Score Log Loss

Mean (default) 0.7406 2.1214

Sum 0.7384 2.2496

Max 0.7449 2.1039

Layered: Mean → Max 0.7316 2.2041

Layered: Sum → Max 0.7344 2.345
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We have middling results at best for our dataset. The model with only max aggrega-
tion outperforms the newer models. Let’s move on to combining several aggregations
for each layer.

LIST AGGREGATIONS AND AGGREGATION FUNCTIONS

In PyG, the concept of using a list for specifying aggregation functions allows you to
customize your models with multiple aggregation strategies simultaneously. This fea-
ture is significant as it enables the model to use different aspects of graph data, poten-
tially enhancing model performance by capturing various properties of the graph. In
a way, you’re aggregating your aggregations. For instance, you could combine 'mean',
'max', and 'sum' aggregations in a single layer to capture average, most significant,
and summed structural properties of the neighborhood. 

 This works in PyG by passing a list of aggregation functions, either as strings or as
Aggregation module instances, into the MessagePassing class. PyG resolves these
strings against a predefined set of aggregation functions or can directly use an aggrega-
tion function as the aggr argument. For example, using the keyword 'mean' invokes the
MeanAggregation() function.

 There are a universe of combinations to try, but let’s try two examples to demonstrate,
mixing familiar aggregations, 'max', 'sum', and 'mean'; and a set of more exotic
aggregations, SoftmaxAggregation and StdAggregation [3]. They can be applied to our
conv1 layer as follows (table 3.5 compares these results with previous results): 

       self.conv1 = SAGEConv(in_channels,\
 hidden_channels, aggr=['max', 'sum', 'mean'])

       self.conv1 = SAGEConv(in_channels,\
 hidden_channels, aggr=[SoftmaxAggregation(),\
 StdAggregation() ])

Figure 3.5 visualizes the performance comparison from table 3.5. While the F1 scores
are very similar, there is a slight performance boost in F1 score from the “standard”
list aggregation, though with the drawback of a much higher log loss.

Table 3.5 Classification performance for GraphSAGE models with list aggregations added

Aggregation type F1 score Log loss

Mean (default) 0.7406 2.1214

Sum 0.7384 2.2496

Max 0.7449 2.1039

Layered: Mean→Max 0.7316 2.2041

Layered: Sum→Max 0.7344 2.345

List (standard) 0.7484 2.622

List (exotic) 0.745 2.156
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Given the results of our quick survey of these aggregation methods applied to the
GraphSAGE layer, you might conclude that sticking with the default setting is often
the best option. However, the potential for performance improvements through tai-
lored aggregation strategies suggests that further exploration could be beneficial. 

 In the upcoming section 3.2.3, we’ll review some considerations in applying these
aggregation methods. Before that, we’ll come back to the GCN layer to examine the
JK aggregation method.

JUMPING KNOWLEDGE NETWORKS

Jumping knowledge (JK) is a novel approach for node representation learning on
graphs that addresses limitations of existing models such as GCNs and GraphSAGE
[4]. It focuses on overcoming a problem of neighborhood aggregation models in
which models are sensitive to the graph’s structure, causing inconsistent learning
quality across different graph parts.

 Jumping knowledge networks (JK-Nets) allow flexible usage of different neighbor-
hood ranges for each node, thereby adapting to local neighborhood properties and
task-specific requirements. This adaptation results in improved node representations
by enabling the model to selectively use information from various neighborhood
depths based on the node and the subgraph’s context. JK has been implemented for
the GCN layer in PyG, as shown in listing 3.6. 

 Its main parameter, mode, specifies the aggregation scheme used to combine out-
puts from different layers. The options are listed here:

Figure 3.5 Performance comparison visualized from table 3.5. While the F1 scores are very 
similar, the standard list aggregation performs slightly better with respect to log loss.
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 'cat'—Concatenates the outputs from all layers along the feature dimension.
This approach preserves all information from each layer but increases the
dimensionality of the output.

 'max'—Applies max pooling across the layer outputs. This method takes the
maximum value across all layers for each feature, which can help in capturing
the most significant features from the graph while being robust against less
informative signals.

 'lstm'—Uses a bidirectional LSTM to learn attention scores for each layer’s
output. The outputs are then combined based on these learned attention
weights, allowing the model to focus on the most relevant layers dynamically
based on the input graph structure.

class CustomGCN(torch.nn.Module):
   def __init__(self, in_channels, hidden_channels, out_channels):
       super(CustomGCN, self).__init__()
       self.conv1 = GCNConv(in_channels, hidden_channels)
       self.conv2 = GCNConv(hidden_channels, out_channels)
      
       self.jk = JumpingKnowledge(mode='cat') 
  
   def forward(self, x, edge_index):
       layer_outputs = [] 
      
       x1 = self.conv1(x, edge_index)
       x1 = F.relu(x1)
       layer_outputs.append(x1) 
      
       x2 = self.conv2(x1, edge_index)
       layer_outputs.append(x2) 
      
       
       x = self.jk(layer_outputs) 
      
       return x

In the listing, for the initialization, a JumpingKnowledge layer is initialized with the
mode set to 'cat' (concatenate), indicating that the features from each layer will be
concatenated to form the final node representations. 

 In the forward pass, layer_outputs is initialized as an empty list to store the outputs
from each convolutional layer. This list will be used by the JumpingKnowledge layer.

 The first convolutional layer processes the input x and the graph structure
edge_index, and applies a ReLU activation function to introduce nonlinearity.

 The output of the first layer (x1) is then added to the layer_outputs list.
 After the second convolutional layer, the second output (x2) is also added to

the layer_outputs list.

Listing 3.6 GCN class with JumpingKnowledge layer

Initializes JK with 
concatenation mode

List to save outputs 
from each layer for JK

Appends the layer 
outputs list 

Applies JK aggregation 
to the collected layer 
outputs
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 Then, the JumpingKnowledge layer takes the list of outputs from all the previous
layers and aggregates them according to the specified mode ('cat'). In concat-
enation mode, the feature vectors from each layer are concatenated along the
feature dimension.

Table 3.6 compares the classification performance for GCN models. The baseline
GCN model from section 3.1 is compared to a version using the JumpingKnowledge
aggregation method. The baseline model has a better F1 score, while the JK model
outperforms in log loss.

The results show that choosing between the baseline and JK versions involves a
tradeoff between higher recall/precision and higher prediction certainty. This tradeoff
should be carefully considered based on the specific requirements and goals of the
task at hand. Further exploration in section 3.2.3 will review some considerations in
applying these aggregation methods effectively.

3.2.3 Practical considerations in applying aggregation

Choosing the right aggregation method is a technical decision that should be
informed by the specific characteristics and needs of the dataset at hand as well as the
use case. For datasets where the local neighborhood structure is crucial, using mean
or sum aggregations could potentially blur essential features. In contrast, max aggre-
gation could help highlight critical attributes. For example, in a social network graph
where influencer detection is key, max aggregation might be more effective. On the
other hand, if what we want to do is represent typical features, max aggregation may
overemphasize outliers. In a dataset of financial transactions, where we want to under-
stand typical user behavior, a max aggregation could distort the common behavioral
features in favor of one or two large but uncommon transactions. 

 The task itself can dictate the choice of aggregation method. Tasks that require cap-
turing the most influential features might benefit from max aggregation, while those
needing a general representation may find mean aggregation sufficient. In a recommen-
dation system for products, max aggregation could help identify the most important
product features that drive purchases. Additionally, the nature of the graph’s topology
should guide the aggregation method. Densely connected graphs might require differ-
ent strategies compared to sparsely connected graphs to avoid over-smoothing or under-
representation of node features. For instance, a transportation network graph with
varying node connectivity might need different aggregations at different layers.

Table 3.6 Classification performance for GCN models

Model F1 Score Log Loss

Baseline GCN 0.781 1.42

JK (GCN) 0.699 1.36
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 Given the dataset’s complexity, empirical testing of different aggregation methods
is essential. Experimentation can help identify which methods best capture the rela-
tional dynamics and feature distributions of the dataset. This is particularly important
for more exotic aggregation methods, where intuition alone may not suffice to deter-
mine their effectiveness. The scalability of the chosen aggregation method to handle
millions of nodes and edges efficiently is also crucial. It’s important to balance compu-
tational efficiency with the sophistication of the method, especially for real-time appli-
cations such as recommendation systems. 

 Aggregation methods should be considered alongside other model enhancements
such as feature engineering, node embedding techniques, and regularization strategies
to address overfitting and improve model generalization. For instance, combining effec-
tive aggregation methods with advanced embedding techniques (e.g., Node2Vec) or
incorporating dropout for regularization could significantly boost model performance.

 While there is no one-size-fits-all aggregation method, a thoughtful combination of
techniques, backed by empirical validation, can significantly enhance model perfor-
mance and applicability. This strategic approach not only aids in accurate product cat-
egorization but also in crafting effective recommendation systems that are crucial in
e-commerce settings.

 This section explored and applied different aggregations to our models. The next
section will round out our exploration of convolutional GNNs by applying regulariza-
tion and adjusting the depth of our models. We’ll consolidate our improvements into
a final model, from which we’ll generate another product bundle based on the Marce-
line figurine to see if there is improvement.

3.3 Further optimizations and refinements
Up to now, the GCN and GraphSAGE layers have been introduced via a product man-
agement example. We established a baseline using the default settings in section 3.1.
In section 3.2, we examined the use of neighborhood and layer aggregation. In this
section, we’ll consider other ways we can refine and improve our model. In the first
subsections, we’ll introduce two other adjustments: the use of dropout and model
depth. Dropout is a well-known regularization technique that can reduce overfitting,
and model depth is an adjustment that has a unique meaning for GNNs. 

 In section 3.3.3, we synthesize these insights to develop a model that incorporates
multiple improvements and observe the cumulative performance uplift. Finally, in
section 3.3.4, we revisit our product bundle problem. We create a new product bundle
using the refined model of section 3.3.3 and compare its performance to the bundle
created in section 3.1.
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3.3.1 Dropout

Dropout is a regularization technique used to prevent overfitting in neural networks by
randomly dropping units during training. This helps the model generalize better by
reducing its dependency on specific neurons. 

 In PyG, the dropout function works similarly to the standard PyTorch dropout, mean-
ing it randomly sets some elements of the input tensor and the hidden-layer activations
to 0 during the training process. During each forward pass in training, inputs and activa-
tions are set to 0 according to the specified dropout rate. This helps prevent overfitting
by ensuring that the model doesn’t rely too heavily on any particular input or activation. 

 The structure of the graph, including its vertices (nodes) and edges, remains
unchanged during dropout. The graph’s topology is preserved, and only the neural
network’s activations are affected. This distinction is crucial as it maintains the integ-
rity of the graph while still using dropout to improve model robustness. PyG does have
functions that can drop nodes or drop edges during training, but the dropout built
into GCNConv and SAGEConv refers to the traditional deep learning dropout.

 In PyG, both the GraphSAGE and GCN layers use dropout rate as a parameter,
with a default of 0. Figure 3.6 illustrates the performance of GCN models with vary-
ing dropout rates (0%, 50%, and 85%). As shown, higher dropout rates can help
mitigate overfitting, as indicated by the reduced gap between training and valida-
tion losses. For the 85% case, the higher dropout rate could be causing the model to
converge more slowly, or it could be a sign of overfitting. More testing is warranted
to find out.

 Next, let’s examine model depth and how it’s implemented for convolutional GNNs. 

3.3.2 Model depth

In GNNs, a layer refers to the number of hops or message-passing steps. Each layer allows
nodes to aggregate information from their immediate neighbors, effectively increasing
the receptive field by one hop per layer. A three-layer model, for example, would inter-
rogate the neighborhood three hops away from each node. The depth of a GNN, then,
refers to the number of layers in the network, analogous to the depth in traditional
deep learning models but with key differences due to graph-structured data. 

 If a GNN has too few layers, it may not capture sufficient information from the
graph, leading to poor representation learning, as each node can only aggregate
information from a limited neighborhood. Conversely, increasing the number of lay-
ers can lead to over-smoothing, where node features become too similar, making it diffi-
cult to distinguish between different nodes. With each additional layer, nodes aggregate
information from a larger neighborhood, diluting the unique features of individual
nodes. Various metrics and methods have been proposed to measure and mitigate
this effect. 

 The performance of GNNs with different depths can vary significantly. Typically,
GNNs with 2 or 3 layers perform competitively on many tasks, balancing the need for
sufficient neighborhood information without causing over-smoothing. While deeper
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GNNs can theoretically capture more complex patterns, they often suffer from over-
smoothing and increased computational complexity. Very deep GNNs, such as those
with 50 or more layers, can lead to higher validation loss, indicating over-fitting and/or
over-smoothing.

 Figure 3.7 compares the performance of GNNs with different depths (e.g., 2 lay-
ers, 10 layers, and 50 layers). We see that the 2-layer model achieves a good balance

Figure 3.6 Training curve comparisons of three models with different levels of dropout. The left has a dropout of 
0%, the middle a dropout of 50%, and the right a dropout of 85%. For our model and dataset, adding dropout indeed 
ameliorates overfitting. The model with 85% dropout could show signs of either underfitting or slowly converging, 
requiring more experimentation.



973.3 Further optimizations and refinements
Figure 3.7 Training curves for trained models of different depths: 2 layers (top), 10 layers 
(middle), 50 layers (bottom). The 2-layer model has the best profile with no signs of 
overfitting or performance degradation. 
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between training and validation loss. In the 10-layer GNNs, we see some improvement
in training loss but also signs of over-smoothing from the higher validation loss. The
50-layer model shows degraded training and validation loss, which indicates severe
over-smoothing or over-fitting.

 Balancing the depth of the model is critical to achieving optimal performance in
GNNs. Too few layers may result in weak representation learning, while too many lay-
ers can lead to over-smoothing, where node features become indistinguishable. In the
next section, we apply what we’ve learned about tuning our model in this chapter,
resulting in a refined model that will outperform our baseline.

3.3.3 Improving the baseline model’s performance

Given all the insights gained in this chapter, let’s train models that synthesize these
learnings and compare them against the baseline. Some key takeaways from the previ-
ous sections that we’ll incorporate are listed here:

 Model depth—We’ll keep it low, at two layers.
 Neighborhood aggregation—We’ll use max aggregation and experiment with two

list aggregations. The same aggregation will be used on both layers.
 Dropout—We’ll use 50% dropout on both layers.

The following listing shows a GraphSAGE class with adjustable dropout, layer depth,
and aggregations.

class GraphSAGEWithCustomDropout(torch.nn.Module):
   def __init__(self, in_channels, \
hidden_channels, out_channels, num_layers, \
dropout_rate=0.5, aggr='mean'): 
       super(GraphSAGEWithCustomDropout, self).__init__()
       self.layers = torch.nn.ModuleList\
([SAGEConv(in_channels, hidden_channels, aggr=aggr)])
       for _ in range(1, num_layers-1): 
           self.layers.append(SAGEConv\
(hidden_channels, hidden_channels, aggr=aggr))
       self.layers.append(SAGEConv\
(hidden_channels, out_channels, aggr=aggr))
       self.dropout_rate = dropout_rate

   def forward(self, x, edge_index):
       for layer in self.layers[:-1]:
           x = F.relu(layer(x, edge_index))
           x = F.dropout(x, p=self.dropout_rate, training=self.training)
       x = self.layers[-1](x, edge_index)
       return F.log_softmax(x, dim=1)

We trained three models using the preceding class:

Listing 3.7 GraphSAGE class

The layer is initialized 
with number of layers,
dropout rate, and 
aggregation type.

The loop applies 
the aggregation 
to each layer.
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model_1 = GraphSAGEWithCustomDropout\
(subset_graph.num_features, 64, \
dataset.num_classes, 2, dropout_rate=.5, \
aggr= ‘max’).to(device)

model_2 = GraphSAGEWithCustomDropout\
(subset_graph.num_features, 64, \
dataset.num_classes, 2, dropout_rate=0.5, \
aggr=['max', 'sum', 'mean']).to(device)

model_3 = GraphSAGEWithCustomDropout\
(subset_graph.num_features, 64, \
dataset.num_classes, 2, dropout_rate=0.50,\
 aggr=[SoftmaxAggregation(), \
StdAggregation() ] ).to(device)

Table 3.7 summarizes the performance of different GraphSAGE models with various
aggregation methods and a baseline model using the default mean aggregation.
The results indicate that all the improved models outperform the baseline in both
F1 score and log loss. Notably, Model 2, which uses a combination of 'max', 'sum',
and 'mean' aggregations, achieved the highest F1 score of 0.8828. Model 3, with a
combination of SoftmaxAggregation() and StdAggregation(), shows the best log
loss at 0.5764, suggesting it has the highest prediction certainty among the tested
configurations.

The confusion matrix in figure 3.8 visualizes the classification performance of Model
1 with max aggregation. The majority of values are along the diagonal, indicating that
the model is correctly classifying most instances. However, there are off-diagonal ele-
ments, representing misclassifications, for example, instances of class 0 being classi-
fied as class 1 or vice versa. The frequency and spread of these misclassifications
highlight areas where the model struggles. Additionally, using the bar on the side indi-
cating the count of members per class, the confusion matrix shows how these different
classes are distributed. Some classes have higher counts, while others have significantly
lower counts, suggesting class imbalance in the dataset.

 

Table 3.7 Two-layer GraphSAGE models using 50% dropout and different aggregation types 

GraphSAGE Model Aggregation Type F1 Score Log Loss

Model 1 'max' 0.8674 0.594

Model 2 ['max', 'sum', 'mean'] 0.8876 0.660

Model 3 [SoftmaxAggregation(), 
StdAggregation()]

0.8829 0.574

Baseline model Mean (default) 0.7406 2.1214
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Note that, in all of this, we’ve been using less than 1% of the dataset’s nodes, arbi-
trarily chosen by index order. Increasing the number of nodes would improve the per-
formance of our models. Additionally, selecting a subgraph in a more meaningful way
while keeping the number of nodes the same could also increase performance.

 While the current models show significant improvement, several other strategies
can be considered to further enhance performance. Increasing the dataset size by
using a larger subset can provide more training data, potentially improving model gen-
eralization. Refining subgraph selection based on domain knowledge or using graph
sampling techniques can ensure that more meaningful data is used for training. Hyper-
parameter optimization, systematically tuning hyperparameters using tools such as
Hyperopt, can help find the optimal settings for the model. Hyperopt allows for effi-
cient searching of the hyperparameter space using algorithms such as Bayesian opti-
mization. Exploring more sophisticated aggregation functions or custom aggregations
tailored to the specific characteristics of the dataset can also yield improvements.
Additionally, implementing regularization methods such as L2 regularization or gradi-
ent clipping can stabilize training and prevent over-fitting. Graph preprocessing tech-
niques, such as normalization, feature engineering, and dimensionality reduction on
graph features, can enhance the quality of input data, further boosting model perfor-

Figure 3.8 Confusion matrix from the two-layer GraphSAGE model with 50% 
dropout and max aggregation. The strong diagonal pattern indicates good 
classification performance. The sidebar gives a distribution of the classes, 
highlighting a class imbalance.
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mance. Next, we’ll select the model that performs highest on log loss to generate
another product bundle.

3.3.4 Revisiting the Marcelina product bundle

The models have markedly improved from our baselines in section 3.1. Let’s revisit
the product bundling problem and recommend one for our product manager based
on our refined GraphSAGE model from the earlier section. Using the process from
section 3.1.5 results in the bundle in figure 3.9, which is displayed with the original
bundle for comparison. 

What do you think of this new bundle? Is it an improvement, that is, more likely to
drive purchases than the former bundle? This new bundle incorporates items from
Toys & Games, Books, and Movies & TV categories, which is a diverse product selec-
tion. The introduction of the Wild Kratts: Wildest Animal Adventures DVD alongside the
adventure book The Sword of Shannara and action figures reflects a pivot toward a more
family-oriented and child-friendly product mix.

 

Figure 3.9 Product bundles centered on the Marceline product. The upper bundle is from the improved model 
from section 3.3.3, while the lower bundle is from the baseline model of section 3.1.5. The new recommendations 
are members of the Toy & Games, Books, and Movies & TV categories. 
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 This new bundle’s potential for driving purchases is grounded in the enhanced
understanding of customer purchase behaviors and preferences captured by the
updated model. The bundle seems well-suited for gifting purposes, catering to both
the collectors of pop culture memorabilia (e.g., the Marceline figure and related col-
lectibles) and young fans of fantasy and adventure narratives.

 The shift from a more generic collection of toys to a focused, theme-oriented
bundle could likely increase its attractiveness as a purchase. The inclusion of both
entertainment (Wild Kratts: Wildest Animal Adventures DVD) and literary (The Sword of
Shannara) elements, in addition to the collectible figures, provides a more compre-
hensive entertainment experience centered around popular themes of adventure
and exploration. This could appeal to parents looking for engaging and themed
gifts that also offer educational value, such as the animal- and nature-related con-
tent of Wild Kratts.

 It’s crucial to consider the psychological effect of a well-curated bundle. By align-
ing the products more closely with identified customer interests and cross-selling
patterns, the bundle not only caters to existing demand but also encourages addi-
tional purchases by enhancing perceived value by how the bundled items comple-
ment each other.

 Ultimately, the decision on whether this new bundle is an improvement over the
original should be validated through customer feedback and sales data. Tracking
the sales performance of both bundles (as well as bundles suggested by human
product managers) and gathering direct customer insights through surveys or A/B
testing would be beneficial to quantitatively assess which bundle performs better in
terms of sales and customer satisfaction. This data-driven approach will confirm the
theoretical benefits of the advanced modeling techniques used in the new bundle’s
creation.

 With this, we conclude the hands-on product example of this chapter. The next
two sections are optional as they dive deeper into the theory of convolutional GNNs
and take a closer look at the Amazon Products dataset. 

3.4 Under the hood
Now that we’ve created and refined a working convolutional GNN, let’s dig deeper
into the elements of a GNN to better understand how they work. Such knowledge can
help when we want to design new GNNs or troubleshoot a GNN.

 In chapter 2, we introduced the idea of using GNN layers to produce a prediction
or create embeddings using message passing. Here’s that architecture diagram again,
reproduced in figure 3.10. 

 Let’s get below the surface of a GNN layer and examine its elements. Then, we’ll
tie this to the concept of aggregation functions.
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3.4.1 Convolution methods

Let’s first consider one of the most popular architectures for deep learning, the con-
volutional neural network (CNN). CNNs are typically used for computer vision tasks
such as segmentation or classification. A CNN layer can be thought of as having a
sequence of operations that are applied to input data:

Layer: Filter → Activation function → Pooling

The output of each entire layer is some transformed data that makes some downstream
task easier or more successful. These transformation operations include the following:

Figure 3.10 Node embedding 
architecture diagram from chapter 2Prediction

Message-Passing Layer

Message-Passing Layer

Message-Passing Layer

Multilayer Perceptron (MLP)

ŷ
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 Filter (or kernel operation)—A process that transforms the input data. The filter is
used to highlight some specific features of the input data and consists of learn-
able weights that are optimized by an objective or loss function.

 Activation Function—A nonlinear transformation applied to the filter output.
 Pooling—An operation that reduces the size of the filter output for subsequent

learning tasks. 

CNNs and many GNNs share a common foundation: the concept of convolution. You
read about the concept of convolution when we discussed the three operations used
in a CNN. Convolution in both CNNs and GNNs is all about learning by establishing
hierarchies of localized patterns in the data. For CNNs this might be used for image classi-
fication, whereas a convolutional GNN, such as a GCN, might use convolution to pre-
dict features of nodes. To emphasize this point, CNNs apply convolution to a fixed
grid of pixels to identify patterns in the grid. GCN models apply convolution to
graphs of nodes to identify patterns in the graph. 

 I referred to the concept of convolution in the previous paragraph because the convo-
lution can be implemented in different ways. Theoretically, convolution relates to the
mathematical convolution operator, which we’ll be discussing in more detail shortly. For
GNNs, convolution can be separated into spatial and spectral methods [1, 5, 6]:

 Spatial—Sliding a window (filter) across a graph.
 Spectral—Filtering a graph signal using spectral methods. 

SPATIAL METHODS

In traditional deep learning, convolutional processes learn data representations by
applying a special filter called a convolutional kernel to input data. This kernel is smaller
in size than the input data and is applied by moving it across the input data. This is
shown in figure 3.11, where we apply our convolutional kernel (the matrix in the cen-
ter) to an image of a lion. The resulting image has been inverted due to our convolu-
tional kernel, which has negative values for all non-center elements. We can see that
some of the features have been emphasized, such as the outline of the lion. This high-
lights the filtering aspect of convolutions.

Figure 3.11 A convolution of an input image (left). The kernel (middle) is passed over the image of an 
animal, resulting in a distinct representation (right) of the input image. In a deep learning process, the 
parameters of the filter (the numbers in the matrix) are learned parameters.
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This use of convolutional networks is particularly common in the computer vision
domain. For example, when learning on 2D images, we can apply a simple CNN of a
few layers. In each layer, we pass a 2D filter (kernel) over each image. The 3 × 3 filter
works on an image many times its size. We can produce learned representations of the
input image by doing this over successive layers.

 For graphs, we want to apply this same idea of moving a window across our data,
but now we need to make adjustments to account for the relational and non-Euclidian
topology of our data. For images, we’re dealing with rigid 2D grids; for graphs, we’re
dealing with data that has no fixed shape or order. Without a predefined ordering of
the nodes in a graph, we use the concept of a neighborhood, consisting of a starting
node, and all of its one-hop neighbors (i.e., all nodes within one hop from the central
node). Then, our sliding window moves across a graph by moving across its node
neighborhoods. 

 In figure 3.12, we see an illustration comparing convolution applied to grid data
and applied to graph data. In the grid case, pixel values are filtered around the nine
pixels immediately surrounding the central pixel (marked with a gray dot). However,
for a graph, node attributes are filtered based on all nodes that can be connected by
one edge. Once we have the nodes that we’ll be considering, we then need to perform
some operation on the nodes. This is known as the aggregation operation; for example,
all the node weights in a neighborhood might be averaged or summed, or we might
take the max value. What is important for graphs is that this operation is permutation
invariant. The order of the nodes shouldn’t matter.

SPECTRAL METHODS

To introduce the second method of convolution, let’s examine the concept of a graph
signal [6]. In the field of information processing, signals are sequences that can be
examined in either time or frequency domains. When studying a signal in the time

Figure 3.12 A comparison of convolution over grid data (left; e.g., a 2D image) and over a graph (right).
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domain, we consider its dynamics, namely how it changes over time. From the fre-
quency domain, we consider how much of the signal lies within each frequency band.

 We can also study the signal of a graph in an analogous way. To do this, we define a
graph signal as a vector of node features. Thus, for a given graph, its set of node
weights can be used to construct its signal. As a visual example, in figure 3.13, we have
a graph with values associated with each node, where the height of each respective bar
represents some node feature.

To operate on this graph signal, we represent the graph signal as a matrix, where each
row is a set of features associated with a particular node. We can then apply operations
from signal processing on the graph matrix. One critical operation is that of the Fou-
rier transform. The Fourier transform can express a graph signal, its set of node fea-
tures, into a frequency representation. Conversely, an inverse Fourier transform will
revert the frequency representation into a graph signal.

ABOVE AND BEYOND: LIMITATIONS OF TRADITIONAL DEEP LEARNING METHODS TO GRAPHS

Why can’t we apply CNNs directly to a graph structure? The reason is because graph
representations have an ambiguity that image representations don’t. CNNs, and tradi-
tional deep learning tools in general, can’t resolve this ambiguity. A neural network that
can deal with this ambiguity is said to be permutation equivariant or permutation invariant.

 Let’s illustrate the ambiguity of a graph versus an image by considering the image
of the lion shown earlier. A simple representation of this set of pixels is as a 2D matrix
(with dimensions for height and width). This representation will be unique: if we swap
out two rows of the image, or two columns, we don’t have an equivalent image. Simi-
larly, if we swap out two columns or rows of the matrix representation of the image (as
shown in figure 3.14), we don’t have an equivalent matrix.

 This isn’t the case with a graph. Graphs can be represented by adjacency matrices
(described in chapter1 and appendix A), such that each row and column element
stands for the relation between two nodes. If an element is nonzero, it means that
the row node and column node are linked. Given such a matrix, we can repeat our

Figure 3.13 A random positive graph signal on the 
vertices of the graph. The height of each vertical bar 
represents the signal value at the node where the 
bar originates.
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previous experiment and swap out two rows as we did with the image. Unlike the case
of the image, we end up with a matrix that represents the graph we started with. We
can do any number of permutations or rows and columns and end up with a matrix
that represents the same graph.

 Returning to the convolution operation, to successfully apply a convolutional filter
or a CNN to the graph’s matrix representation, such an operation or layer would have
to yield the same result no matter the ordering of the adjacency matrix (because every
ordering describes the same thing). CNNs fail in this respect.

 Finding convolutional filters that can be applied to graphs has been solved in a
variety of ways. In this chapter, we examined two ways this has been done: spatial and
spectral methods. (For a deeper discussion and derivation of convolutional filters
applied to graphs, see [7].)

3.4.2 Message passing

Both spatial and spectral approaches describe how we can combine data on our
graph. Spatial methods look at the graph structure and combine data across spatial
neighborhoods. Spectral methods look at the graph signal and use methods from sig-
nal processing, such as the Fourier transform to combine data across the graph.
Implicit to both these methods is the idea of message passing.

 In chapter 3, we introduced message passing as a way to extract more information
from our graphs. Let’s go step-by-step and consider what message passing does. First,
the messages from each node or edge are collected from neighboring nodes. Second,
we transform these messages to encode the data as feature vectors. Finally, we update
the node or edge data to include these messages. The result is that each node or edge
ends up containing individual data as well as data from the rest of the graph. The
amount of data that becomes encoded in these nodes is reflected by the number of
hops or message-passing steps. This is the same as the number of layers in a GNN. In
figure 3.15, we show a mental model for message passing. 

 The output of each message-passing layer is a set of embeddings or features. In the
aggregation step, we gather the messages from the graph neighborhoods. In the transfor-

Figure 3.14 The image of a lion is unique (left). If we swap out two columns 
(right), we end up with a distinct photo with respect to the original.
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mation step, we apply a neural network to the aggregated messages. Finally, in the update
step, we alter the features of the nodes or edges to include the message passing data. 

 In this way, a GNN layer is similar to a CNN layer. It can be interpreted as a
sequence of operations that are applied to input data:

Layer: Aggregate → Transform → Update

As we explore different GNNs in this book, we’ll return to this set of operations, as
most types of GNNs can be seen as modifications of these elements. For example, in
this chapter, you’re learning about GCNs as a specific type of aggregation. In the next
chapter, you’ll learn about GATs, which combine both transformation and aggrega-
tion steps by learning how to aggregate messages using an attention mechanism. 

 To build this message-passing step, let’s work through the preceding process, add-
ing more detail. The first two steps can be understood as a type of filter, similar to the
first step of a conventional neural network. First, we aggregate node or edge data
using our aggregation operator. For example, we might sum the features, average the fea-
tures, or choose the maximum values. The most important thing is that the order of
the nodes shouldn’t matter for the final representation. The reason that the order
shouldn’t matter is that we want our models to be permutation equivariant, which
means that subtraction or division wouldn’t be suitable. 

 Once we’ve aggregated information from all node or collected all the messages, we
then transform them into embeddings by passing the new messages through a neural
network and an activation function. Once we have these transformed embeddings, we
apply an activation function and then combine them with the node or edge data and
the previous embeddings. 

 The activation function is a nonlinear transformation that is applied to the trans-
formed and aggregated messages. We need the function to be nonlinear; otherwise,
the model would be linear, regardless of how many layers it has, similar to a linear (or
logistic, in our case) regression model. These are standard activation functions used
in artificial neural networks, such as the ReLU, which is the maximum value between
zero and the input value. The pooling step then reduces the overall size of the filter

( )( )

1. initial graphInput

with node, edges,

and features.

2. all featuresCollect

from neighboring nodes,

known as messages, for

each node.

3. messagesAggregate

using invariant

functions such as sum,

max, or mean.

4. messagesTransform

using a neural network to

create new node features.

5. all featuresUpdate

in the graph with new

node features.

Figure 3.15 Elements of our message-passing layer. Each message-passing layer consists of an aggregation, a 
transformation, and an update step.
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output for any graph-level learning tasks. For node prediction, this can be omitted,
which we’ll do here.

 We can combine the previous description into a single expression for the message-
passing operation. First, let’s assume that we’re working with node embeddings as
we’ll do in this chapter. We want to transform the data for node n into a node embed-
ding. We can do so using the following formula:

(3.1)

Here, u represents the nodes. The learnable weights are given by Wa, which will be
tuned based on the loss function, and σ is the activation function. To build the
embeddings, we need to take all the node data and combine it into a single vector.
This is where the aggregation function comes in. For GCNs, the aggregation opera-
tor is summation. Therefore,

(3.2)

where, for node u, hv is data from node v in the neighborhood of node u, N(u).
Combining both equations, we can construct a general formula for constructing
node embeddings:

 
(3.3)

For the preceding formula, we see that a node and its neighborhood play a central
part. Indeed, this is one of the main reasons that GNNs have proven to be so success-
ful. We also see that we need to make a choice on both our activation function and
our aggregation function. Finally, these are updated to include the previous data at
each node: 

(3.4)

Here, we’re concatenating the messages together. It’s also possible to use other methods
to update the message information, and the choice depends on the architecture used. 

 This update equation is the essence of message passing. For each layer, we’re
updating all the node data using the transformed data that contains all aggregated mes-
sages. If we have only one layer, we perform this operation only once, we’re aggregat-
ing the information from the neighbors one hop away from our starting node. If we
run these operations for multiple iterations, we aggregate nodes within two hops of
our central node into the node feature data. Thus, the number of GNN layers is
directly tied to the size of the neighborhoods we’re interrogating with our model.
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 These are the fundamentals for what operations are being performed during a
message-passing step. The variations of things such as aggregation or activation func-
tions highlight key differences in the architecture of a GNN. 

3.4.3 GCN aggregation function

The key distinction between GCN and GraphSAGE is that they perform different
aggregation operations. GCN is a spectral-based GNN, whereas GraphSAGE is a spa-
tial method. To better understand the difference between the two, let’s look at imple-
menting them both. 

 First, we need to understand how to apply convolution to graphs. Mathematically,
the convolutional operation can be expressed as the combination of two functions
that produces a third function as

(3.5)

where f(x) and h(x) are functions, and the operator represents element-wise multipli-
cation. In the context of CNNs, the image and the kernel matrices are the functions in
equation 3.6:

(3.6)

This mathematical operation is interpreted as the kernel sliding over the image, as in
the sliding window method. We can convert the preceding description to matrices or
tensors describing our data. To apply the convolution of equation 3.7 to graphs, we
use the following ingredients:

 Matrix representations of the graph:
– Vector x as the graph signal
– Adjacency matrix A
– Laplacian matrix L
– A matrix of eigenvectors of the Laplacian U

 A parameterized matrix for the weights, H
 Fourier transform based on the matrix operations: UTx

This leads to the expression for spectral convolution over a graph:

(3.7)

Because this operation isn’t a simple element-wise multiplication, we’re using the sym-
bol *G to express this operation. Several convolutional-based GNNs build on equation
3.8; next, we’ll examine the GCN version.

 GCNs introduced changes to the convolution equation (3.8) to simplify opera-
tions and to reduce computational cost. These changes include using a filter based
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on a polynomial rather than a set of matrices and limiting the number of hops to
one. This reduces the computational complexity from quadratic to linear, which is
significant. However, the key thing to note is that GCNs updated the aggregation
function that we described earlier. This will still use a summation but includes a
normalization term. 

 Previously, the aggregation operator was summation. This can lead to problems in
graphs where the degree of nodes can have high variance. If a graph contains nodes
whose degrees are high, those nodes will dominate. To solve this, one method is to
replace summation with averaging. The aggregation function is then expressed as

(3.8)

Therefore, for GCN message passing, we have

(3.9)

where

 h is the updated node embedding.
 sigma, σ, is a nonlinearity (i.e., activation function) applied to every element.
 W is a trained weight matrix.
 |N | denotes the count of the elements in the set of graph nodes

The summed factor,

(3.10)

is a special normalization called symmetric normalization. Additionally, GCNs include
self-loops such that node embeddings include both neighborhood data and data from
the starting node. So, to implement a GCN, the following operations must occur:

 Graph nodes adjusted to contain self-loops
 Matrix multiplication of the trained weight matrix and the node embeddings
 Normalization operations summing the terms of the symmetric normalization

In figure 3.16, we explain each of the terms used in a message-passing step in detail.
 So far this has all been theoretical. Let’s next look at how we implement this in PyG. 
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3.4.4 GCN in PyTorch Geometric

In the PyG documentation, you can find source code that implements the GCN layer,
as well as a simplified implementation of the GCN layer. In the following, we’ll point
out how the source code implements the preceding key operations.

 In table 3.8, we break down key steps in the computation of the GCN embeddings
and tie them to functions in the source code. These operations are implemented
using a class and a function:

 Function gcn_norm performs normalization and add self-loops to the graph.
 Class GCNConv instantiates the GNN layer and performs matrix operations.

In listing 3.8, we show the code in detail for the gcn_norm function and class and use
annotation to highlight the key operations. This normalization function is a key
aspect for the GCN architecture. The gcn_norm arguments are as follows:

 edge_index—The node representations are in a tensor or sparse tensor form.
 edge_weight—An array of one-dimensional edge weights is optional.
 num_nodes—This is a dimension of the input graph.
 improved—This introduces an alternative method to add self-loops from the

Graph U-Nets paper [8].
 Add_self_loops—Adding self-loops is the default, but it’s optional.

Table 3.8 Mapping key computational operations in the GCN embedding formula

Operation Function/Method

Add self-loops to nodes gcn_norm(), annotated in listing 3.8

Multiply weights and embeddings W(k)hu GCNConv.__init__; GCNConv.forward

Symmetric normalization gcn_norm(), annotated in listing 3.8

Symmetric normalization

Activation term
(e.g., ReLU)

Matrix multiplication of node
embeddings with learned weights

Figure 3.16 Mapping of key computational operations in the GCN embedding formula
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def gcn_norm(edge_index, edge_weight=None, num_nodes=None, improved=False,
             add_self_loops=True, dtype=None): 

   fill_value = 2. if improved else 1. 

   if isinstance(edge_index, SparseTensor): 
       adj_t = edge_index
       if not adj_t.has_value():
           adj_t = adj_t.fill_value(1., dtype=dtype)
       if add_self_loops:
           adj_t = fill_diag(adj_t, fill_value)
       deg = sparsesum(adj_t, dim=1)
       deg_inv_sqrt = deg.pow_(-0.5) 
       deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0.)
       adj_t = mul(adj_t, deg_inv_sqrt.view(-1, 1))
       adj_t = mul(adj_t, deg_inv_sqrt.view(1, -1))
       return adj_t

   else: 
       num_nodes = maybe_num_nodes(edge_index, num_nodes)

       if edge_weight is None:
           edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype,
                                    device=edge_index.device)

       if add_self_loops:
           edge_index, tmp_edge_weight = add_remaining_self_loops(
               edge_index, edge_weight, fill_value, num_nodes)
           assert tmp_edge_weight is not None
           edge_weight = tmp_edge_weight

       row, col = edge_index[0], edge_index[1]
       deg = scatter_add(edge_weight, col, dim=0, dim_size=num_nodes)
       deg_inv_sqrt = deg.pow_(-0.5)
       deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0)
       return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]

In practice, we can simplify the implementation of the normalization considerably
by using some functions from PyTorch and PyG. In listing 3.9, we show a shortened
version of normalizing the adjacency matrix. First, we compute the in-degree for
each node and then calculate the inverse square root. We then use this to create a
new edge weighting and apply the degree-based inverse square root to this weight-
ing. Finally, we create a sparse tensor that represents the adjacency matrix and
assign this to our data.

 
 
 

Listing 3.8 The gcn_norm function

Performs symmetric normalization of the input
graph and adds a self-loop to the input graph

The fill_value parameter is used in the 
alternative self-loop operation. 

If the graph input is a
sparse tensor, the first
block of code in the if-

statement will apply.
Otherwise, the second

will apply.
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    edge_index = data.edge_index
    num_nodes = edge_index.max().item() + 1 
    
    deg = torch.zeros(num_nodes, \
    dtype=torch.float).to(edge_index.device)      
    deg.scatter_add_(0, edge_index[1],            
                 torch.ones(edge_index.size(1))\
.to(edge_index.device))                           

    deg_inv_sqrt = deg.pow(-0.5) 
    deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0  

    edge_weight = torch.ones(edge_index.size(1))\
    .to(edge_index.devic) 
    edge_weight = deg_inv_sqrt[edge_index[0]]*edge_weight*\
    deg_inv_sqrt[edge_index[1]] 

    num_nodes = edge_index.max().item() + 1  

    adj_t = torch.sparse_coo_tensor(indices=edge_index,\
    values=edge_weight, size=(num_nodes, num_nodes))     
    data.adj_t = adj_t.coalesce()                        

In the following listing, we have excerpts of the GCNConv class, which calls on the
gcn_norm function as well as the matrix operations.

class GCNConv(MessagePassing):    

    def __init__(self, in_channels: int, out_channels: int,
improved: bool = False, cached: bool = False,
        add_self_loops: bool = True, normalize: bool = True,
        bias: bool = True, **kwargs):    

        self.lin = Linear(in_channels, out_channels, bias=False,
                         weight_initializer='glorot')
    def forward(self, x: Tensor, edge_index: Adj,
                edge_weight: OptTensor = None) -> Tensor:

if self.normalize: 
    if isinstance(edge_index, Tensor):
        cache = self._cached_edge_index
            if cache is None:
                edge_index, edge_weight = gcn_norm( 
                edge_index, edge_weight, x.size(self.node_dim),
                self.improved, self.add_self_loops)
                if self.cached:
                    self._cached_edge_index = (edge_index, edge_weight)

Listing 3.9 Normalizing using PyTorch and PyG

Listing 3.10 The GCNConv class 

Assumes node indices start from 0

Computes in-degree 
for each node

Computes the degree-based 
inverse square

Creates a new 
edge_weight tensor

Applies 
deg_inv_sqrt to
edge weights

Assumes 
node indices 
start from 0

Creates a sparse tensor
and assigns to data

The forward 
propagation 
function 
performs 
symmetric 
normalization 
given one of two
options: that 
the input graph
is a tensor or a 
sparse tensor. 
The source code
for a tensor 
input is included
here.
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                else:
                    edge_index, edge_weight = cache[0], cache[1]

        x = self.lin(x) 

        out = self.propagate(edge_index, x=x,\
 edge_weight=edge_weight, size=None) 

        if self.bias is not None: 
            out += self.bias

        return out

3.4.5 Spectral vs. spatial convolution

In the previous section, we talked about interpreting convolution in two ways: (1) via a
thought experiment of sliding a window filter across part of a graph consisting of a
local neighborhood of linked nodes, and (2) by processing graph signal data through
a filter. We also discussed how these two interpretations highlight two branches of con-
volutional GNNs: the spatial method and the spectral method. Sliding window and
other spatial methods rely on a graph’s geometrical structure to perform convolution.
Spectral methods instead use graph signal filters.

 There is no clear demarcation between the spectral and spatial methods, and often
one type can be interpreted as the other. For example, one contribution of GCN is the
demonstration that its spectral derivation could be interpreted in a spatial way. How-
ever, at the time of writing, spatial methods are preferred because they have fewer
restrictions and, in general, offer less computational complexity. We’ve highlighted
additional aspects of both spectral and spatial methods in table 3.9.

3.4.6 GraphSAGE aggregation function

GraphSAGE improved on the computational cost of GCNs by limiting the number of
neighboring nodes used in the aggregation operation. Instead, GraphSAGE aggregates
from a randomly selected sample of the neighborhood. The aggregation operator is
more flexible (e.g., it can be a summation or an average), but the messages that are con-
sidered are now only a subset of all messages. Mathematically, we can write this as

(3.11)

Table 3.9 A comparison of spectral and spatial convolutional methods

Spectral Spatial

Operation: performing a convolution using a 
graph’s eigenvalues

Operation: aggregation of node features in node 
neighborhoods

 Must be undirected
 Operation dependent on node features
 Generally less computationally efficient

 Not required to be undirected
 Operation not dependent on node features
 Generally more computationally efficient

Linear transformation of 
the node feature matrix

Message 
propagation

There is an optional additive 
bias to the output.
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where Ɐu ϵ S denotes that the neighborhood is picked from a random sample, S, of
the total neighborhood. From the GraphSAGE paper [2], we have the general embed-
ding updating process, which the paper introduces as Algorithm 1, reproduced here
in figure 3.17.

The basics of this algorithm can be described as follows:

1 For every layer/iteration and for every node:

a Aggregate the embeddings of the neighbors.
b Concatenate neighbor embeddings with the central node.
c Matrix multiply that concatenation with the Weights matrix.
d Multiply that result with an activation function.
e Apply a normalization.

2 Update node features, z, with node embeddings, h.

Let’s take a closer look at what this means for the message-passing step. We’ve defined
message passing for GraphSAGE as follows: 

(3.12)

Figure 3.17 Algorithm 1, the GraphSAGE embedding generation algorithm from the GraphSAGE paper [2] 
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If we choose the mean as the aggregation function, this becomes

(3.13)

For implementation, we can further reduce this to

(3.14)

where x'i denotes the generated central node embeddings, and xi and xj are the input
features of the central and neighboring nodes, respectively. The weight matrices are
applied to both central nodes and neighboring nodes, as shown in figure 3.18, but
only the neighboring nodes have an aggregation operator (in this case, the mean). 

We’ve now seen all the main features of the GraphSAGE algorithm. Let’s next look at
how we implement this in PyG. 

3.4.7 GraphSAGE in PyTorch Geometric

In table 3.10, we break down the key operations and where they occur in PyG’s
GraphSAGE class. The key operations are aggregation of the neighbor embed-
dings, concatenation of a node’s neighbors’ embeddings with that node’s embed-
dings, multiplication of weights with the concatenation, and application of an
activation function.

Table 3.10 Mapping key computational operations in the GCN embedding formula

Operation Function/Method

Aggregate the embeddings of the neighbors 
(sum, mean, or other).

SAGEConv.message_and_aggregate

Concatenate neighbor embeddings with that of 
the central node.

SAGEConv.forward

Matrix multiply that concatenation with the 
Weights matrix.

SAGEConv.message_and_aggregate

Weight matrices to apply
to central and neighbor
node embeddings

Apply MEAN
aggregation to
neighbor nodes.

Concatenate central node to neighbor nodes.

Figure 3.18 Mapping key 
computational operations in the 
GraphSAGE embedding formula
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s 
For GraphSAGE, PyG also has source code to implement this layer in the SAGEConv
class, excerpts of which are shown in the following listing. 

class SAGEConv(MessagePassing):
…
   def forward(self, x, edge_index, size):

        if isinstance(x, Tensor):
            x: OptPairTensor = (x, x)

       if self.project and hasattr(self, 'lin'): 
           x = (self.lin(x[0]).relu(), x[1])

       out = self.propagate(edge_index, x=x, size=size) 
       out = self.lin_l(out) 
       x_r = x[1] 

       if self.root_weight and x_r is not None: 
           out += self.lin_r(x_r) 

       if self.normalize: 
           out = F.normalize(out, p=2., dim=-1) 
       return out

   def message(self, x_j):
       return x_j

   def message_and_aggregate(self, adj_t, x):
       adj_t = adj_t.set_value(None, layout=None) 
       return matmul(adj_t, x[0], reduce=self.aggr) 
…

3.5 Amazon Products dataset
In both this chapter and chapter 5, we use the Amazon Products dataset [9]. This
dataset explores product relationships, particularly co-purchases, which are products
purchased in the same transaction. This co-purchase data is a great dataset for bench-
marking methods for predicting both nodes and edges. We give a bit more informa-
tion about the dataset in this section.

Apply an activation function. If the project parameter is set to True, done in 
SAGEConv.forward

Apply a normalization. SAGEConv.forward

Listing 3.11 The GraphSAGE class

Table 3.10 Mapping key computational operations in the GCN embedding formula (continued)

Operation Function/Method

If the project parameter is 
set to True, this applies a 
linear transformation with an 
activation function (ReLU, in thi
case) to the neighbor nodes.

Propagates messages 
and applies a linear 
transformation

Assigns the root 
node to a variable

If the root_weight 
parameter is set to True 
and a root node exists, this 
will add (concatenate) the 
transformed root node 
features to the output.

If the normalize parameter is set 
to True, L2 normalization will be 
applied to the output features.

Matrix multiplication with an aggregation. Setting the aggr parameter establishes the
aggregation scheme (e.g., mean, max, lstm; default is add). adj_t is the sparse matrix

representation of the input; using such a representation speeds up calculations.
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 To illustrate the concept of co-purchases, in figure 3.19, we show six example co-
purchase images for an online customer. For each product, we include a picture, a
plain text product label, and a bold text category label.

Some of these co-purchase groups seem to fit together well, such as the book purchases
or the clothing purchases. Other co-purchases are less explainable, such as an Apple
iPod being purchased with instant meals, or beans being purchased with a wireless
speaker. In those less obvious groupings, there may be some latent product relationship,
or maybe it’s just mere coincidence. Examining the data at scale can provide clues.

 To show how the co-purchasing graph would appear at a small scale, figure 3.20
takes one of the images from the previous figure and represents the products as nodes,
with the edges between them representing each co-purchase. For one customer and
one purchase, this is a small graph, with only four nodes and six edges. But for the
same customer over time, for a larger set of customers with the same tastes in food, or
even all the customers, it’s easy to imagine how this graph can scale with more prod-
ucts and product connections branching from these few products. 

 The construction of this dataset is a long journey in itself, which is very much of
interest to graph construction and the decisions that have to be made to get a mean-
ingful and useful dataset. Put simply, this dataset was derived from purchasing log data
from Amazon, which directly showed co-purchases, and from text data from product
reviews, which was used to indirectly show product relationships. (For the in-depth
story, see [8]).

 To explore the product relationships, we can use the Amazon Products co-purchasing
graph, a dataset of products that have been bought together in the same transaction
(defined as a co-purchase). In this dataset, products are represented by nodes with

Radar Detector

Electronics

Radar Detector

Car Mount

Electronics

Europe Travel Books

Books

Portable Music Player

Electronics
Bengal Lentils

Gourmet Food

Green Shirt

Clothes

Men’s Jeans

Clothes

Blue Henley

Clothes

Figure 3.19 Examples of co-purchases on Amazon.com. Each product is represented by a picture, a plain text 
product title, and a bold text product category. We see that some co-purchases feature products that are obvious 
complements of one another, while other groupings are less so.
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both the type of product that was bought, which are the category labels, and some fea-
ture information. The feature information takes the product description and first
applies a natural language processing (NLP) method, the bag-of-words algorithm, to
convert the strings into numerical values. Then, to convert this into the same fixed
length, the creators of the dataset used principal component analysis (PCA) to con-
vert this into a vector of length 100. 

 Meanwhile, co-purchases are represented by edges, which refers to two products
that were bought together. In total, the dataset, ogbn-products, consists of 2.5 million
nodes (products) and 61.9 million edges (co-purchases). The dataset is provided
through the Open Graph Benchmark (OGB) dataset, mentioned at the beginning of
the chapter, with a usage license from Amazon. Each node has 100 features. There are
47 categories that are used as targets in a classification task. We note that the edges
here are undirected and unweighted. 

 In figure 3.21, we see that the categories with the highest counts of nodes are
Books (668,950 nodes), CDs & Vinyl (172,199 nodes), and Toys & Games (158,771
nodes). The lowest are Furniture and Decor (9 nodes), Digital Music (6 nodes), and
an unknown category (#508510) with 1 node. 

 We also observe that many categories have very low proportions in the dataset. The
mean count of nodes per label/category is 52,107; the median count is 3,653. This
highlights that there is a strong class imbalance in our dataset. This can pose a chal-
lenge for typical tabular results. 

Product = Node

Connection between Products = Edge

Figure 3.20 A graph representation of one of the co-purchases from figure 3.19. Each product’s 
picture is a node, and the co-purchases are the edges (shown as lines) between the products. For 
the four products shown here, this graph is only the co-purchasing graph of one customer. If we 
show the corresponding graph for all customers of Amazon, the number of products and edges 
could feature tens of thousands of product nodes and millions of co-purchasing edges.



1213.5 Amazon Products dataset
In this chapter, we explored the fundamentals of graph convolutional networks (GCNs)
and GraphSAGE, two powerful architectures for learning on graph-structured data.
We applied these models to a practical product categorization problem using the
Amazon Products dataset, demonstrating how to implement, train, and refine GNNs.
We also delved into the theoretical underpinnings of these models, examining con-
cepts like neighborhood aggregation, message passing, and the distinctions between
spectral and spatial convolution methods. By combining hands-on implementation
with theoretical insights, this chapter has provided a comprehensive foundation for
understanding and applying convolutional GNNs to real-world graph learning tasks.
In the next chapter, we study a special convolutional GNN that uses the attention
mechanism, the Graph Attention Network (GAT).
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Figure 3.21 Distribution of node labels in the Amazon Products dataset
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Summary
 GCNs and GraphSAGE are GNNs that use convolution, done by spatial and

spectral methods, respectively.
 These GNNs can be used in supervised and semi-supervised learning problems.

We applied them to the semi-supervised problem of predicting product categories.
 The Amazon Products dataset, ogbn-products, consists of a set of products

(nodes) linked by being purchased in the same transaction (co-purchases).
Each product node has a set of features, including its product-category. This
dataset is a popular benchmark for graph classification problems. We can also
study how it was constructed to get insights on graph creation methodology.

 Selecting subgraphs based on domain knowledge or using graph sampling tech-
niques ensures more meaningful data is used for training. This can improve the
performance of the models by focusing on relevant parts of the graph.

 Different aggregation methods, such as mean, max, and sum, have varied effects
on model performance. Experimenting with multiple aggregation strategies can
help capture various properties of the graph data, potentially enhancing model
performance.

 Exploring more sophisticated aggregation functions or custom aggregations tai-
lored to the specific characteristics of the dataset can yield performance improve-
ments. Examples include SoftmaxAggregation and StdAggregation.

 Depth in GNNs is analogous to the number of hops or message-passing steps.
While deeper models can theoretically capture more complex patterns, they
often suffer from over-smoothing, where node features become too similar,
making it difficult to distinguish between different nodes.

 Empirical testing of different aggregation methods and model configurations is
essential. Experimentation helps determine which methods best capture the
relational dynamics and feature distributions of the dataset.



Graph attention networks
In this chapter, we extend our discussion of convolutional graph neural network
(convolutional GNN) architectures by looking at a special variant of such models,
the graph attention network (GAT). While these GNNs use convolution as intro-
duced in the previous chapter, they extend this idea with an attention mechanism
to highlight important nodes in the learning process [1, 2]. In contrast to the
conventional convolutional GNN, which weights all nodes equally, the attention
mechanism allows the GAT to learn what aspects in its training to put extra
emphasis on.

 As with convolution, attention is a widely used mechanism in deep learning out-
side of GNNs. Architectures that rely on attention (particularly transformers) have

This chapter covers
 Understanding attention and how it’s applied 

to graph attention networks

 Knowing when to use GAT and GATv2 layers 
in PyTorch Geometric

 Using mini-batching via the NeighborLoader class

 Implementing and applying graph attention 
networks layers in a spam detection problem
123
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seen such success in addressing natural language problems that they now dominate
the field. It remains to be seen if attention will have a similar effect in the graph world.

 GATs shine when dealing with domains where some nodes have more importance
than the graph structure suggests. Sometimes in a graph, there can be a single high-
degree node that has an outsized importance on the rest of the graph, and the vanilla
message passing (covered in the previous chapter) will likely capture its significance
thanks to the node’s many neighbors. However, sometimes a node can have a large
effect despite having a similar degree to other nodes. Some examples include social
networks, where some members of a network have more influence on generating or
spreading information and news; fraud detection, where a small set of actors and
transactions drive deception; and anomaly detection, where a small subset of people,
behaviors, or events will fall outside the norm [3–5]. GATs are especially well suited to
these types of problems. 

 In this chapter, we’ll apply GATs to the domain of fraud detection. In our problem,
we detect fake customer reviews from the Yelp website. For this, we use a network of
user reviews derived from a dataset that contains Yelp reviews for hotels and restau-
rants in the Chicago area [6, 7]. 

 After an introduction to the problem and the dataset, we first train a baseline
model without the graph structure before applying two versions of the GAT model to
the problem. At the end, we discuss class imbalance and some ways to address this.

 Code snippets will be used to explain the process, but the majority of code and
annotation can be found in the repository. As with previous chapters, we provide a
deeper dive into the theory in section 4.5 at the end of the chapter. 

NOTE Code from this chapter can be found in notebook form at the GitHub
repository (https://mng.bz/JYoP). Colab links and data from this chapter can
be accessed in the same location.

4.1 Detecting spam and fraudulent reviews
On consumer-oriented websites and e-commerce platforms such as Yelp, Amazon, and
Google Business Reviews, it’s common for user-generated reviews and ratings to
accompany the presentation and description of a product or a service. In the United
States, more than 90% of adults trust and rely on these reviews and ratings when mak-
ing a purchase decision [3]. At the same time, many of these reviews are fake. Capital
One estimated that 30% of online reviews weren’t real in 2024 [5]. In this chapter,
we’re going to be training our model to detect fake reviews. 

 Spam or fraudulent review detection has been a well-trodden area in machine
learning and natural language processing (NLP). As such, several datasets from pri-
mary consumer sites and platforms are available. In this chapter, we’re going to use
review data from Yelp.com, a platform of user reviews and ratings that focuses on con-
sumer services. On Yelp.com, users can look up local businesses in their proximity and

https://mng.bz/JYoP
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browse basic information about the business and written feedback from users. Yelp
uses internally developed tools and models to filter reviews based on their trustworthi-
ness. The process we’ll use to approach the problem is shown in figure 4.1.

First, we’ll establish baselines using non-GNN models and tabular data: logistic regres-
sion, XGBoost, and scikit-learn’s multilayer perceptron (MLP). Then, we’ll apply
graph convolutional network (GCN) and GAT to the problem, introducing graph
structural data.

 This fraudulent review problem can be tackled as a node classification problem.
We’ll use GAT to perform node classification of the Yelp reviews, sifting the fraudulent
from the legitimate reviews. This classification is binary: “spam” or “not spam.” 

 We expect that the graph structural data and attention mechanism will give an
edge to the attention-based GNN models. We’ll follow this process in this chapter:

 Load and preprocess the dataset
 Define baseline models and results
 Implement the GAT solution and compare it to baseline results

Traditional

Models

Training Data:

Non-Graph

Training Data:

Graph

Graph Neural Networks

(GNNs)

Common

Review Data

Binary Classification:

Spam or Not Spam

Figure 4.1 We’ll tackle the fraudulent user review classification problem using both non-graph 
and graph data.
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4.2 Exploring the review spam dataset
Derived from a broader Yelp review dataset, our data focuses on reviews from Chi-
cago’s hotels and restaurants. It has also been preprocessed so that the data has a
graph structure. This means we’re going to be using a specialized version of the Yelp
Multirelational dataset, characterized by its graph structure and its focus on consumer
reviews from many Chicago-based hotels and restaurants. The Yelp Multirelational
dataset is derived from the Yelp Review dataset and processed into a graph. This data-
set contains the following (final version of the dataset is summarized in table 4.1):

 45,954 nodes—Each node represents an individual review, with 14.5% of them
flagged as likely fraudulent and created by a bot to skew the reviews.

 Preprocessed node features—Our nodes come with 32 features that have been nor-
malized to facilitate machine learning algorithms.

 3,892,933 edges—Edges connect reviews that have a common author or review a
common business. While the original dataset had multiple types of relational
edges, we use one with homogenous edges for easier analysis.

 No user or business IDs—Distinguishing IDs have been removed.

Next, table 4.2 shows examples of text reviews from this dataset, ordered by the star
rating system.

Table 4.1 Overview of the Yelp Multirelational dataset 

Yelp Review dataset for the city of Chicago processed into a graph, with node features based 
on review text and user data

Number of nodes (reviews) 45,954

Filtered (fraudulent) nodes 14.5%

Node features 32

Total number of edges (edges are assumed to be homogenous in our analysis) 3,846,979

Reviews with a common writer 49,315

Reviews of a common business and written in the same month 73,616

Reviews of a common business that share the same rating 3,402,743

Table 4.2 Sampling of reviews from the YelpChi dataset for one restaurant, in descending order by rating
(5 being the highest)

Rating (1–5) Date Review*

5 7/7/08 Perfection. Snack has become my favorite late lunch/early dinner 
spot. Make sure to try the butter beans!!!

4 7/1/13 Ordered lunch for 15 from Snack last Friday. On time, nothing missing 
and the food was great. I have added it to the regular company lunch 
list, as everyone enjoyed their meal.
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4.2.1 Explaining the node features

Highlights of this dataset are its node features. These were extracted from available meta-
data such as ratings, timestamps, and review text. They are divided into the following:

 Characteristics of the text review 
 Characteristics of the reviewer 
 Characteristics of the reviewed business

These features are then further divided into behavioral and textual features:

 Behavioral features highlight patterns of behavior and actions of the reviewers. 
 Textual features are based on the text found in the reviews. 

The process for calculating these features was developed by Rayana and Akoglu [7]
and Dou [9]. Taking the original formulas from Rayana and Akoglu, Dou prepro-
cessed and normalized the feature data that we use in this example. A summary of the
features is shown in figure 4.2. (For more details on definitions and how they were cal-
culated, refer to the original paper [8].) These node features are summarized here: 

 Reviewer and business features:
Behavioral:

– Max. number of reviews written in a day (MNR)—High value suggests spam.
– Ratio of positive reviews (4-5 star) (PR)—High value suggests spam.
– Ratio of negative reviews (1-2 star) (NR)—High value suggests spam.
– Avg. rating deviation (avgRD)—High value suggests spam.
– Weighted rating deviation (WRD)—High value suggests spam.
– Burstiness (BST)—Specifically, the time frame between the user’s first and

last review. High value suggests spam.
– Entropy of rating distribution (ERD)—Low value suggests spam.
– Entropy of temporal gaps Δt’s (ETG)—Low value is spam indicative.

3 12/8/14 The food at snack is a selection of popular Greek dishes. The appe-
tizer tray is good as is the Greek salad. We were underwhelmed with 
the main courses. There are 4-5 tables here so it’s sometimes hard 
to get seated.

2 9/10/13 Been meaning to try this place for a while-highly recommended by a 
friend. Had the tuna sandwich . . . good but got TERRIBLY SICK after-
word. Also, sage tea was nice.

1 8/12/12 Lackluster service, soggy lukewarm spinach pie and two-day-old 
cucumber salad. Go to Local instead!

*Spelling, grammar, and punctuation are uncorrected in these reviews.

Table 4.2 Sampling of reviews from the YelpChi dataset for one restaurant, in descending order by rating
(5 being the highest) (continued)

Rating (1–5) Date Review*
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Text-based:

– Avg. review length in words (RL)—Low value suggests spam.
– Avg./Max. content similarity measured with cosine similarity using a bag-of-

bigrams approach (ACS, MCS)—High value suggests spam.
 Review features:

Behavioral:

– Rank order among all the reviews of a product—Low value suggests spam.
– Absolute rating deviation from product’s average rating (RD)—High value is

suspicious.
– Extremity of rating (EXT)—High values (4-5 stars) are considered spammy.
– Thresholded rating deviation of review (DEV)—High deviation is suspicious.
– Early time frame (ETF)—Reviews that appear too early are suspicious.
– Singleton Reviewer Detection (ISR)—If the review is a user’s sole review, it’s

marked as suspicious.
Text-based:

– Percentage of ALL-capital words (PCW)—High values are suspicious.
– Percentage of capital letters (PC)—High values are suspicious.
– Review length in words—Low values are suspicious.
– Ratio of 1st person pronouns like “I”, “my” (PP1)—Low values are suspicious.
– Ratio of exclamation sentences (RES)—High values are suspicious.
– Ratio of subjective words—Detected by sentiWordNet (SW)—High values are

suspicious.
– Ratio of objective words—Detected by sentiWordNet (OW)—Low values are

suspicious.
– Frequency of review—Approximated using locality-sensitive hashing (F)—High

values are suspicious.
– Description length based on unigrams and bigrams (DLu, DLb)—Low values are

suspicious.

Figure 4.2 gives a summary of the set of features.
 This diverse mix of features requires varying degrees of intuition to interpret.

These features not only help in understanding the behavior of reviewers but also in
deducing the context and essence of the reviews. It’s clear that certain features, such
as Singleton Reviewer Detection or Review Length in Words can provide immediate
insights, while others, such as Entropy of Temporal Gaps Δt’s, require a more consid-
ered understanding. Let’s next examine the distributions of these features present in
the data.
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4.2.2 Exploratory data analysis

In this section, we download and explore the dataset with a focus on node features.
Node features will serve as the main tabular features in our non-graph baseline
models.

 The dataset can be downloaded from Yingtong Dou’s GitHub repository (https://
mng.bz/Pdyg), compressed in a zip file. The unzipped file will be in MATLAB format.
Using the loadmat function from the scipy library and a utility function from Dou’s
repository, we can produce the objects we need to start (see listing 4.1):

Description length based on unigrams and bigrams ( )DLu, DLb

Frequency of review ( )F

Rank order among all the reviews of a product

Ratio of objective words ( )OW

Ratio of subjective words ( )SW

Ratio of exclamation sentences ( )RES

Ratio of first-person pronouns like “I”, “my” ( )PP1

Review length in words

Percentage of capital letters ( )PC

Percentage of ALL-capital words ( )PCW

Singleton review detection ( )ISR

Early time frame ( )ETF

Tresholded rating deviation of review ( )DEV

Extremity of rating ( )EXT

Absolute rating deviation from product’s average rating ( )RD

Low values are suspicious.

High values are suspicious.

Long value suggests spam.

Low values are suspicious.

High values are suspicious.

High values are suspicious.

Low values are suspicious

Low values are suspicious.

High values are suspicious.

High values are suspicious.

If a user’s sole review, it’s marked as suspicious.

Reviews that appear too early are suspicious.

High deviation is suspicious.

High values (4-5 stars) are considered spammy.

High value is suspicious.

High value suggests spam.

High value suggests spam.

Low value suggests spam.

Low value is spam indicative.

Low value suggests spam.

High value suggests spam.

High value suggests spam.

High value suggests spam.

High value suggests spam.

High value suggests spam.

Max. number of reviews written in a day ( )MNR

Avg./Max. content similarity ( )ACS, MCS

Avg. review length in words ( )RL

Entropy of temporal gaps t's ( )Δ ETG

Entropy of rating distribution ( )ERD

Burstiness ( )BST

Weighted rating deviation ( )WRD

Avg. rating deviation ( )avgRD

Ratio of negative reviews (1-2 star) ( )NR

Ratio of positive reviews (4-5 star) ( )PR

Figure 4.2 Summary definitions of node features used in the example. A label of high means that a high value 
of the data indicates a tendency toward spamminess. Likewise, a label of low means that a low value of the data 
indicates a tendency toward spamminess. (For more details on the derivation of these features, refer to [7].)

https://mng.bz/Pdyg
https://mng.bz/Pdyg
https://mng.bz/Pdyg
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 A features object containing the node features
 A labels object containing the node labels
 An adjacency list object

prefix = 'PATH_TO_MATLAB_FILE/'

data_file = loadmat(prefix +  'YelpChi.mat')  

labels = data_file['label'].flatten()         
features = data_file['features'].todense().A  

yelp_homo = data_file['homo']           
sparse_to_adjlist(yelp_homo, prefix +\
 'yelp_homo_adjlists.pickle')           

Once the adjacency list is extracted and pickled, it can then be called in the future
using

with open(prefix + 'yelp_homo_adjlists.pickle', 'rb') as file:
    homogenous = pickle.load(file)

With the data loaded, we can now perform some exploratory data analysis (EDA) to
analyze the graph structure and node features.

4.2.3 Exploring the graph structure

To better understand fraud within our dataset, we explore the underlying graph struc-
ture. By analyzing the connected components and various graph metrics, we can get
an overview of the network’s topology. This understanding will reveal the data’s inher-
ent characteristics and make sure there are no potential blockers to effective GNN
training. We present a detailed analysis of the connected components, density, cluster-
ing coefficients, and other key metrics. 

 To perform this structural EDA, we use our adjacency list to examine the structural
nature of our graph using the NetworkX library. In the following snippet of code, we
load the adjacency list object, convert it into a NetworkX graph object, and then inter-
rogate this graph object for three basic properties. The longer code can be found in
the repository:

with open(prefix + 'yelp_homo_adjlists.pickle', 'rb') as file:
homogenous = pickle.load(file)
g = nx.Graph(homogenous)
print(f'Number of nodes: {g.number_of_nodes()}')
print(f'Number of edges: {g.number_of_edges()}')
print(f'Average node degree: {len(g.edges) / len(g.nodes):.2f}')

Listing 4.1 Load data

loadmat is a scipy 
function that loads 
MATLAB files.

Retrieves the node labels 
and features, respectively

Retrieves and pickles an adjacency list. 
“Homo” means that this adjacency list will 
be based on a homogenous set of edges; 
that is, we get rid of the multirelational 
nature of the edges.
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From the EDA, we obtain the properties listed in table 4.3.

Let’s dig into these properties. The graph is relatively large with 45,954 nodes and
3,892,933 edges. This means the graph has a considerable level of complexity and will
likely contain intricate relationships. The average node degree is 84.71, suggesting
that, on average, nodes in the graph are connected to around 85 other nodes. This
indicates that the nodes in the graph are reasonably well connected, and there’s a pos-
sibility of rich information flow between them. The graph’s density is close to 0.00,
which indicates it’s quite sparse. In other words, the number of actual connections
(edges) is much lower than the number of possible connections. The density of a
graph is its number of edges divided by its total possible edges.

 The graph isn’t fully connected and consists of 26 separate connected compo-
nents. The presence of multiple connected components may require special consider-
ation in modeling, especially if different components represent distinct data clusters
or phenomena. The average clustering coefficient of 0.77 is relatively high. This met-
ric gives an idea of the graph’s “cliquishness.” A high value means that nodes tend to
cluster together, forming tightly knit groups. This could be indicative of local commu-
nities or clusters within the data, which can be crucial in understanding patterns or
anomalies, especially in fraud detection.

 Given that we have 26 distinct components, it’s important to examine them to plan
for model training. We want to know whether the components are roughly the same
size, are a mix of sizes, or have one or two components dominating. Do the properties
of these separate graphs differ significantly? We run a similar analysis on the 26 com-
ponents and summarize the properties in table 4.4, with the components displayed in
descending order in terms of the number of nodes. The first column contains the
identifier of the component. From this table, we observe that one large component
dominates the dataset.

Table 4.3 Graph properties

Property Value/details

Number of nodes 45,954

Number of edges 3,892,933

Average node degree 84.71

Density ~0.00

Connectivity The graph isn’t connected.

Average clustering coefficient 0.77

Number of connected components 26

Degree distribution (first 10 nodes) [4, 4, 4, 3, 4, 5, 5, 6, 5, 19]
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We see here that component 3 is the dominant component, followed by 25 compo-
nents that are tiny in comparison. These tiny components probably won’t have a
strong influence over our model, so we’ll focus on component 3. Let’s contrast this
component with the overall graph, found in table 4.5. Most of the properties are very
similar or the same, with the exception of the average node degree, for which compo-
nent 3 is twice as large.

For our GNN modeling purposes, what should we take away from this structural analy-
sis? Primarily, the overwhelming dominance of component 3 in both nodes and edges
underscores its significance in our dataset; almost the entirety of the graph’s structure
is encapsulated within this single component. This suggests that the patterns, relation-
ships, and anomalies within component 3 will heavily influence the model’s training

Table 4.4 Properties of the 26 graph components, sorted in descending order by number of nodes 

Component ID
Number 
of nodes

Number 
of edges

Average node 
degree

Density
Average 

clustering coeff

3 45,900 38,92810 169.62 0 0.77

4 13 60 9.23 0.77 0.77

2 6 14 4.67 0.93 0.58

1, 22 3 6 4 2 1

5–9, 14, 17, 24, 26 2 3 3 3 0

7–21, 23, 25 1 1 2 0 0

In the bottom three rows, several components have identical properties and are put in the same row to save space.

Table 4.5 Comparing the largest component of the graph, component 3, to the overall graph

Attribute
Component 

No. 3
Overall Graph Insight/Contrast

Number of nodes 45,900 45,954 Component 3 contains almost all nodes 
from the entire graph.

Number of edges 3,892,810 3,892,933 Component 3 contributes almost all edges 
of the entire graph.

Average node degree 169.62 84.71 Nodes in component 3 are more densely 
connected than in the overall graph.

Density 0.00 0.00 Both the component and the entire graph are 
sparse; this property is mainly driven by 
component 3.

Average clustering 
coefficient

0.77 0.77 Component 3 matches the overall graph in 
terms of clustering, indicating its dominance 
in defining the graph’s structure.
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and outcomes. The higher average node degree in component 3, compared to the
overall graph, indicates a richer interconnectedness, emphasizing the importance of
capturing these dense connections effectively. Furthermore, the identical density and
clustering coefficient values between component 3 and the entire graph highlight
that this component is highly representative of the dataset’s overall structural proper-
ties. We have two options:

1 Assume that the other components will have a minor effect on the model and
train without making any adjustments.

2 Model only component 3 itself, completely leaving the data of the smaller com-
ponents out of the training and test data.

We looked at the structural properties of the graph data to get a glimpse into the char-
acteristics of the graph and got some valuable insights to guide GNN model design
and training for understanding potential fraud patterns. Next, we deep dive into the
node features.

4.2.4 Exploring the node features

Having explored the structural nature of our graph, we turn to the node features. In
the code at the beginning of this section, we pulled out the node features from the
data file: 

features = data_file['features'].todense().A

NOTE As discussed previously, these feature definitions were handcrafted by
Rayana and others [7, 8]. Guided by the feature generation process, Dou et
al. [8] did the nontrivial work of further processing the Yelp review dataset to
create a set of normalized node features.

With some additional work, shown in the code repository, we also add some tags and
descriptions to the features before we create a chart distribution for each feature (exam-
ple plots are shown in figures 4.3 to 4.5). Each set of plots corresponds to features
describing the review text, the reviewer, and the business. We want to use these plots to
check that the node features can be useful in distinguishing fraud. Figure 4.3 shows the
distributions of two of the features derived from the characteristics of the reviews.

 Figure 4.4 shows the distributions of two of the features derived from the charac-
teristics of the reviewers.

 Finally, figure 4.5 shows two of the distributions of the features derived from the
characteristics of the restaurant or hotel being reviewed.

 By examining the histograms for the 32 node features, we can make several observa-
tions. First, there’s a pronounced skewness in many of the features. Specifically, features
such as Rank, RD, and EXT lean toward a right-skewed distribution. This indicates that
the majority of data points fall on the histogram’s left side, but a few higher-value
points stretch the histogram toward the right. Conversely, features such as MNR_user,
PR_user, and NR_user, among others, display a left-skewed distribution. In these cases,
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Figure 4.3 Distribution plots of 2 of the 15 normalized node features based on the review 
(see section 4.2.1 for feature definitions)

Figure 4.4 Distribution plots of two of the nine normalized node features based on the reviewer (see section 4.2.1 
for feature definitions)
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most of the data points concentrate on the histogram’s right side, with a few lower-
value points stretching the histogram to the left. 

 Some features also exhibit a bimodal distribution, meaning that there are two dis-
tinct peaks or groups within the data. This suggests that segmenting the data and cre-
ating separate models for each group could be a useful strategy.

 Lastly, the long tails in several histograms suggest there are some outliers. Given
that certain models, such as linear regression, are highly sensitive to extreme values,
addressing these outliers could be crucial in refining and improving our model. This
could mean opting for outlier-resistant models, developing strategies to mitigate their
effect, or even removing them altogether. 

 Given those general insights, let’s examine one of the feature plots more closely.
PP1 is the ratio of first-person pronouns (i.e., I, me, us, our, etc.) to second person
pronouns (you, your, etc.) in the review. This feature was developed due to an obser-
vation that spam reviews typically contain more second person pronouns. From the
distribution plot for PP1, we observe that the distribution is skewed left, with a tail that
peaks at low values. Thus, if a low ratio is an indicator of a spammy review, this feature
would be good at distinguishing spam reviews.

 To conclude our exploration of the node features, this data exhibits diverse char-
acteristics, with many opportunities for model training. Further preprocessing, which
could involve outlier handling, skewed feature transformation, data segmentation,
and feature scaling, may be crucial in optimizing the model’s predictive performance.

 Our exploration of the review spam dataset revealed some patterns, anomalies,
and insights. From the intricate structural characteristics of the dataset, represented

Figure 4.5 Distribution plots of two of the eight normalized node features based on the business being reviewed 
(see section 4.2.1 for feature definitions)
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largely by dominant component 3, to the node features that provide promising indica-
tions for distinguishing between genuine and fraudulent reviews, we’ve laid the
groundwork for our model training. 

 In section 4.3, we’ll embark on training our baseline models. These initial models
serve as a foundation, helping us gauge the effectiveness of basic model performance.
Through these models, we’ll harness the potential of the data’s graph structure and
node features to separate fraud and spam from genuine reviews.

4.3 Training baseline models
Given our dataset, we’ll begin the training phase by first developing three baseline
models: logistic regression, XGBoost, and an MLP. Note that for these models, the
data will have a tabular format, with the node features serving as our columnar fea-
tures. There will be one row or observation for every node of our graph dataset. Next,
we’ll develop an additional GNN baseline by training a GCN to evaluate the effect of
introducing graph structured data to our problem. 

 We now split our tabular data into test and train sets, and apply the three baseline
models. First, the test/train splitting:

from sklearn.model_selection import train_test_split 
split = 0.2
xtrain, xtest, ytrain, ytest = train_test_split\
(features, labels, test_size = \
split, stratify=labels, random_state = 99)  

print(f'Required shape is {int(len(features)*(1-split))}')  
print(f'xtrain shape = {xtrain.shape}, \
xtest shape = {xtest.shape}')                               
print(f'Correct split = {int(len(features)*(1-split))\
 == xtrain.shape[0]}')                                      

We can use this split data for each of the three models. For this training, we’re only
using the node features and labels. There is no use of the graph data structure or
geometry. For the baseline models and for the GNNs, we’ll mainly rely on Receiver
Operating Characteristic (ROC) and Area Under the Curve (AUC) to gauge perfor-
mance and to compare the performance of our GAT models.

4.3.1 Non-GNN baselines

We start by using a logistic regression model with the scikit-learn implementation and
the default hyperparameters:

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score, f1_score

clf = LogisticRegression(random_state=0)\
.fit(xtrain, ytrain)  

Splits data into test 
and train sets with 
an 80/20 split

Double-checks 
the object 
shapes

Logistic regression 
model instantiation 
and training
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ypred = clf.predict_proba(xtest)[:,1]
acc = roc_auc_score(ytest,ypred)  

print(f"Model accuracy (logression) = {100*acc:.2f}%")

This model yields an AUC of 76.12%. For the ROC performance, we’ll also use a func-
tion from scikit-learn. We’ll also recycle the true positive rate (tpr) and false positive
rate (fpr) to compare with our other baseline models:

from sklearn.metrics import roc_curve 
fpr, tpr, _ = roc_curve(ytest,ypred)  

plt.figure(1)
plt.plot([0, 1], [0, 1])
plt.plot(fpr, tpr)
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.show()

In figure 4.6, we see the ROC curve. We find that the curve is relatively balanced
between false positives and false negatives but that the overall specificity is quite poor,
given how near it is to the diagonal.

XGBOOST

The XGBoost baseline follows the logistic regression, as shown in listing 4.2. We use a
barebones model with the same training and test sets. For comparison, we differenti-
ate the names of the generated predictions (named pred2), the true positive rate
(tpr2), and the false positive rate (fpr2).

Accuracy score

ROC curve calculation, 
yielding false positive 
rate (fpr) and true 
positive rate (tpr)

Figure 4.6 ROC curve for 
logistic regression baseline 
model (orange line) and 
chance line (blue diagonal 
line). An AUC of 76% indicates 
a model that can be improved.



138 CHAPTER 4 Graph attention networks
import xgboost as xgb
xgb_classifier = xgb.XGBClassifier()

xgb_classifier.fit(xtrain,ytrain)
ypred2 = xgb_classifier.predict_proba(xtest)[:,1]  
acc = roc_auc_score(ytest,ypred2)

print(f"Model accuracy (XGBoost) = {100*acc:.2f}%")

fpr2, tpr2, _ = roc_curve(ytest,ypred2)  

plt.figure(1)
plt.plot([0, 1], [0, 1])
plt.plot(fpr, tpr)
plt.plot(fpr2, tpr2)                     
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.show()

Figure 4.7 shows the ROC curves for XGBoost and logistic regression. It’s clear that
XGBoost has superior performance for this metric.

XGBoost fares better than logistic regression with this data, yielding an AUC of 94%,
and with a superior ROC curve. This highlights that even a simple model can be suit-
able for some problems, and it’s always a good idea to check performance. 

Listing 4.2 XGBoost baseline and plot 

For comparison, we 
name the XGBoost 
predictions “ypred2”.

For comparison, we distinguish 
the tpr and fpr of XGBoost and 
plot them alongside the logistic 
regression result.

Figure 4.7 ROC curve for the 
XGBoost (dotted line), shown 
with the logistic regression 
curve (solid line). We see 
that the XGBoost curve shows 
a better performance than 
the logistic regression. The 
diagonal line is the chance line.
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MULTILAYER PERCEPTRON

For the MLP baseline, we use PyTorch to build a simple, three-layer model, as shown
in listing 4.3. As with PyTorch, we establish the model using a class, defining the layers
and the forward pass. In the MLP, we use binary cross-entropy (BCE) as the loss func-
tion, which is commonly used in binary classification problems.

import torch  
import torch.nn as nn
import torch.nn.functional as F

class MLP(nn.Module):  
    def __init__(self, in_channels, out_channels, hidden_channels=[128,256]):
        super(MLP, self).__init__()
        self.lin1 = nn.Linear(in_channels,hidden_channels[0])
        self.lin2 = nn.Linear(hidden_channels[0],hidden_channels[1])
        self.lin3 = nn.Linear(hidden_channels[1],out_channels)
                
    def forward(self, x):
        x = self.lin1(x)
        x = F.relu(x)
        x = self.lin2(x)
        x = F.relu(x)
        x = self.lin3(x)
        x = torch.sigmoid(x)
        
        return x

model = MLP(in_channels = features.shape[1],\
 out_channels = 1)  

epochs = 100  
lr = 0.001
wd = 5e-4
n_classes = 2
n_samples = len(ytrain)

w= ytrain.sum()/(n_samples - ytrain.sum())  

optimizer = torch.optim.Adam(model.parameters()\
,lr=lr,weight_decay=wd)  
criterion = torch.nn.BCELoss()  

xtrain = torch.tensor(xtrain).float()  
ytrain = torch.tensor(ytrain)

losses = []

for epoch in range(epochs): 
    model.train()
    optimizer.zero_grad()
    output = model(xtrain)

Listing 4.3 MLP baseline and plot 

Imports needed packages 
for this section

Defines the MLP 
architecture using a class

Instantiates 
the defined 
model

Sets key hyperparameters

Added to the account 
for class imbalance

Defines the optimizer 
and the training 
criterion

Uses BCE loss as 
the loss function

Converts training data to torch 
data types: torch tensors

The training loop. In this 
example, we’ve specified 
100 epochs.
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    loss = criterion(output, ytrain.reshape(-1,1).float())
    loss.backward()
    losses.append(loss.item())

    ypred3 = model(torch.tensor(xtest,dtype=torch.float32))

    acc = roc_auc_score(ytest,ypred3.detach().numpy())
    print(f'Epoch {epoch} | Loss {loss.item():6.2f}\
    | Accuracy = {100*acc:6.3f}% | # True\ Labels = \
    {ypred3.detach().numpy().round().sum()}', end='\r')

    optimizer.step()

fpr, tpr, _ = roc_curve(ytest,ypred)
fpr3, tpr3, _ = roc_curve(ytest,ypred3.detach().numpy())  

plt.figure(1)  
plt.plot([0, 1], [0, 1])
plt.plot(fpr, tpr)
plt.plot(fpr2, tpr2)
plt.plot(fpr3, tpr3)
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.show()

Figure 4.8 shows the ROC results for logistic regression, XGBoost, and an MLP.

The MLP run for 100 epochs yields an accuracy of 85.9% in the middle of our base-
lines. Its ROC curve is only slightly better than the logistic regression models. These
results are summarized in table 4.6.

Differentiates 
the tpr and fpr 
for comparison

Plots all three 
ROC curves 
together

Figure 4.8 ROC curves for 
all three baseline models. 
The curves for logistic 
regression and MLP overlap. 
The XGBoost model shows 
the best performance for this 
metric. The diagonal line is 
the chance line.
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To summarize this section, we’ve run three baseline models to use as benchmarks
against our GNN models. These baselines used no structural graph data, only a set of
tabular features derived from the node features. We didn’t attempt to optimize these
models, and XGBoost ended up performing the best with an accuracy of 89.25%.
Next, we’ll train one more baseline using GCN and then apply the GATs.

4.3.2 GCN baseline

In this section, we’ll apply GNNs to our problem, starting with the GCN from chapter 3
before moving on to a GAT model. We anticipate that our GNN models will outperform
other baselines thanks to the graph structural data, and the models with an attention
mechanism will be best. For the GNN models, we need to make some changes to our
pipeline. A lot of this has to do with the data preprocessing and data loading. 

DATA PREPROCESSING

One critical first step is to prepare the data for use by our GNNs. This follows some of
what has already been covered in chapters 2 and 3. The code for this is provided in
listing 4.4, where we take the following steps:

 Establish the train/test split. We use the same test_train_split function from
before, slightly tweaked to produce indices, and we only keep the resulting
indices.

 Transform our dataset into PyG tensors. For this, we start with the homogenous
adjacency list generated in an earlier section. Using NetworkX, we convert this
to a NetworkX graph object. From there, we use the PyG from_networkx func-
tion to convert this to a PyG data object.

 Apply the train/test split to the converted data objects. For this, we use the indices
from the first step.

We want to show a variety of ways to arrange the training data for ingestion. So, for the
GCN, we’ll run the entire dataset through the model, while in the GAT example, we’ll
batch the training data.

from torch_geometric.transforms import NormalizeFeatures

split = 0.2                                       
indices = np.arange(len(features))                

Table 4.6 Log loss and ROC AUC for the three baseline models

Model Log Loss ROC AUC

logistic regression 0.357 75.90%

XGBoost 0.178 94.17%

Multilayer perceptron 0.295 85.93%

Listing 4.4 Converting the datatypes of our training data 

Establishes the train/test split. 
We’ll only use the index variables.
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xtrain, xtest, ytrain, ytest, idxtrain, idxtest\
 = train_test_split(features labels,indices, \
stratify=labels, test_size = split, \
random_state = 99)                                

g = nx.Graph(homogenous)                                           
print(f'Number of nodes: {g.number_of_nodes()}')
print(f'Number of edges: {g.number_of_edges()}')
print(f'Average node degree: {len(g.edges) / len(g.nodes):.2f}')
data = from_networkx(g)                                            
data.x = torch.tensor(features).float()                            
data.y = torch.tensor(labels)                                      
data.num_node_features = data.x.shape[-1]                          
data.num_classes = 1 #binary classification                        

A = set(range(len(labels)))                                 
data.train_mask = torch.tensor([x in idxtrain for x in A])  
data.test_mask = torch.tensor([x in idxtest for x in A])    

With the preprocessing done, we’re ready to apply the GCN and GAT solutions. We
detailed the GCN architecture in chapter 3. In listing 4.5, we establish a two-layer
GCN, trained over 1,000 epochs. We choose two layers due to the insight from chap-
ter 3 that, in general, a low model depth improves performance and prevents over-
smoothing.

class GCN(torch.nn.Module):      
    def __init__(self, hidden_layers = 64):
        super().__init__()
        torch.manual_seed(2022)
        self.conv1 = GCNConv(data.num_node_features, hidden_layers)
        self.conv2 = GCNConv(hidden_layers, 1)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index

        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index)

        return torch.sigmoid(x)

device = torch.device("cuda"\
 if torch.cuda.is_available() \
else "cpu")             
print(device)
model = GCN()
model.to(device)
data.to(device)

Listing 4.5 GCN definition and training 

Establishes the train/test 
split. We’ll only use the 
index variables.

Takes the 
adjacency 
list and 
transforms 
it into 
PyG data 
objects

Establishes the 
train/test split in 
the data objects

Defines a two-layer 
GCN architecture

Instantiates the model 
and puts the model and 
data on the GPU
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lr = 0.01
epochs = 1000

optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=5e-4)
criterion = torch.nn.BCELoss()

losses = []
for e in range(epochs):     
    model.train()
    optimizer.zero_grad()
    out = model(data)                         

    loss = criterion(out[data.train_mask], \
    data.y[data.train_mask].\
    reshape(-1,1).float())                    
    loss.backward()
    losses.append(loss.item())

    optimizer.step()

    ypred = model(data).clone().cpu()
    pred = data.y[data.test_mask].clone().cpu().detach().numpy()
    true = ypred[data.test_mask].detach().numpy()
    acc = roc_auc_score(pred,true)

    print(f'Epoch {e} | Loss {loss:6.2f} \
    | Accuracy = {100*acc:6.3f}% \
    | # True Labels =\ {ypred.round().sum()}')
fpr, tpr, _ = roc_curve(pred,true)     

APPLYING THE SOLUTIONS

One item of note is the use of the masks in our training. While we establish loss using
the nodes in the training mask, for forward propagation, we must pass the entire
graph through the model. Why is this so? Unlike traditional machine learning models
that work on independent data points (e.g., rows in a tabular dataset), GNNs operate
on graph-structured data where the relationships between nodes are critical. When
training a GCN, each node’s embedding is updated based on its neighbors’ informa-
tion. Because this message-passing process involves aggregating information from a
node’s local neighborhood, the model needs access to the entire graph structure so
that it can compute these aggregations correctly and accurately perform this process.

 So, during training, even though we’re only interested in the prediction for cer-
tain nodes (those in the training set), passing the entire graph through the model
ensures that all necessary context is considered. If only part of the graph were passed
through the model, the network would lack the complete information needed to
propagate messages correctly and update node representations effectively.

 A training session of 100 epochs for the GCN yields an accuracy of 94.37%. By
introducing the graph data, we see incremental improvement against the XGBoost
model. Table 4.7 compares the model performance levels. 

Training loop

For each epoch, we feed the 
entire data object through the 
model and then use the training 
mask to calculate the loss.

Calculates false positive 
rate (fpr) and true 
positive rate (tpr)
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To summarize, we’ve seen that including graph structural information using a GNN
model slightly improves performance compared to a purely feature-based or tabular
model. It’s clear that the XGBoost model has shown impressive results even without
the use of graph structures. However, the GCN model’s marginally better perfor-
mance underlines the potential of GNNs in using relational information embedded in
graph data.

 In the next phase of our study, our attention will turn to graph attention networks
(GATs). GATs have an attention mechanism that is especially tailored to learning how
to weigh the significance of neighbors during a message-passing step. This can poten-
tially offer even better model performance. In the next section, we’ll delve into the
details of training GAT models and comparing their outcomes with the baselines
we’ve established. Let’s proceed with GAT model training.

4.4 Training GAT models
To train our GAT models, we’ll apply two PyG implementations (GAT and GATv2)
[2]. In this section, we’ll dive straight into training the models without discussing what
attention means for machine learning models and why it’s helpful. However, for a
short overview on attention and why attention might be all you need, see section 4.5.

 We’ll be training two different GAT models. These both follow the same funda-
mental idea—that we’re replacing the aggregation operator in our GCN with an atten-
tion mechanism to learn what messages (node features) the model should pay the
most attention to. The first—GATConv—is a simple extension to the GCN in chapter
3 with the attention mechanism. The second is a slight variation to this model known
as GATv2Conv. This model is the same as GATConv except that it addresses a limita-
tion in the original implementation, namely that the attention mechanism is static
over individual GNN layers. Instead, for GATv2Conv, the attention mechanism is
dynamic across layers. 

 To reiterate this, the original GAT model only computes the attention weights
once per training loop by using individual node and neighborhood features, and
these weights are static across all layers. In GATv2, the attention weights are calculated
on the node features as they are transformed through the layers. This allows GATv2 to
be more expressive, learning to emphasize the influence of node neighborhoods
throughout the trained model. 

Table 4.7 AUC for the four baseline models

Model AUC

Logistic regression 75.90%

XGBoost 94.17%

Multilayer perceptron 85.93%

GCN 94.37%
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 Both models introduce a significant computational overhead due to the introduc-
tion of the attention mechanism. To address this, we introduce mini-batching to our
training loop. 

4.4.1 Neighborhood loader and GAT models

From an implementation point of view, one key difference between the previously
studied convolutional models and our GAT models is the much larger memory require-
ments of GAT models [9]. The reason for this is that GAT requires a calculation of
attention scores for every attention head and for every edge. This in turn requires the
PyTorch autograd method to hold tensors in memory that can scale up considerably,
depending on the number of edges, heads, and (twice) the number of node features.

 To get around this problem, we can divide our graph into batches and load these
batches into the training loop. This is in contrast to what we did with our GCN model
where we trained on one single batch (the entire graph). PyG’s NeighborLoader (in
its dataloader module) allows such mini-batch training, where we provide implemen-
tation code for this in listing 4.6. (PyG function NeighborLoader is based on the
“Inductive Representation Learning on Large Graphs” paper [10].) The key input
parameters for NeighborLoader are

 num_neighbors—How many neighbor nodes will be sampled, multiplied by the
number of iterations (i.e., GNN layers). In our example, we specify 1,000 nodes
over two iterations.

 batch_size—The number of nodes selected for each batch. In our example,
we set the batch size to be 128. 

from torch_geometric.loader import NeighborLoader

batch_size = 128
loader = NeighborLoader(
    data,
    num_neighbors=[1000]*2,  
    batch_size=batch_size,  
    input_nodes=data.train_mask)

sampled_data = next(iter(loader))
print(f'Checking that batch size is \
{batch_size}: {batch_size == \
sampled_data.batch_size}')
print(f'Percentage fraud in batch: \
{100*sampled_data.y.sum()/\
len(sampled_data.y):.4f}%')
sampled_data

In creating our GAT model, there are two key changes to make relative to our GCN
class. First, because we’re training in batches, we want to apply a batch-norm layer.

Listing 4.6 Setting up NeighborLoader for GAT

Samples 1,000 
neighbors for each 
node in two iterations

Uses a batch 
size for sampling 
training nodes
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Batch normalization is a technique used to normalize the inputs of each layer in a
neural network to have a mean of 0 and a standard deviation of 1. This helps stabilize
and accelerate the training process by reducing internal covariate shift, allowing the
use of higher learning rates, and improving the overall performance of the model.

 Second, we note that our GAT layers have an additional input parameter—heads—
which is the number of multihead attentions. In our example, our first GATConv layer
has two heads, as specified in listing 4.7. 

 The second GATConv layer, which is the output layer, has one head. In this GAT
model, because we want the final layer to have a single representation for each node
for our task, we use one head. Multiple heads would result in a confusing output with
multiple node representations.

class GAT(torch.nn.Module):
    def __init__(self, hidden_layers=32, heads=1, dropout_p=0.0):
        super().__init__()
        torch.manual_seed(2022)
        self.conv1 = GATConv(data.num_node_features,\
 hidden_layers, heads, dropout=dropout_p)                           
        self.bn1 = nn.BatchNorm1d(hidden_layers*heads)    
        self.conv2 = GATConv(hidden_layers * heads, \
1, dropout=dropout_p)                                               

    def forward(self, data, dropout_p=0.0):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = self.bn1(x)                                   
        x = F.relu(x)
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index)

        return torch.sigmoid(x)

Our training routine for GAT is similar to the single-batch GCN, which we provide in
the following listing, except that we now need a nested loop for each batch. 

lr = 0.01
epochs = 1000

model = GAT(hidden_layers = 64,heads=2)
model.to(device)

Listing 4.7 GAT-based architecture 

Listing 4.8 Training loop for GAT 

GAT layers have a heads parameter, which determines the number of attention mechanisms
in each layer. In this implementation, the first layer (conv1) uses multiple heads for richer
feature extraction, while the final output layer (conv2) uses a single head to aggregate the

learned information into a # single output for each node.

Because mini-
batch training is 
being performed, 
a batch-norm 
layer is added.
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optimizer = torch.optim.Adam(model.parameters(), lr=lr,weight_decay=5e-4)
criterion = torch.nn.BCELoss()

losses = []
for e in range(epochs):    
    epoch_loss = 0.
    for i, sampled_data in enumerate(loader): 
        sampled_data.to(device)
        model.train()
        optimizer.zero_grad()
        out = model(sampled_data)
        loss = criterion(out[sampled_data.train_mask],\ 
sampled_data.y[sampled_data.train_mask].\
reshape(-1,1).float())
loss.backward()
epoch_loss += loss.item()

        optimizer.step()

        ypred = model(sampled_data).clone().cpu()
        pred = sampled_data.y[sampled_data.test_mask]\
.clone().cpu().detach().numpy()
        true = ypred[sampled_data.test_mask].detach().numpy()
        acc = roc_auc_score(pred,true)    
    losses.append(epoch_loss/batch_size)

    print(f'Epoch {e} | Loss {epoch_loss:6.2f}\
    | Accuracy = {100*acc:6.3f}% | 
    # True Labels = {ypred.round().sum()}')

The steps outlined previously are the same for GATv2Conv, which can be found in our
repository. Training GATConv and GATv2Conv yields accuracies of 95.65% and 95.10%,
respectively. As shown in table 4.8, our GAT models outperform the baseline models
and GCN. Figure 4.9 shows the ROC results of the GCN and GAT models. Figure 4.10
shows the ROC results of the GCN, GAT, and GATv2 models.

Table 4.8 ROC AUC of the models

Model ROC AUC (%)

Logistic regression 75.90

XGBoost 94.17

Multilayer perceptron 85.93

GCN 94.37

GAT 95.65

GATv2 95.10

Nested loop for mini-
batch training. Each 
iteration here is a batch 
of nodes loaded by 
NeighborLoader.
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When observing the ROC curves, we see that both GAT models outperform the GCN.
We also see that both have better false positive rates. This is crucial for fraud/spam
detection as false positives can lead to genuine transactions/users being incorrectly
flagged, causing inconvenience and loss of trust. For GATv2, we notice that for true
positive rates, its performance is the same as for GCN and GAT. This indicates that
while it’s conservative in not mislabeling genuine transactions as fraudulent, it might
miss some actual frauds. These insights can lead to paths to refine the models or to
decision-making about which to use. Despite the favorable AUC curves and scores, we

Figure 4.9 ROC curves for 
GCN and GATConv. The 
GATConv model shows the best 
performance for this metric 
because it has a higher AUC 
and because its false positive 
rate is markedly lower. The 
diagonal line is the chance line.

Figure 4.10 ROC curves for 
GCN, GATConv, and GATv2. 
Both GAT models outperform 
GCN. GATv2 has the same 
higher false positive profile 
than GAT but has a similar 
true positive rate.
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must address one final problem that affects the usability of our GAT models: class
imbalance.

4.4.2 Addressing class imbalance in model performance

Class imbalance is a critical challenge in GNN problems, where the minority class,
often representing rare but important instances (e.g., fraudulent activities), is signifi-
cantly underrepresented compared to the majority class. In our dataset, only 14.5% of
the nodes are labeled as fraudulent, making it challenging for the model to effectively
learn from this sparse data. While high AUC scores may suggest good overall perfor-
mance, they can be misleading, masking poor performance on the minority class that
is crucial for a balanced evaluation. A deeper analysis reveals a critical oversight: class
imbalance significantly undermines our precision and F1 scores.

 In response to this challenge, several methods have been developed specifically for
GNNs to address class imbalance. Traditional techniques such as the Synthetic Minority
Over-sampling Technique (SMOTE) have been adapted to create graph-specific meth-
ods such as GraphSMOTE, which generates synthetic nodes and edges to balance the
class distribution without disrupting the graph structure. Other approaches include
resampling techniques (both over-sampling and under-sampling), cost-sensitive learn-
ing, architectural modifications, and attention mechanisms that focus on minority
class features [11, 12].

 While these methods help improve model performance, they come with unique
challenges, such as preserving the graph’s topology, maintaining node dependencies,
and ensuring scalability. Recent advancements, such as Graph-of-Graph Neural Net-
works (G2GNN), have been developed to handle these problems more effectively. By
understanding and applying these strategies, we can enhance the robustness and fair-
ness of GNN models in real-world applications where class imbalance is a common
problem. Taking the GATv2 model from the previous section as the illustration, we
compare its F1, recall, and precision with that of XGBoost in table 4.9. XGBoost has
superior performance, while GATv2 struggles to handle the imbalanced data.

The GATv2 model’s performance reflects a common challenge faced in scenarios with
significant class imbalances. With the minority class constituting only 14.5% of the
data, the model emphasizes maximizing recall, achieving a perfect recall score of
1.000. This suggests that the model correctly identifies every instance of the minority

Table 4.9 Comparing F1, recall, and precision between the GATv2 and XGBoost models trained 
in this chapter

Metric GATv2 XGBoost

F1 score 0.254 0.734

Precision 0.145 0.855

Recall 1 0.643
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class, avoiding any missed detections of potentially crucial cases. However, this comes
at a significant cost to precision, which is notably low at 0.145. This indicates that
while the GAT is effective in detecting all true positives, it also misclassifies many neg-
ative cases as positive, leading to a high number of false positives. As a result, the F1
score, which reflects both precision and recall, is low at 0.254, highlighting the ineffi-
ciency of the model in balancing detection with accuracy. 

 To alleviate this, we implemented two strategies aimed at mitigating class imbal-
ance: SMOTE illustrated in figure 4.11 and a custom reshuffling approach shown in
figure 4.12.

SMOTE was used to generate synthetic nodes, reflecting the average degree charac-
teristics of the original dataset, and to artificially enhance the representation of
minority classes. The reshuffling method took a different approach by avoiding the
generation of synthetic data. Instead, it ensures a balanced class representation in
each training batch by redistributing the majority class data across the batches. This
is achieved using the BalancedNodeSampler class, which guarantees that each batch
has an equal number of nodes from both the majority and minority classes. For each
batch, the sampler randomly selects a balanced set of nodes, extracts the corre-
sponding subgraph, and re-indexes the nodes to maintain consistency. A typical
batch redistribution from this process is illustrated in figure 4.12. This class is shown
in listing 4.9.

Original Dataset Synthetic Data Generation
Upsampling Minority Class

Updated Dataset

Majority Class

Minority Class

Synthetic Data Points

Figure 4.11 An illustration of SMOTE, which seeks to provide a more balanced dataset by upsampling 
the minority class. On the left, we begin with the original dataset. In the middle, SMOTE creates 
synthetic data in the minority class. On the right, with the synthetic data added to the minority class, 
the dataset is more balanced.
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class BalancedNodeSampler(BaseSampler): 
    def __init__(self, data, num_samples=None):
        super().__init__()
        self.data = data  
        self.num_samples = num_samples   

    def sample_from_nodes(self, index, **kwargs):
        majority_indices = torch.\
where(self.data.y == 0)[0]   
        minority_indices = torch.\
where(self.data.y == 1)[0]   

        if self.num_samples is None:
            batch_size = min(len(majority_indices),\
 len(minority_indices))   
        else:
            batch_size = self.num_samples // 2 

        majority_sample = majority_indices[torch.randperm\
(len(majority_indices))[:batch_size]]                       
        minority_sample = minority_indices[torch.randint\
(len(minority_indices), (batch_size,))]                     

Listing 4.9 BalancedNodeSampler class 

Figure 4.12 Illustration of the reshuffling method using an example of 100 data points, with 76 in 
the majority class and 24 in the minority class. When creating batches for training, each batch is 
made to contain equal portions of the majority and minority classes. 

Optional: defines 
fixed sampling size 
per class

Indices for the 
majority class

Indices for the 
minority class

Determines balanced 
batch size

Randomly 
selects nodes for 
both classes 
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        batch_indices = torch.cat\
((majority_sample, minority_sample))  

        mask = torch.zeros(self.data.num_nodes, dtype=torch.bool)
        mask[batch_indices] = True   
        row, col = self.data.edge_index 
        mask_edges = mask[row] & mask[col]   
        sub_row = row[mask_edges] 
        sub_col = col[mask_edges] 

        new_index = torch.full((self.data.num_nodes,), -1, dtype=torch.long)
        new_index[batch_indices] = \
torch.arange(batch_indices.size(0))   
        sub_row = new_index[sub_row] 
        sub_col = new_index[sub_col] 

        return SamplerOutput(
            node=batch_indices,
            row=sub_row,
            col=sub_col,
            edge=None,  
            num_sampled_nodes=[len(batch_indices)],  
            metadata=(batch_indices, None)
        )

In this case, SMOTE didn’t yield performance improvement. Therefore, we’ll focus
on the results of applying the reshuffling method. The metrics in table 4.10 demon-
strate that our interventions have not only improved the fairness of the models but
also enhanced their robustness by better capturing the minority class without sacrific-
ing overall accuracy. While the reshuffling method’s AUC doesn’t exceed XGBoost
(94.17%), it handles the class imbalance well with superior F1, precision, and recall.

4.4.3 Deciding between GAT and XGBoost

The choice between using XGBoost and GATs should be informed by specific use-case
requirements and constraints. XGBoost offers efficiency and speed, which are advanta-
geous for projects with limited computational resources or when quick model training

Table 4.10 Comparing F1, precision, recall, and AUC of the GATv2 model 
trained with a class reshuffling method

Metric Value

Mean validation F1 score 0.809

Mean validation precision 0.878

Mean validation recall 0.781

Mean validation AUC 0.914

Combines samples from both 
classes into a single batch

Creates a mask for 
sampled nodes

Filters edges between 
sampled nodes

Re-indexes 
sampled nodes
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is required. However, GATs provide the added benefit of deeply integrating node rela-
tional data, which is essential for projects where internode relationships are pivotal to
understanding complex data patterns.

 GATs are particularly valuable for their ability to be integrated into broader deep
learning frameworks, offering enhanced node embeddings that encapsulate rich con-
textual information, thus making them suitable for complex relational datasets.

 Our exploration into methods for addressing class imbalance has significantly
informed our understanding of model performance in real-world scenarios. These
insights are crucial for the effective development of robust and effective models, espe-
cially in fields where precision and recall are critically balanced. In the next, optional
section, we go deeper into the concepts underlying GATs.

4.5 Under the hood
In this section, we discuss some of the additional details about attention and GATs.
This is provided for those who want to know what’s going on under the hood, but you
can safely skip this section if you’re more interested in learning how to apply the mod-
els. We dive into the equations from the GAT paper [8] and explain attention from a
more intuitive perspective.

4.5.1 Explaining attention and GAT models

In this section, we provide a foundational overview of attention mechanisms. Atten-
tion, self-attention, and multihead attention are explained conceptually. Then, GATs
are positioned as an extension of convolutional GNNs.

CONCEPT 1: THE VARIOUS ATTENTION MECHANISM TYPES

Attention is one of the most important concepts introduced into deep learning in the
past decade. It’s the basis for the, now famous, transformer model that powers many
of the breakthroughs in generative models such as large language models (LLMs).
Attention is the mechanism by which a model can learn what aspects in its training to
put extra emphasis on [13, 14]. What are the various types of attention in a model? 

ATTENTION

Imagine you’re reading a novel where the storyline isn’t linear but rather jumps
around, connecting various characters, events, or even parallel storylines. While read-
ing a chapter about a specific character, you remember and consider other parts of
the book where this character has appeared or been mentioned. Your understand-
ing of this character at any given moment is influenced by these different parts of
the book.

 In deep learning and GNNs, attention serves a similar purpose. When processing a
sentence in an NLP problem, attention means the model can learn the importance of
neighboring words. For a GNN considering a specific node in a graph, the model uses
attention to weigh the importance of neighboring nodes. This helps the model decide
which neighboring nodes are most relevant when trying to understand the current
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node, similar to how you remember relevant parts of the book to better understand
a character.

SELF-ATTENTION

Imagine reading a sentence in the novel that refers to multiple characters and events,
some of which are related in complex ways. To understand this sentence fully, you
have to recall how each character and event relate to each other, all within the scope
of that sentence. You might find yourself focusing more on certain characters or
events that are crucial to understanding the context of the sentence you’re currently
reading.

 For a GNN using self-attention, each node in a graph not only considers its imme-
diate neighbors but also takes into account its own features and position in the graph.
By doing this, each node receives a new representation influenced by a weighted con-
text of itself and other nodes, which helps in tasks that require understanding the
relationships between nodes in a complex graph.

MULTIHEAD ATTENTION

Suppose you’re a member of a book club that is reading the novel, and each member
of your club is asked to focus on different aspects of the novel—one on character
development, another on plot twists, and yet another on thematic elements. When
you all come together to discuss, you get a multifaceted understanding of the book.

 Similarly, in GNNs, multihead attention allows the model to have multiple “heads,”
or attention mechanisms, focusing on various aspects or features of the neighboring
nodes. These different heads can learn different patterns or relationships within the
graph, and their outputs are usually aggregated to form a more complete understand-
ing of each node’s role within the larger graph. 

CONCEPT 2: GATS AS VARIANTS OF CONVOLUTIONAL GNNS

GATs extend convolutional GNNs by incorporating attention mechanisms. In tradi-
tional convolutional GNNs such as GCNs, the contributions from all neighbors during
the message-passing step are equally weighted when aggregated. GATs, however, add
in attention scores to the aggregation function to weigh these contributions. This is
still permutation invariant (by design) but more descriptive than the summation oper-
ation in GCNs. 

PYG IMPLEMENTATIONS

PyG offers two versions of GAT layers. The two are distinguished by the types of atten-
tion used and the calculation of attention scores:

 GATConv—Based on Veličković’s paper [1], this layer uses self-attention to calcu-
late attention scores across the entire graph. It can also be configured to use
multihead attention, thereby employing multiple “heads” to focus on various
aspects of the input nodes.

 GATv2Conv—This layer improves upon GATConv by introducing dynamic atten-
tion. Here, self-attention scores are recalculated in a node-specific context across
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layers, making the model more expressive in how it learns to weigh node repre-
sentations constructed during the message-passing step within each layer of a
GNN. As with GATConv, it supports multihead attention to capture various fea-
tures or aspects more effectively.

TRADEOFFS VS. OTHER CONVOLUTIONAL GNNS

As implemented in PyG, GAT layers have advantages due to the use of attention.
There are performance tradeoffs to consider, however. Key factors to consider are:

 Performance—GATs generally have higher performance than standard convolu-
tional GNNs as they can focus on the most relevant features.

 Training time—Increased performance comes at the cost of more time required
to train the models due to the added complexity of computing the attention
mechanisms.

 Scalability—The computational cost also affects the scalability, making GATs less
suitable for very large or dense graphs.

4.5.2 Over-smoothing

You’ve learned how to change the aggregation operation used in the message-passing
step to include more complicated methods, such as attention mechanisms. However,
there is always a risk of performance degradation when applying multiple rounds of
message passing. This effect, known as over-smoothing, occurs because, after multiple
rounds of message passing [15], the updated features can converge to similar values.
An example of this is shown in figure 4.13. 

As we know, message passing occurs at each layer of a GNN. In fact, a GNN that has many
layers is more at risk of over-smoothing than one that has fewer layers. This is one of the
reasons why GNNs are typically more shallow than traditional deep learning models. 

Original Graph Layer 1 Layer 2 Layer 3

Multiple rounds of message passing

Figure 4.13 Example of over-smoothing based on changing node features
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 Another cause of over-smoothing happens when a problem has a significant long-
range (in terms of number of hops) task that needs solving. For example, a node could
be influenced by a far-off node. This is also known as having a large “problem radius.”
Whenever we have a graph where nodes can have a very large effect on other nodes
despite being multiple hops away, then the problem radius should be considered
large. For example, social media networks might have a large problem radius if certain
individuals such as celebrities can influence other individuals despite being distantly
connected. Usually, this occurs when a graph is sufficiently large to have distantly con-
nected nodes.

 In general, if you think a problem may be at risk of over-smoothing, be careful with
how many layers you introduce to the GNN, that is, how deep you make it. However,
note that certain architectures appear less at risk of over-smoothing than others. For
example, GraphSAGE samples a fixed number of neighbors and aggregates their
information. This sampling can mitigate over-smoothing. On the other hand, GCNs
are more at risk because they don’t have this sampling process, and while the atten-
tion mechanism partially lowers the risk, GATs can also suffer from over-smoothing
because the aggregation is still local. 

4.5.3 Overview of key GAT equations

In this section, we’ll briefly cover the key equations given in the GAT paper by
Veličković et al. [1] and tie them to the concepts we’ve covered about GATs. GATs use
attention mechanisms to learn which neighboring nodes are more important when
updating a node’s features. They do this by computing attention scores (equations 1–3),
which are then used to weigh and combine the features of neighboring nodes (equa-
tions 4–6). The use of multihead attention enhances the model’s expressiveness and
robustness, allowing it to learn from multiple perspectives simultaneously. This approach
can be computationally expensive, but it generally improves the performance of GNNs
on various tasks such as node classification and link prediction.

ATTENTION COEFFICIENTS CALCULATION (EQUATIONS 4.1–4.3)
The first step in using GATs is to compute the attention scores or coefficients for each
pair of connected nodes. These coefficients indicate how much “attention” or impor-
tance a node should give to its neighbor. Raw attention scores [1] are calculated as

(4.1)

Here, eij represents the raw attention score from node iii to its neighbor j:

 hi and hj are the feature vectors (representations) of nodes i and j.
 W is a learnable weight matrix that linearly transforms the features of each

node to a higher dimensional space.
 α is an attention mechanism (usually a neural network) that computes the

importance score for each node pair.
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The idea is to assess how much information node i should consider from node j. Nor-
malized attention coefficients [1] are calculated as

(4.2)

Once we have raw scores eij, we normalize them using a softmax function:

 αij represents the normalized attention coefficient that quantifies the impor-
tance of node j’s features to node i.

 The softmax ensures that all attention coefficients for a given node iii sum up to
1, making them comparable across different nodes. 

Following is a detailed computation of attention coefficients [1]: 

(4.3)

Here, the attention mechanism α is implemented using a single-layer feed-forward
neural network with parameters a. The term  involves concatenating
the transformed feature vectors of nodes i and j, and then applying a linear transfor-
mation followed by a nonlinear activation (leaky rectified linear unit [leaky ReLU]).

NODE REPRESENTATION UPDATE (EQUATIONS 4.4–4.6)
After computing the attention coefficients, the next step is to use them to aggregate
information from the neighbors and update the node representations with atten-
tion [1]:

(4.4)

This equation computes the new representation hi' for node i:

 The term  represents a weighted sum of the neighboring node fea-

tures, where each feature vector is weighted by its corresponding attention coef-
ficient αij.

 σ is a nonlinear activation function (like ReLU or sigmoid) that introduces
nonlinearity into the model, helping it learn complex patterns.

The multihead attention mechanism [1] is calculated as

(4.5)
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To stabilize the learning process, GATs use multihead attention, as discussed earlier:

 Here, K attention heads independently compute different sets of attention
coefficients and corresponding weighted sums.

 The results from all heads are concatenated to form a richer, more expressive
node representation.

The following shows averaging for multihead attention in the final layer [1]:

(4.6)

In the final prediction layer of the network, instead of concatenating the outputs from
different heads, we take their average. This reduces the dimensionality of the final
output and simplifies the model’s prediction process.

Summary
 A graph attention network (GAT) is a specialized type of graph neural network

(GNN) that incorporates attention mechanisms to focus on the most relevant
nodes during the learning process.

 GATs excel in domains where certain nodes have disproportionate importance,
such as social networks, fraud detection, and anomaly detection.

 The chapter uses a dataset derived from Yelp reviews, focusing on detecting
fake reviews for hotels and restaurants in Chicago. Reviews are represented as
nodes, with edges representing shared characteristics (e.g., common authors or
businesses).

 GATs were applied to this dataset to classify nodes (reviews) as fraudulent or
legitimate. The GAT models showed improvements over baseline models such
as logistic regression, XGBoost, and graph convolutional networks (GCNs).

 GATs are memory-intensive due to their need to compute attention scores for
all edges. To handle this, mini-batching with the NeighborLoader class in PyTorch
Geometric (PyG) was used.

 The GAT layers in PyG, such as GATConv and GATv2Conv, apply different types of
attention to graph learning problems.

 Strategies such as SMOTE and class reshuffling can be employed to address
class imbalance. For our case, class reshuffling significantly improved model
performance.



Graph autoencoders
So far, we’ve covered how classical deep learning architectures can be extended to
work on graph-structured data. In chapter 3, we considered convolutional graph
neural networks (GNNs), which apply the convolutional operator to identify pat-
terns within the data. In chapter 4, we explored the attention mechanism and how
this can be used to improve performance for graph-learning tasks such as node
classification.

 Both convolutional GNNs and attention GNNs are examples of discriminative mod-
els, as they learn to discriminate between different instances of data, such as whether
a photo is of a cat or a dog. In this chapter, we introduce the topic of generative models

This chapter covers
 Distinguishing between discriminative and 

generative models 

 Applying autoencoders and variational 
autoencoders to graphs

 Building graph autoencoders with PyTorch 
Geometric 

 Over-squashing and graph neural networks

 Link prediction and graph generation 
159
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and explore them through two of the most common architectures, autoencoders and
variational autoencoders (VAEs). Generative models aim to learn the entire dataspace
rather than separating boundaries within the dataspace, as do discriminative models.
For example, a generative model learns how to generate images of cats and dogs
(learning to reproduce aspects of a cat or dog, rather than learning just the features
that separates two or more classes, such as the pointed ears of a cat or the long ears of
a spaniel). 

 As we’ll discover, discriminative models learn to separate boundaries in dataspace,
whereas generative models learn to model the dataspace itself. By approximating the
dataspace, we can sample from a generative model to create new examples of our
training data. In the preceding example, we can use our generative model to make
new images of a cat or dog, or even some hybrid version that has features of both. This
is a very powerful tool and important knowledge for both beginner and established
data scientists. In recent years, deep generative models, generative models that use
artificial neural networks, have shown amazing ability in many language and vision
tasks. For example, the family of DALL-E models are able to generate new images
from text prompts while models such as OpenAI’s GPT models have dramatically
changed the capabilities of chatbots.

 In this chapter, you’ll learn how to extend generative architectures to act on graph-
structured data, leading to graph autoencoders (GAEs) and variational graph autoen-
coders (VGAEs). These models are distinct from previous chapters, which focused on
discriminative models. As we’ll see, generative models model the entire dataspace and
can be combined with discriminative models for downstream machine learning tasks.

 To demonstrate the power of generative approaches to learning tasks, we return to
the Amazon Product Co-Purchaser Network introduced in chapter 3. However, in
chapter 3, you learned how to predict what category an item might belong to given its
position in the network. In this chapter, we’ll show how to predict where an item
should be placed in the network, given its description. This is known as edge (or link)
prediction and comes up frequently, for example, when designing recommendation sys-
tems. We’ll put our understanding of GAEs to work here to perform edge prediction,
building a model that can predict when nodes in a graph are connected. We’ll also
discuss the problems of over-squashing, a specific consideration for GNNs, and how
we can apply a GNN to generate potential chemical graphs.

 By the end of this chapter, you should know the basics of when and where to use
generative models of graphs (rather than discriminative ones) and how to implement
them when we need to.

NOTE Code from this chapter can be found in notebook form at the GitHub
repository (https://mng.bz/4aGQ). Colab links and data from this chapter
can be accessed in the same location.

https://mng.bz/4aGQ
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5.1 Generative models: Learning how to generate
A classic example of deep learning is, given a set of labeled images, how to train mod-
els to learn what label to give to new and unseen images. If we consider the example of
a set of images of boats and airplanes, we want our model to distinguish between these
different images. If we then pass the model a new image, we want our model to cor-
rectly identify this as, for example, a boat. Discriminative models learn to discriminate
between classes based on their specific target labels. Both convolutional architectures
(discussed in chapter 3) and attention-based architectures (covered in chapter 4) are
typically used to create discriminative models. However, as we’ll see, they can also be
incorporated into generative models. To understand this, we first have to understand
the difference between discriminative and generative modeling approaches. 

5.1.1 Generative and discriminative models

As described in previous chapters, the original dataset that we use to train a model is
referred to as our training data, and the labels that we seek to predict are our training
targets. The unseen data is our test data, and we want to learn the target labels (from
training) to classify the test data. Another way to describe this is using conditional
probability. We want our models to return the probability of some target, Y, given an
instance of data, X. We can write this as P(Y|X), where the vertical bar means that Y is
“conditioned” on X. 

 As we’ve said, discriminative models learn to discriminate between classes. This is
equivalent to learning the separating boundaries of the data in the dataspace. In
contrast, generative models learn to model the dataspace itself. They capture the
entire distribution of data in the dataspace, and, when presented with a new exam-
ple, they tell us how likely the new example is. Using the language of probability, we
say that they model the joint probability between data and targets, P(X,Y). A typical
example of a generative model might be a model that is used to predict the next word
in a sentence (e.g., the autocomplete feature in many modern mobile phones). The
generative model assigns a probability to each possible next word and returns those
words that have the highest probability. Discriminative models can tell you how
likely a word has some specific sentiment, while a generative model will suggest a
word to use. 

 Returning to our image example, a generative model approximates the overall dis-
tribution of images. This can be seen in figure 5.1, where the generative model has
learned where the points are positioned in the dataspace (rather than how they are
separated). This means that generative models must learn more complicated correla-
tions in the data than their discriminative counterparts. For example, a generative
model learns that “airplanes have wings” and “boats appear near water.” On the other
hand, discriminative models just have to learn the difference between “boat” and “not
boat.” They can do this by looking for telltale signs such as a mast, keel, or boom in
the image. They can then largely ignore the rest of the image. As a result, generative
models can be more computationally expensive to train and can require larger network
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architectures. (In section 5.5, we’ll describe over-squashing, which is a particular prob-
lem for large GNNs.)

5.1.2 Synthetic data

Given that discriminative models are computationally cheaper to train and more
robust to outliers than generative models, you might wonder why we want to use a
generative model at all. Generative models, however, are efficient tools when labeling
data is relatively expensive but generating datasets is easy to do. For example, genera-
tive models are increasingly being used in drug discovery where they generate new
candidate drugs that might match certain properties, such as the ability to reduce the
effects of some disease. In a sense, generative models attempt to learn how to create
synthetic data, which allows us to create new data instances. For example, none of the
people shown in figure 5.2 exist and were instead created by sampling from the
dataspace, approximated using a generative model.

 Synthetic examples created by generative models can be used to augment a data-
set, which is expensive to collect. Rather than taking lots of pictures of faces under
every condition, we can use generative models to create new data examples (e.g., a
person wearing a hat, glasses, and a mask) to increase our dataset to contain tricky
edge cases. These synthetic examples can then be used to further improve our other
models (e.g., one that identifies when someone is wearing a mask). However, when

Figure 5.1 Comparison of generative and discriminative tasks. On the left, the discriminative model learns to 
separate different images of boats and airplanes. On the right, the generative model attempts to learn the entire 
dataspace, which allows for new synthetic examples to be created such as a boat in the sky or an airplane on 
water. 
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introducing synthetic data, we must also be careful about introducing other biases or
noise into our dataset. 

 In addition, discriminative models are often used downstream of generative models.
This is because generative models are typically trained in a “self-supervised” way, without
relying on data labels. They learn to compress (or encode) complex high-dimensional
data to lower dimensions. These low-dimensional representations can be used to better
tease out underlying patterns within our data. This is known as dimension reduction and
can be helpful in clustering data or in classification tasks. Later, we’ll see how generative
models can separate graphs into different classes without ever seeing their labels. In
cases where annotating each data point is expensive, generative models can be huge
cost savers. Let’s get on to meeting our first generative GNN model. 

5.2 Graph autoencoders for link prediction
One of the fundamental and popular models for deep generative models is the auto-
encoder. The reason the autoencoder framework is so widely used is because it’s
incredibly adaptive. Just as the attention mechanisms in chapter 3 can be used to
improve on many different models, autoencoders can be combined with many differ-
ent models, including different types of GNNs. Once the autoencoder structure is
understood, the encoder and decoder can be replaced with any type of neural net-
work, including different GNNs such as the graph convolutional network (GCN) and
GraphSAGE architectures from chapter 2. 

 However, we need to take care when applying autoencoders to graph-based data.
When reconstructing our data, we also have to reconstruct our adjacency matrix. In

Figure 5.2 Figure showing synthetic faces (Source: [1])
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this section, we’ll look at implementing a GAE using the Amazon Products dataset
from chapter 3 [2]. We’ll build a GAE for the task of link prediction, which is a com-
mon problem when working with graphs. This allows us to reconstruct the adjacency
matrix and is especially useful when we’re dealing with a dataset that has missing data.
We’ll follow this process: 

1 Define the model:

a Create both an encoder and decoder.
b Use the encoder to create a latent space to sample from.

2 Define the training and testing loop by including a loss suitable for construct-
ing a generative model.

3 Prepare the data as a graph, with edge lists and node features.
4 Train the model, passing the edge data to compute the loss.
5 Test the model using the test dataset. 

5.2.1 Review of the Amazon Products dataset from chapter 3

In chapter 3, we learned about the Amazon Products dataset with co-purchaser infor-
mation. This dataset contains information about a range of different items that were
purchased, details about who purchased them and how, and categories for the items,
which were the labels in chapter 3. We’ve already learned about how we can turn this
tabular dataset into a graph structure and, by doing so, make our learning algorithms
more efficient and more powerful. We’ve also already used some dimension reduction
without realizing it. Principal component analysis (PCA) was applied to the Amazon
Products dataset to create the features. Each product description was converted into
numerical values using the bag-of-words algorithm, and PCA is then applied to reduce
the (now numerical) description to 100 features. 

 In this chapter, we’re going to revisit the Amazon Products dataset but with a dif-
ferent aim in mind. We’re going to use our dataset to learn link predictions. Essen-
tially, this means learning the relations between nodes in our graph. This has many use
cases, such as predicting what movies or TV shows users would like to watch next, sug-
gesting new connections on social media platforms, or even predicting customers who
are more likely to default on credit. Here, we’re going to use it to predict which prod-
ucts in the Amazon Electronics dataset should be connected together, as we show in
figure 5.3. For further details about link prediction, check out section 5.5 at the end
of this chapter.

 As with all data science projects, it’s worth first taking a look at the dataset and
understanding what the problem is. We start by loading the data, the same way as we
did in chapter 3, which we show in listing 5.1. The data is preprocessed and labeled so
it can be loaded using NumPy. Further details on the dataset can be found in [2]. 
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import numpy as np

filename = 'data/new_AMZN_electronics.npz'

data = np.load(filename)

loader = dict(data)
print(loader)

The preceding output prints the following: 

{'adj_data': array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]],\
 dtype=float32), 'attr_data': \
array([[0., 0., 0., ..., 0., 1., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 1., 0., ..., 0., 0., 0.],
       [1., 1., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 1.]],\
 dtype=float32), 'labels': \
array([6, 4, 3, ..., 1, 2, 3]),\

Listing 5.1 Loading the data

Figure 5.3 The Amazon Electronics dataset, where different products such as 
cameras and lenses are connected based on whether they have been bought 
together in the past



166 CHAPTER 5 Graph autoencoders
 'class_names': array(['Film Photography',\
 'Digital Cameras', 'Binoculars & Scopes',
       'Lenses', 'Tripods & Monopods', 'Video Surveillance',
       'Lighting & Studio', 'Flashes'], dtype='<U19')}

With the data loaded, we can next look at some basic statistics and details of the data.
We’re interested in edge or link prediction, so it’s worth understanding how many dif-
ferent edges exist. We might also want to know how many components there are and
the average degree to understand how connected our graph is. We show the code to
calculate this in the following listing. 

adj_matrix = torch.tensor(loader['adj_data'])
if not adj_matrix.is_sparse:
    adj_matrix = adj_matrix.to_sparse()

feature_matrix = torch.tensor(loader['attr_data'])
labels = loader['labels']

class_names = loader.get('class_names')
metadata = loader.get('metadata')

num_nodes = adj_matrix.size(0)
num_edges = adj_matrix.coalesce().values().size(0)  
density = num_edges / (num_nodes \
* (num_nodes - 1) / 2) if num_nodes \
> 1 else 0 

We also plot the distribution of the degree to see how connections vary, as shown in
the following listing and in figure 5.4. 

degrees = adj_matrix.coalesce().indices().numpy()[0]   
degree_count = np.bincount(degrees, minlength=num_nodes)

plt.figure(figsize=(10, 5))
plt.hist(degree_count, bins=25, alpha=0.75, color='blue')
plt.xlabel('Degree')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

We find that there are 7,650 nodes, more than 143,000 edges, and an overall density
of 0.0049. Therefore, our graph is medium size (~10,000 nodes) but very sparse (den-
sity much less than 0.05). We see that the majority of nodes have a low degree (less
than 10), but that there is a second peak of edges with a higher degree (around 30)
and a longer tail. In total, we see very few nodes with a high degree, which we would
expect given the low density of the graph. 

Listing 5.2 Exploratory data analysis

Listing 5.3 Plotting the graph

This is only possible 
because the adjacency 
matrix is undirected.

Ratio of actual edges 
to possible edges

Gets row indices 
for each nonzero 
value
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5.2.2 Defining a graph autoencoder

Next, we’ll use a generative model, the autoencoder, to estimate and predict links in
the Amazon Electronics dataset. In doing so, we’re in good company, as link predic-
tion was the problem that GAEs were applied to when first published by Kipf and Well-
ing in 2012 [3]. In their seminal paper, they introduced the GAE and its variational
extension, which we’ll be discussing shortly, and then applied these models to three
classic benchmarks in graph deep learning, the Cora dataset, CiteSeer, and PubMed.
Today, most graph deep learning libraries make it very easy to create and begin train-
ing GAEs, as these have become one of the most popular graph-based deep generative
models. We’ll look at the steps required to build one in more detail in this section. 

 The GAE model is similar to a typical autoencoder. The only difference is that
each individual layer of our network is a GNN, such as a GCN or GraphSAGE network.
In figure 5.5, we show a schematic for a GAE’s architecture. Broadly, we’ll be taking
our edge data and compressing it into a low-dimensional representation using an
encoder network.

 The first thing we need to define for our GAE is the encoder, which will take our
data and transform it into a latent representation. The code snippet for implementing
the encoder is given in listing 5.4. We first import our libraries and then build a GNN
where each layer is progressively smaller. 

 
 
 
 

Figure 5.4 Degree distribution for the Amazon Electronics co-purchaser graph



168 CHAPTER 5 Graph autoencoders
from torch_geometric.nn import GCNConv  

class GCNEncoder(torch.nn.Module):                        
    def __init__(self, input_size, layers, latent_dim):   
        super().__init__()
        self.conv0 = GCNConv(input_size, layers[0])   
        self.conv1 = GCNConv(layers[0], layers[1])    
        self.conv2 = GCNConv(layers[1], latent_dim)   

    def forward(self, x, edge_index):          
        x = self.conv0(x, edge_index).relu()   
        x = self.conv1(x, edge_index).relu()   
        return self.conv2(x, edge_index)       

Note that we also have to make sure that our forward pass can return the edge data
from our graph because we’ll be using our autoencoder to reconstruct the graph from
the latent space. To put this another way, the autoencoder will be learning how to
reconstruct the adjacency matrix from a low-dimensional representation of our fea-
ture space. This means it’s also learning to predict edges from new data. To do this, we
need to make the autoencoder structure learn to reconstruct edges, specifically by

Listing 5.4 Graph encoder

Encoder
Input Data

(Amazon Electronics Dataset)

Latent

Space
Decoder

Output Data

1. Edge data is compressed into a latent
representation using the encoder.

2. The latent representation is reconstructed
into its original format using the decoder.

4. The trained model can then be used for
edge prediction on unseen test data.

Graph Autoencoder (GAE)

3. The error between reconstructed and original
edge data is passed back through the network,
and weights are updated.

Figure 5.5 Schematic for the GAE showing the key elements of the model, such as the encoder, latent space, 
and decoder

Loads GCNConv 
models from PyG

Defines the encoder layer 
and initializes it with a 
predefined size

Defines each of the 
encoder layer networks

Forward pass for the 
encoder with edge data
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changing the decoder. Here, we’ll use the inner product to predict edges from the
latent space. This is shown in listing 5.5. (To understand why we use the inner prod-
uct, see the technical details in section 5.5.) 

class InnerProductDecoder(torch.nn.Module):    
    def __init__(self):                        
         super().__init__()                    
 
def forward(self, z, edge_index):    
        value = (z[edge_index[0]] * \
z[edge_index[1]]).sum(dim=1)  
        return torch.sigmoid(value)

Now we’re ready to combine both encoder and decoder together in the GAE class,
which contains both submodels (see listing 5.6). Note that we don’t initialize the
decoder with any input or output sizes now as this is just applying the inner product to
the output of our encoder with the edge data. 

   class GraphAutoEncoder(torch.nn.Module):
        def __init__(self, input_size, layers, latent_dims):
            super().__init__()
            self.encoder = GCNEncoder(input_size, \
   layers, latent_dims)    
            self.decoder = InnerProductDecoder()     

        def forward(self, x):
            z = self.encoder(x)
            return self.decoder(z)

In PyTorch Geometric (PyG), the GAE model can be made even easier by just import-
ing the GAE class, which automatically builds both decoder and autoencoder once
passed to the encoder. We’ll use this functionality when we build a VGAE later in the
chapter. 

5.2.3 Training a graph autoencoder to perform link prediction

Having built our GAE, we can proceed to use this to perform edge prediction for the
sub models Amazon Products dataset. The overall framework will follow a typical deep
learning problem format, where we first load the data, prepare the data, and split this
data into train, test, and validation datasets; define our training parameters; and then
train and test our model. These steps are shown in figure 5.6. 

 We begin by loading the dataset and preparing it for our learning algorithms,
which we’ve already done in listing 5.1. For us to use the PyG models for GAE and
VGAE, we need to construct an edge index from the adjacency matrix, which is easily

Listing 5.5 Graph decoder

Listing 5.6 Graph autoencoder

Defines the 
decoder layer

States the shape and size of the 
decoder (which, again, is the 
reverse of the encoder)

Forward pass for the decoder 

Defines the encoder 
for the GAE

Defines the 
decoder
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done using one of PyG’s utility functions, to_edge_index, as we describe in the follow-
ing listing.

from torch_geometrics.utils import to_edge_index  

edge_index, edge_attr = to_edge_index(adj_matrix)  
num_nodes = adj_matrix.size(0)

We then load the PyG libraries and convert our data into a PyG data object. We can
also apply transformations to our dataset, where the features and adjacency matrix are
loaded as in chapter 3. First, we normalize our features and then split our dataset into
training, testing, and validation sets based on the edges or links of the graph, as shown
in listing 5.8. This is a vital step when carrying out link prediction to ensure we cor-
rectly split our data. In the code, we’ve used 5% of the data for validation and 10% for
test data, noting that our graph is undirected. Here, we don’t add any negative train-
ing samples. 

data = Data(x=feature_matrix,        
            edge_index=edge_index,   
            edge_attr=edge_attr,     
            y=labels)                

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

transform = T.Compose([\
     T.NormalizeFeatures(),\                 
     T.ToDevice(device),                     
     T.RandomLinkSplit(num_val=0.05,\
     num_test=0.1, is_undirected=True,       
     add_negative_train_samples=False)])     
train_data, val_data, test_data = transform(data) 

With everything in place, we can now apply GAE to the Amazon Products dataset.
First, we define our model, as well as our optimizer and our loss. We apply the binary
cross-entropy loss to the predicted values from the decoder and compare against our

Listing 5.7 Construct Edge Index

Listing 5.8 Convert to a PyG object 

Prepare the data

Split to  train, test,

validation sets

Define loss and

optimizer
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Load the data

Test our model1
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3
4

Figure 5.6 Overall steps for training our model for link prediction
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true edge index to see whether our model has reconstructed the adjacency matrix cor-
rectly, as shown in the following listing. 

input_size, latent_dims = feature_matrix.shape[1], 16  
layers = [512, 256]                                    
model = GraphAutoEncoder(input_size, layers, latent_dims)  
model = model.to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.BCEWithLogitsLoss()  

It’s important to use a binary cross-entropy loss because we want to calculate the prob-
abilities that each edge is a true edge, where true edges correspond to the ones that
aren’t being hidden and don’t need to be predicted (i.e., the positive samples). The
encoder learns to compress the edge data but doesn’t change the number of edges,
whereas the decoder learns to predict edges. In a sense, we’re combining both the dis-
criminative and generative steps here. Therefore, the binary cross-entropy gives us a
probability where there is likely to be an edge between these nodes. It’s binary, as
either an edge should exist (label 1) or shouldn’t (label 0). We can compare all of
those edges that have a binary cross-entropy probability greater than 0.5 to the actual
true edges in each epoch of our training loop, as shown in the following listing. 

def train(model, criterion, optimizer):
   
    model.train() 

    optimizer.zero_grad() 
    z = model.encoder(train_data.x,\
    train_data.edge_index)  

    neg_edge_index = negative_sampling(\        
    edge_index=train_data.edge_index,\
    num_nodes=train_data.num_nodes,             
    num_neg_samples=train_data.\
    edge_label_index.size(1), method='sparse')  

    edge_label_index = torch.cat(                    
    [train_data.edge_label_index, neg_edge_index],   
    dim=-1,)                                         

    out = model.decoder(z, edge_label_index).view(-1)  

    edge_label = torch.cat([       
    train_data.edge_label,         
train_data.edge_label.new_zeros\
(neg_edge_index.size(1))           
    ], dim=0)                      

Listing 5.9 Define the model

Listing 5.10 Training function
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    loss = criterion(out, edge_label)  
    loss.backward()                    
    optimizer.step()

    return loss

Here, we first encoded our graph into a latent representation. We then perform a
round of negative sampling, with new samples drawn for each epoch. Negative sam-
pling takes a random subset of nonexistent labels rather than existing positive ones
during training to account for the class imbalance between real labels and nonexis-
tent ones. Once we have these new negative samples, we concatenate them with our
original edge labels index and pass these to our decoder to get a reconstructed graph.
Finally, we concatenate our true edge labels with the 0 labels for our negative edges
and compute the loss between our predicted edges and our true edges. Note that
we’re not doing batch learning here; instead, we’re choosing to train on all data
during each epoch. 

 Our test function, shown in listing 5.11, is much simpler than our training func-
tion as it doesn’t have to perform any negative sampling. Instead, we just use the true
and predicted edges and return a Receiver Operating Characteristic (ROC)/Area
Under the Curve (AUC) score to measure the accuracy of our model. Recall that the
ROC/AUC curves will range between 0 and 1, and a perfect model, whose predictions
are 100% correct, will have an AUC of 1.

from sklearn.metrics import roc_auc_score

@torch.no_grad() 
def test(data):
    model.eval() 
    z = model.encode(data.x, data.edge_index)  
    out = model.decode(z, \
    data.edge_label_index).view(-1).sigmoid()  
    loss = roc_auc_score(data.edge_label.cpu().numpy(),  
                        out.cpu().numpy())               
    return loss 

At each time step, we’ll calculate the overall success of a model using all our edge data
from our validation data. After training is complete, we then use the test data to calcu-
late the final test accuracy, as shown in the following listing. 

best_val_auc = final_test_auc = 0 
for epoch in range(1, 201): 
    loss = train(model, criterion, optimizer) 
    val_auc = test(val_data)  
    if val_auc > best_val_auc: 

Listing 5.11 Test function

Listing 5.12 Training loop
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        best_val_auc = val_auc 
test_auc = test(test_data)  

We find that after 200 epochs, we achieve an accuracy of more than 83%. Even better,
when we then use our test set to see how well our model is able to predict edges, we
get an accuracy of 86%. We can interpret our model performance as being able to
suggest a meaningful item to the purchaser 86% of the time, assuming that all future
data is the same as our current dataset. This is a great result and demonstrates how
useful GNNs are for recommender systems. We can also use our model to better
understand how the dataset is structured or apply additional classification and feature
engineering tasks by exploring our newly constructed latent space. Next, we’re going to
learn about one of the most common extensions to the graph autoencoder model—
the VGAE.

5.3 Variational graph autoencoders
Autoencoders map data onto discrete points in the latent space. To sample outside of
the training dataset and generate new synthetic data, we can interpolate between
these discrete points. This is exactly the process that we described in figure 5.1, where
we generated unseen combinations of data such as a flying boat. However, autoencod-
ers are deterministic, where each input maps to a specific point in the latent space.
This can lead to sharp discontinuities when sampling, which can affect performance
for data generation resulting in synthetic data that doesn’t reproduce the original
dataset as well. To improve our generative process, we need to ensure that our latent
space is well-structured, or regular. In figure 5.7, for example, we show how to use the
Kullback-Liebler divergence (KL divergence) to restructure the latent space to improve
reconstruction. 

The KL divergence is a measure of how one probability distribution differs from
another. It calculates how much “extra information” is needed to encode values from
one distribution (the original data distribution) into another (the latent space). On

Tests our final 
model on test data

Distributions in latent space, ( )p z

Better Reconstruction

Worse KL divergence

Worse Reconstruction

Better KL divergence

Figure 5.7 Regular spaces are 
continuous and compact, but data 
regions may become less separated. 
Alternatively, high reconstruction loss 
typically means data is well separated, 
but the latent space might be less 
covered leading to worse generative 
samples. Here, KL Divergence refers to 
the Kullback-Liebler divergence. 
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the left, the data groups (xi) don’t overlap much, which means the KL divergence is
higher. On the right, there is more overlap (similarity) between the different data
groups, meaning the KL divergence is lower. When building a more regular latent
space that has a high KL divergence, we can get very good reconstruction but poor
interpolation, while we get the opposite for low KL divergence. More details on this
are provided in section 5.5.

 Regular means that the space fulfills two properties: continuity and compactness.
Continuity means that nearby points in the latent space are decoded into approximately
similar things, while compactness means that any point in the latent space should lead to a
meaningful decoded representation. These terms, approximately similar and meaning-
ful, have precise definitions, which you can read more about in Learn Generative AI with
PyTorch (Manning, 2024; https://mng.bz/AQBg). However, for this chapter, all you
need to know is that these properties make it easier to sample from the latent space,
resulting in cleaner generated samples and potentially higher model accuracy. 

 When we regularize a latent space, we use variational methods that model the entire
dataspace in terms of probability distributions (or densities). As we’ll see, the main
benefit of using variational methods is that the latent space is well structured. How-
ever, variational methods don’t necessarily guarantee higher performance, so it’s often
important to test both the autoencoder and the variational counterpart when using
these types of models. This can be done by either looking at the reconstruction score
(e.g., mean squared error) on the test dataset, applying some dimension reduction
method to the latent encodings (e.g., t-SNE or Uniform Manifold Approximation and
Projection [UMAP]), or using task-specific measures (e.g., the Inception Score for
images or ROUGE/METEOR for text generation). Specifically for graphs, measures
such as the maximum mean discrepancy (MMD), graph statistics, or graph kernel meth-
ods can all be used to compare against different synthetically generated graph copies. 

 In the next few sections, we’ll go into more detail on what it means to model a
dataspace as a probability density and how we can transform our graph autoencoder
into a VGAE with just a few lines. These depend on some key probabilistic machine
learning concepts such as the KL divergence and the reparameterization trick, which
we give an overview of in section 5.5. For more of a deep dive into these concepts, we
recommend Probabilistic Deep Learning (Manning, 2020). Let’s build a VGAE architec-
ture and apply it to the same Amazon Products dataset as before.

5.3.1 Building a variational graph autoencoder

The VGAE architecture is similar to the GAE model. The main difference is that the
output of a variational graph encoder is generated by sampling from a probability den-
sity. We can characterize density in terms of its mean and variance. Therefore, the out-
put of the encoder will now be the mean and variance for each dimension of our
previous space. The decoder then takes this sampled latent representation and decodes
it to appear like the input data. This can be seen in figure 5.8, where the high-level
model is that we now extend our previous autoencoder to output mean and variance

https://mng.bz/AQBg
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rather than point estimates from the latent space. This allows our model to make
probabilistic samples from the latent space. 

We have to adapt our architecture and also change our loss to include an additional
term for regularizing the latent space. Listing 5.13 provides a code snippet for the
VGAE. The similarities between listing 5.4 and the VariationalGCNEncoder layer in
listing 5.13 include that we’ve doubled the dimensionality of our latent space and
now return the mean and the log variance from our encoder at the end of our for-
ward pass. 

class VariationalGCNEncoder(torch.nn.Module):           
  def __init__(self, input_size, layers, latent_dims):
    super().__init__()
    self.layer0 = GCNConv(input_size, layers[0])
    self.layer1 = GCNConv(layers[0], layers[1])
    self.mu = GCNConv(layers[1], latent_dims)           
    self.logvar = GCNConv(layers[1], latent_dims)       

  def forward(self, x, edge_index):
    x = self.layer0(x, edge_index).relu()
    x = self.layer1(x, edge_index).relu()
    mu = self.mu(x, edge_index)
    logvar = self.logvar(x, edge_index)
    return mu, logvar                     

When we discussed the GAE, we learned that the decoder uses the inner product to
return the adjacency matrix, or edge list. Previously we explicitly implemented the
inner dot product. However, in PyG, this functionality is built in. To build a VGAE
structure, we can call the VGAE function, shown in the following listing. 

from torch_geometric.nn import VGAE  
model = VGAE(VariationalGCNEncoder(input_size,\
 layers, latent_dims))               

Listing 5.13 VariationalGCNEncoder 

Listing 5.14 Variational graph autoencoder (VGAE) 
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Figure 5.8 Structure of a general VAE, where we now sample from a probability density in the 
latent space rather than a point estimate as with typical autoencoders. VGAEs extend the VAE 
architecture to apply to graph-structured data. 
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This functionality makes it much simpler to build a VGAE, where the VGAE function
in PyG takes care of the reparameterization trick. Now that we have our VGAE model,
the next thing we need to do is amend the training and testing functions to include
the KL divergence loss. The training function is shown in the following listing.

def train(model, criterion, optimizer):
    model.train() 
    optimizer.zero_grad() 
    z = model.encode(train_data.x, train_data.edge_index)     

    neg_edge_index = negative_sampling( 
    edge_index=train_data.edge_index, num_nodes=train_data.num_nodes,
    num_neg_samples=train_data.edge_label_index.size(1), method='sparse')

    edge_label_index = torch.cat( 
    [train_data.edge_label_index, neg_edge_index], 
    dim=-1,) 
    out = model.decode(z, edge_label_index).view(-1)          

    edge_label = torch.cat([ 
    train_data.edge_label,
    train_data.edge_label.new_zeros(neg_edge_index.size(1))
    ], dim=0)

    loss = criterion(out, edge_label)           
+ (1 / train_data.num_nodes) * model.kl_loss()  

    loss.backward() 
    optimizer.step()

    return loss  

This is the same training loop that we used in listing 5.12 to train our GAE model. The
only differences are that we include an additional term to our loss that minimizes the
KL divergence and we change the encoder and decoder method calls to encode and
decode (which we also need to update in our test function). Otherwise, the training
remains unchanged. Note that thanks to the added PyG functionality, these changes
are considerably less involved than when we made the changes in PyTorch earlier.
However, going through each of those extra steps gives us more intuition about the
underlying architecture for a GAE. 

 We can now apply our VGAE to the Amazon Products dataset and use this to per-
form edge prediction, which yields an overall test accuracy of 88%. This is slightly
higher than our accuracy for GAE. It’s important to note that VGAEs won’t necessarily
give higher accuracy. As a result, you should always try a GAE as well as a VGAE and
run careful model validation when using this architecture. 

Listing 5.15 Training function

As we are using the PyG VGAE function,
we need to use the encode and

decode methods.

Adds in the regularizing 
term of the loss given by 
the KL divergence
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5.3.2 When to use a variational graph autoencoder

Given that the accuracy for the VGAE was similar to the GAE, it’s important to realize
the limitations of both methods. In general, GAEs and VGAEs are great models to use
when you want to build a generative model or where you want to use one aspect of
your data to learn another aspect. For example, we might want to make a graph-based
model for pose prediction. We can use both GAE and VGAE architectures to predict
future poses based on video footage. (We’ll see a similar example in later chapters.)
When we do so, we’re using the GAE/VGAE to learn a graph of the body, conditioned
on what the future positions of each body part will be. However, if we’re specifically
interested in generating new data, such as new chemical graphs for drug discovery,
VGAEs are often better as the latent space is more structured. 

 In general, GAEs are great for specific reconstruction tasks such as link prediction
or node classification, while VGAEs are better for where the tasks require a larger or
more diverse range of synthetic samples, such as where you want to generate entirely
new subgraphs or small graphs. VGAEs are also often better suited for when the
underlying dataset is noisy, compared to GAEs which are faster and more suitable for
graph data with clear structure. Finally, note that VGAEs are less prone to overfitting
due to their variational approach, and they may generalize better as a result. As always,
your choice of architecture depends on the problem at hand. 

 In this chapter, we’ve learned about two examples of generative models, the
GAE and VGAE models, and how to implement these models to work with graph-
structured data. To better understand how to use this model class, we applied our
models to an edge prediction task. However, this is only one step in applying a gen-
erative model. 

 In many instances where we require a generative model, we use successive layers of
autoencoders to further reduce the dimensionality of our system and increase our
reconstruction power. In the context of drug discovery and chemical science, GAEs
allow us to reconstruct the adjacency matrix (as we did here) as well as reconstruct
types of molecules and even the number of molecules. GAEs are used frequently in
many sciences and industries. Now you have the tools to try them out too.

 In the next section, we’ll demonstrate how to use the VGAE to generate new
graphs with specific qualities, such as novel molecules that have a high property indi-
cating usefulness as a potential drug candidate. 

5.4 Generating graphs using GNNs
So far, we’ve considered how to use a generative model of our graph to estimate edges
between nodes. However, sometimes we’re also interested in generating not just a
node or an edge but the entire graph. This can be particularly important when trying
to understand or predict graph-level data. In this example, we’ll do exactly that by
using our GAE and VGAEs to generate new potential molecules to synthesize, which
have certain properties. 
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 One of the fields that GNNs have had the largest effect on has been drug discovery,
especially for the identification of new molecules or potential drugs. In 2020, a new
antibiotic was proposed that was discovered using a GNN, and, in 2021, a new method
for identifying carcinogens in food was published that also made use of GNNs. Since
then, there have been many other papers that use GNNs as tools to accelerate the
drug discovery pipeline. 

5.4.1 Molecular graphs

We’re going to be considering small molecules that have previously been screened for
drugs, as described in the ZINC dataset of around 250,000 individual molecules. Each
molecule in this dataset has additional data including the following: 

 Simplified Molecular Input Line Entry System (SMILES)—A description of the molec-
ular structure or the molecular graph in ASCII format.

 Important properties—Synthetic accessibility score (SAS), water-octanol partition
coefficient (logP), and, most importantly, a measure of the quantitative esti-
mate of druglikeness (QED), which highlights how likely this molecule could
be as a potential drug. 

To make this dataset usable by our GNN models, we need to convert this into a suit-
able graph structure. Here, we’re going to be using PyG for defining our model and
running our deep learning routines. Therefore, we first download the data and then
convert the dataset into graph objects using NetworkX. We download our dataset in
listing 5.16, which generates the following output: 

     smiles     logP     qed     SAS
0     CC(C)(C)c1ccc2occ(CC(=O)Nc3ccccc3F)c2c1
     5.05060     0.702012     2.084095
1     C[C@@H]1CC(Nc2cncc(-c3nncn3C)c2)C[C@@H](C)C1
     3.11370     0.928975     3.432004
2     N#Cc1ccc(-c2ccc(O[C@@H](C(=O)N3CCCC3)c3ccccc3)...
     4.96778     0.599682     2.470633
3     CCOC(=O)[C@@H]1CCCN(C(=O)c2nc
      (-c3ccc(C)cc3)n3c...     
      4.00022     0.690944     2.822753
4     N#CC1=C(SCC(=O)Nc2cccc(Cl)c2)N=C([O-])
      [C@H](C#...     3.60956     0.789027     4.035182

import requests
import pandas as pd

def download_file(url, filename):
     response = requests.get(url)
     response.raise_for_status() 
     with open(filename, 'wb') as f:
     f.write(response.content)

Listing 5.16 Create a molecular graph dataset
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url = "https://raw.githubusercontent.com/
aspuru-guzikgroup/chemical_vae/master/models/
zinc_properties/250k_rndm_zinc_drugs_clean_3.csv"
filename = "250k_rndm_zinc_drugs_clean_3.csv"

download_file(url, filename)

df = pd.read_csv(filename)
df["smiles"] = df["smiles"].apply(lambda s: s.replace("\n", ""))

In listing 5.17, we define a function to convert the SMILES into small graphs, which
we then use to create a PyG dataset. We also add some additional information to each
object in our dataset, such as the number of heavy atoms that we can use for further
data exploration. Here, we use the recursive SMILES depth-first search (DFS) toolkit
(RDKit) package (www.rdkit.org/docs/index.html), which is a great open source tool
for cheminformatics. 

   from torch_geometric.data import Data
   import torch
   from rdkit import Chem

   def smiles_to_graph(smiles, qed):
     mol = Chem.MolFromSmiles(smiles)
        if not mol:
             return None

        edges = []
        edge_features = []
        for bond in mol.GetBonds():
             edges.append([bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()])
             bond_type = bond.GetBondTypeAsDouble()
             bond_feature = [1 if i == bond_type\
             else 0 for i in range(4)]
             edge_features.append(bond_feature)

        edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()
        edge_attr = torch.tensor(edge_features, dtype=torch.float)
        x = torch.tensor([atom.GetAtomicNum()\
 for atom in mol.GetAtoms()], \
 dtype=torch.float).view(-1, 1)

        num_heavy_atoms = mol.GetNumHeavyAtoms()

        return Data(x=x, edge_index=edge_index,\
 edge_attr=edge_attr, \
qed=torch.tensor([qed], \
dtype=torch.float), \
num_heavy_atoms=num_heavy_atoms)

Listing 5.17 Create the molecular graph dataset

http://www.rdkit.org/docs/index.html
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A random sample from our dataset is shown in figure 5.9, which highlights how varied
our molecular graphs are and their small size, where each one has less than 100 nodes
and edges.

5.4.2 Identifying new drug candidates

In figure 5.10, we start to see how QED can vary with different molecular structures.
One of the main obstacles to drug discovery is the number of different potential com-
binations of molecules and how to know which ones to synthesize and then test for
drug efficacy. This is far before the stage of introducing the drug to human, animal
(in vivo), or sometimes even cellular (in vitro) trials. Even evaluating things such as a
molecule’s solubility can be a challenge if we use the molecular graph alone. Here,
we’re going to be focusing on predicting the molecules’ QED, to see which ones are
most likely to have potential use as a drug. To give an example of how the QED can
vary, see figure 5.10, which has four molecules with high (~0.95) and low (~0.12)
QED. We can see some qualitative differences between these molecules, such as the
increased number of strong bonds for those with low QED. However, estimating the
QED directly from the graph is a challenge. To help us with this task, we’ll use a GNN
to both generate and evaluate new potential drugs. 

 Our work will be based on two important papers that demonstrated how genera-
tive models can be effective tools for identifying new molecules (Gómez-Bombarelli
et al. [4] and De Cao et al. [5]). Specifically, Gómez-Bombarelli et al. showed that
by constructing a smooth representation of the dataspace, which is the latent space
we described earlier in this chapter, it’s possible to optimize to find new candidates
with specific properties of interest. This work borrows heavily from an equivalent

Figure 5.9 Example molecular graphs with quantitative estimate of druglikeness (QED) 
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implementation in the Keras library, outlined in a posting by Victor Basu [6]. Fig-
ure 5.11 reproduces the basic idea from [5]. 

Figure 5.10 Molecules with high QED (top) and low QED (bottom)

SMILE Encoder Decoder SMILELatent Space

Property Prediction ( )f z

Figure 5.11 Example of how a graph autoencoder that is trained to re-create small graphs can also 
be used to make property predictions. The property prediction is applied in the latent space and 
creates a learned gradient of a specific graph property—in our case, the QED value.
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In figure 5.11, we can see that the underlying model structure is an autoencoder, just
like the ones we’ve been discussing in this chapter. Here, we pass the SMILES of the
molecule as input to the encoder, and this is then used to construct the latent space of
different molecular representations. This is shown as regions with different colors rep-
resenting different groups of molecules. Then, the decoder is designed to faithfully
translate the latent space back into the original molecule. This is similar to the auto-
encoder structure that we showed earlier in figure 5.5.

 Alongside the latent space, we now also have an additional function, which is going
to predict the property of the molecule. In figure 5.11, the property we’ll predict is
also the property we’re optimizing for. Therefore, by learning how to encode both the
molecule and the property, which in our case is QED, into the latent space, we can
optimize drug discovery to generate new candidate molecules with a high QED. 

 In our example, we’ll use the VGAE. This model includes two losses: a reconstruc-
tion loss that measures the difference between the original input data passed to the
encoder and the output from the decoder, as well as a measure of the structure of the
latent space, where we use the KL divergence.

 Along with these two loss functions, we’ll add one more function: a property pre-
diction loss. The property prediction loss estimates the MSE between predicted and
actual properties after running the latent representation through a property predic-
tion model, as shown in the middle of figure 5.11. 

 To train our GNN, we adapt the training loop provided earlier in listing 5.15 to
include these individual losses. This is shown in listing 5.18. Here, we have the recon-
struction loss as the binary cross-entropy (BCE) for the adjacency matrix, while the
property prediction loss considers only QED and can be based on the MSE. 

        def calculate_loss(self, pred_adj, \
   true_adj, qed_pred, qed_true, mu, logvar):
             adj_loss = F.binary_cross_entropy\
   (pred_adj, true_adj)  

             qed_loss = F.mse_loss\
(qed_pred.view(-1), qed_true.view(-1))    

             kl_loss = -0.5 * torch.mean\
(torch.sum(1 + logvar - mu.pow(2)\    
 - logvar.exp(), dim=1))

             return adj_loss + qed_loss + kl_loss

5.4.3 VGAEs for generating graphs

Now that we have both our training data and loss, we can start to think about the
model. Overall, this model will be similar to the ones discussed earlier in the chapter,
both GAE and VGAE. However, we need to make some subtle changes to our model to
ensure that it’s well applied to the problem at hand: 

Listing 5.18 Loss for molecule graph generation

Reconstruction loss

Property prediction loss

KL divergence loss
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 Use a heterogenous GCN to account for different edge types.
 Train the decoder to generate the entire graph.
 Introduce a property prediction layer.

Let’s look at each of these in turn. 

HETEROGENEOUS GCN
The small graphs that we’re generating will have different edge types that connect the
nodes of our graphs. Specifically, we can have a different number of bonds between
the atoms such as a single bond, double bond, triple bond, or even aromatic bonds,
which relate to molecules that are formed into a ring. Graphs with more than one
edge type are known as heterogeneous graphs, so we’ll need to make our GNN appli-
cable to heterogeneous graphs. 

 So far, all the graphs we’ve been considering have been homogenous (only one
edge type). In listing 5.19, we show how the GCN, which we discussed in chapter 3,
can be adapted to heterogeneous graphs. Here, we explicitly map out some of the dif-
ferent features for heterogeneous graphs. However, it’s important to note that many
GNN packages already support models for heterogeneous graphs out of the box. For
example, PyG has a specific class of models known as HeteroConv. 

 Listing 5.19 shows the code to create a heterogenous GCN. This builds off the mes-
sage-passing class in PyG, which is fundamental to all GNN models. We also use the
PyTorch Parameter class to create a new subset of parameters that are specific to the
different edge types (relations). Finally, we also specify here that the aggregation
operation in the message-passing framework is based on summation ('add'). If you’re
interested, feel free to try other aggregation operations. 

from torch.nn import Parameter
from torch_geometric.nn import MessagePassing

   class HeterogeneousGraphConv(MessagePassing):
def __init__(self, in_channels, out_channels, num_relations, bias=True):
        super(HeterogeneousGraphConv, self).\
__init__(aggr='add')      
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_relations = num_relations

        self.weight = Parameter(torch.\
Tensor(num_relations, in_channels, \
out_channels)) 
        if bias:
             self.bias = Parameter(torch.Tensor(out_channels))
        else:
             self.register_parameter('bias', None)

        self.reset_parameters()

Listing 5.19 Heterogenous GCN

"Add" 
aggregation

Parameter 
for weights
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        def reset_parameters(self):
             torch.nn.init.xavier_uniform_(self.weight)
             if self.bias is not None:
                  torch.nn.init.zeros_(self.bias)

        def forward(self, x, edge_index, edge_type):
       
       return self.propagate\
(edge_index, size=(x.size(0), 
x.size(0)), x=x, edge_type=edge_type) 

       def message(self, x_j, edge_type, index, size):  
       
            W = self.weight[edge_type]   
            x_j = torch.matmul(x_j.unsqueeze(1), W).squeeze(1)

            return x_j

       def update(self, aggr_out):
            if self.bias is not None:
                 aggr_out += self.bias
            return aggr_out

With the preceding GNN, we can then compose our encoder as a combination of
these individual GNN layers. This is shown in listing 5.20, where we follow the same
logic as when we defined our edge encoder (refer to listing 5.13), except that we now
switch out our GCN layers for the heterogeneous GCN layers. As we have different
edge types, we must now also specify the number of different types (relations) as well
as passing the specific edge type into the forward function for our graph encoder.
Again, we return both log variance and mean to ensure that the latent space is con-
structed using distributions rather than point samples.

   class VariationalGCEncoder(torch.nn.Module):
        def __init__(self, input_size, layers, latent_dims, num_relations):
             super().__init__()
             self.layer0 = HeterogeneousGraphConv(input_size, 
   layers[0], num_relations)                                    
             self.layer1 = HeterogeneousGraphConv(layers[0], 
   layers[1], num_relations)                                    
             self.layer2 = HeterogeneousGraphConv(layers[1], 
   latent_dims, num_relations)                                  

        def forward(self, x, edge_index, edge_type):
             x = F.relu(self.layer0\
(x, edge_index, edge_type))             
             x = F.relu(self.layer1\
(x, edge_index, edge_type))             
             mu = self.mu(x, edge_index) 
             logvar = self.logvar(x, edge_index)
             return mu, logvar

Listing 5.20 Small graph encoder
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GRAPH DECODERS

In our previous examples, we used GAEs to generate and predict edges between nodes
in a single graph. However, we’re now interested in using our autoencoder to gener-
ate entire graphs. Therefore, we no longer just consider the inner product decoder to
account for the presence of an edge in the graph but instead decode both the adja-
cency matrix and feature matrix for each small molecular graph. This is shown in
listing 5.21.  

class GraphDecoder(nn.Module):
        def __init__(self, latent_dim, adjacency_shape, feature_shape):
        super(GraphDecoder, self).__init__()

        self.dense1 = nn.Linear(latent_dim, 128)
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(0.1)

        self.dense2 = nn.Linear(128, 256)
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(0.1)

        self.dense3 = nn.Linear(256, 512)
        self.relu3 = nn.ReLU()
        self.dropout3 = nn.Dropout(0.1)

        self.adjacency_output = nn.Linear(512,\
torch.prod(torch.tensor(adjacency_shape)).item())
        self.feature_output = nn.Linear(512,\
torch.prod(torch.tensor(feature_shape)).item())

        def forward(self, z):
             x = self.dropout1(self.relu1(self.dense1(z)))
             x = self.dropout2(self.relu2(self.dense2(x)))
             x = self.dropout3(self.relu3(self.dense3(x)))

             adj = self.adjacency_output(x)  
             adj = adj.view(-1, *self.adjacency_shape)
             adj = (adj + adj.transpose(-1, -2)) / 2   
             adj = F.softmax(adj, dim=-1)                    

             features = self.feature_output(x)  
             features = features.view(-1, *self.feature_shape)
             features = F.softmax(features, dim=-1)   

             return adj, features

The majority of this code is typical for decoder style networks. We begin with a small
network that matches the dimension for the latent space created using the encoder.
We then progressively increase the size of the graph through subsequent layers of the
network. Here, we can use simple linear networks, where we include network dropout

Listing 5.21 Small graph decoder
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for performance. At the final layer, we reshape the decoder output into the adjacency
and feature matrices. We also ensure that the adjacency matrix is symmetric before
applying softmax. We symmetrize the adjacency matrix by adding it to its transpose
and dividing by 2. This ensures that node i is connected to j and that j is also con-
nected to i. We then apply softmax to normalize the adjacency matrix, ensuring all
outgoing edges from each node sum to 1. There are other choices we could make
here such as using the maximum value, applying a threshold, or using the sigmoid
function instead of softmax. In general, averaging + softmax is a good approach.

PROPERTY PREDICTION LAYER

All that’s left is to combine both encoder and decoder networks into a final model
that can be used for molecular graph generation, as shown in listing 5.22. Overall, this
follows the same steps as in listing 5.14 earlier, where we define both our encoder and
decoder as well as use the reparameterization trick. The only difference is that we also
include a simple linear network to predict the property of the graphs, in this case, the
QED. This is applied on the latent representation (z), after being reparameterized.

   import torch
   import torch.nn as nn
   import torch.nn.functional as F
   from torch_geometric.nn import MessagePassing

   class VGAEWithPropertyPrediction(nn.Module):
        def __init__(self, encoder, decoder, latent_dim):
             super(VGAEWithPropertyPrediction, self).__init__()
             self.encoder = encoder
             self.decoder = decoder
             self.property_prediction_layer = nn.Linear(latent_dim, 1)

        def reparameterize(self, mu, logvar):
             std = torch.exp(logvar / 2)
             eps = torch.randn_like(std)
             return eps.mul(std).add_(mu)

        def forward(self, data):
             mu, logvar = self.encoder(data.x, \
data.edge_index, data.edge_attr)
             z = self.reparameterize(mu, logvar)
             adj_recon, x_recon = self.decoder(z)
             qed_pred = self.property_prediction_layer(z)
             return adj_recon, x_recon, qed_pred, mu, logvar, z

The output for the model is then both the mean and log variance, which are passed to
the KL divergence; the reconstructed adjacency matrix and feature matrix, passed
to the reconstruction loss; and the predicted QED values, which are used in the pre-
diction loss. Using these, we can then compute the loss for our network and backprop-
agate the loss through the network weights to refine the generated graphs to have

Listing 5.22 VGAE for molecular graph generation
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specifically high QED values. Next, we show how to achieve just that in our training
and test loops. 

5.4.4 Generating molecules using a GNN

In the previous section, we discussed all the individual parts needed to use a GNN to
generate molecules. We’ll now bring the different elements together and demonstrate
how to use a GNN to create novel graphs that are optimized for a specific property. In
figure 5.12, we show the steps to generate molecules with a GNN that have a high
QED. These steps include creating suitable graphs to represent small molecules, pass-
ing these through our autoencoder, predicting specific molecular features such as
QED, and then repeating those steps until we’re able to recreate new novel molecular
graphs with specific features. 

The key element that remains is to combine our loss functions with our adapted
VGAE model. This is shown in listing 5.23, which defines our training loop. This is
similar to previous training loops that you’ve seen in earlier chapters and examples.
The main idea is that our model is used to predict some property of the graph. How-
ever, here we’re predicting the entire graph, as defined in the predicted adjacency
matrix (pred_adj) and the predicted feature matrix (pred_feat). 

 The output from our model and the real data are passed to our method for calcu-
lating the loss, which contains the reconstruction loss, KL divergence loss, and prop-
erty prediction loss. Finally, we compute the gradient penalty, which acts as a further
regularizer for our model (and defined in more detail in section 5.5). With both loss
and gradient calculated, we backpropagate through our model, step our optimizer
forwards, and return the loss. 
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   def train(model, optimizer, data, test=False):
        model.train()
        optimizer.zero_grad()

        pred_adj, pred_feat, pred_qed, mu, logvar, _ = model(data)

        real_adj = create_adjacency_matrix\
(data.edge_index, data.edge_attr, \
num_nodes=NUM_ATOMS)
        real_x = data.x
        real_qed = data.qed

    
        loss = calculate_loss\
(pred_adj[0], real_adj, pred_qed, \
real_qed, mu, logvar)  

        total_loss = loss

        if not test:
             total_loss.backward()
        optimizer.step()
        return total_loss.item()

During training time, we find that the model loss decreases, demonstrating that the
model is effectively learning how to reproduce novel molecules. We show some of
these molecules in figure 5.13.

To better understand the distribution of the predicted QED property in our latent
space, we apply our encoder to a new subset of data and look at the first two axes of
the data as represented in the latent space, as shown in figure 5.14. Here, we can see
that the latent space has been constructed to cluster molecules with higher QED
together. Therefore, by sampling from regions around this area, we can identify new

Listing 5.23 Training function for molecule graph generation

Compute losses

Figure 5.13 Small molecule graphs generated using a GNN
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molecules to test. Future work will be needed to verify our results, but as a first step
toward the discovery of new molecules, we’ve demonstrated that a GNN model may
well be used to propose new and potentially valuable drug candidates.

In this chapter, we’ve focused on generative tasks rather than classical discriminative
models. We’ve shown generative models, such as GAEs and VGAEs, can be used for
edge prediction, learning to identify connections between nodes where information is
potentially not available. We then went on to show that generative GNNs can be used
to discover not just unknown parts of a graph, such as a node or edge, but also entirely
new and complicated graphs, when we applied our GNNs to generate new small mole-
cules with a high QED. These results highlight that GNNs are vital tools for those

Figure 5.14 Latent space of drug molecules
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working in chemistry, life sciences, and many other disciplines that deal with many indi-
vidual graphs. 

 Moreover, we’ve learned that GNNs are extremely useful for both discriminative
and generative tasks. Here, we consider the topic of small molecule graphs, but GNNs
have also been applied to knowledge graphs and small social clusters. In the next
chapter, we’ll look at how we can learn to generate graphs that are consistent over
time by combining generative GNNs with temporal encodings. In that spirit, we take a
further step forward and learn how GNNs can be taught how to walk. 

5.5 Under the hood
Deep generative models use artificial neural networks to model the dataspace. One of
the classic examples of a deep generative model is the autoencoder. Autoencoders
contain two key components, the encoder and the decoder, both represented by neu-
ral networks. They learn how to take data and encode (compress) it into a low dimen-
sional representation as well as decode (uncompress) it again. Figure 5.15 shows a
basic autoencoder taking an image as input and compressing it (step 1). This results
in the low dimensional representation, or latent space (step 2). The autoencoder then
reconstructs the image (step 3), and the process is repeated until the reconstruction
error between input image (x) and output image (x*) is as small as possible. The auto-
encoder is the basic idea behind GAEs and VGAEs. 

5.5.1 Understanding link prediction tasks

Link prediction is a common problem in graph-based learning, especially in situations
where we have incomplete knowledge of our data. This might be because the graph
changes over time, for example, where we expect new customers to use an e-com-
merce service, and we want a model that can give the best suggested products to buy
at that time. Alternatively, it may be costly to acquire this knowledge, for example, if
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we want our model to predict which combinations of drugs lead to specific disease
outcomes. Finally, our data may contain incorrect or purposefully hidden details, such
as fake accounts on a social media platform. Link prediction allows us to infer rela-
tions between nodes in our graph. Essentially, this means creating a model that predicts
when and how nodes are connected, as shown in figure 5.16. 

For link prediction, a model will take pairs of nodes as input and predict whether
these nodes are connected (whether they should be linked). To train a model, we’ll
also need ground-truth targets. We generate these by hiding a subset of links within
the graph. These hidden links become the missing data that we’ll learn to infer, which
are known as negative samples. However, we also need a way to encode the information
about pairs of nodes. Both of these parts can be solved simultaneously using GAEs, as
autoencoders both encode information about the edge as well as predict whether an
edge exists.

5.5.2 The inner product decoder

Inner product decoders are used for graphs because we want to reconstruct the adja-
cency matrix from the latent representation of our feature data. The GAE learns how
to rebuild a graph (to infer the edges) given a latent representation of the nodes.
The inner product in high dimensional space calculates the distance between two
positions. We use the inner product, rescaled by the sigmoid function, to gain a prob-
ability for an edge between nodes. Essentially, we use the distance between points in
the latent space as a probability that a node will be connected when decoded. This
allows us to build a decoder that takes samples from our latent space and returns
probabilities of whether an edge exists, namely, to perform edge prediction, as shown
in figure 5.17.
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Figure 5.16 Schematic explaining how link prediction is performed in practice. 
Subsections of the input graph (subgraphs) are passed to the GNN with different links 
missing, and the model learns to predict when to recreate a link.
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The inner product decoder works by taking the latent representation of our data and
applying the inner product of this data using the passed edge index of our data. We
then apply the sigmoid function to this value, which returns a matrix where each value
represents the probability that there is an edge between the two nodes. 

REGULARIZING THE LATENT SPACE 
Put plainly, the KL divergence tells us how much worse we would be doing if we used the
wrong probability density when estimating a probability of something. Suppose we have
two coins and want to guess how well one coin (which we know is fair) matches the
other coin (which we don’t know is fair). We’re trying to use the coin with the known
probability to predict the probability for the coin with unknown probability. If it’s a
good predictor (the unknown coin actually is fair), then the KL divergence will be zero.
The probability densities of both coins are the same; however, if we find that the coin is
a bad predictor, then the KL divergence will be large. This is because the two probability
densities will be far from each other. In figure 5.18, we can see this explicitly. We’re try-
ing to model the unknown probability density Q(z) using the conditional probability
density P(Z|X). As the densities overlap, the KL divergence here will be low. 

x = a b,
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1. Construct latent
representation of
node features.

2. Calculate inner product
between nodes in latent
space to get edge index.

3. Apply sigmoid function
to convert inner product
into probability of an edge.
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Figure 5.17 Overall steps 
for training our model for link 
prediction

P(Z|X)
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Figure 5.18 KL divergence calculates the degree to which two probability densities are distinct. High 
KL divergence means that they are well separated, whereas low KL divergence means they are not. 
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Practically, we convert an autoencoder to a VGAE by introducing the KL divergence in
the loss. Our intention here is to both minimize the discrepancy between our encoder
and decoder as in the autoencoder loss, as well as minimize the difference between
the probability distribution given by our encoder and the “true” distribution that was
used to generate our data. This is done by adding the KL divergence to the loss. For
many standard VGAE, this is given by 

, (5.1)

where (p||q) denotes the divergence of probability p with respect to probability q. The
term μ is the mean value of the latent features, and log(var) is the logarithm of the
variance. We use this in the loss function whenever we build a VGAE, ensuring that
the forward pass returns both the mean and variance to our decoder. 

OVER-SQUASHING

We’ve discussed how GNNs can be used to find out information about a node by prop-
agating node and edge representations through message passing. These are used to
make embeddings of individual nodes or edges, which help guide the model to per-
form some specific tasks. In this chapter, we discussed how to construct a model that
constructs latent representations by propagating all of the embeddings created by the
message-passing layers into a latent space. Both perform dimension reduction and
representation learning of graph-specific data. 

 However, GNNs have a specific limitation in how much information they can use
to make representations. GNNs suffer from something known as over-squashing, which
refers to how information that is spread many hops across the graph (i.e., message
passing) causes a considerable drop in performance. This is because the neighbor-
hood that each node receives information from, also known as its receptive field,
grows exponentially with the number of layers of the GNN. As more information is
aggregated through message passing across these layers, the important signals from
distant nodes become diluted compared to the information coming from nearer
nodes. This causes the node representations to become similar or more homogenous,
and eventually to converge to the same representations, also known as over-smooth-
ing, which we discussed in chapter 4. 

 Empirical evidence has shown that this can start to occur with as few as three or
four layers [7], as you can see in figure 5.19. This highlights one of the key differences
between GNNs and other deep learning architectures: we rarely want to make a very
deep model with many layers stacked on top of each other. For models with many lay-
ers, other methods are often also introduced to ensure long-range information is
included such as skip connections or attention mechanisms.

 In the previous example in this chapter, we spoke about using GNNs for drug dis-
covery. Here, we considered an example where the graphs were relatively small. How-
ever, when graphs become larger, there is an increasing risk that long-range interactions
become important. This is particularly true in chemistry and biology, where nodes at



194 CHAPTER 5 Graph autoencoders
extreme ends of a graph can have an outsized influence on the overall properties of
the graph. In the context of chemistry, these might be two atoms that are either ends
of a large molecule and which decide the overall properties of the molecule such as its
toxicity. The range of interactions or information flow that we need to consider to
effectively model a problem is known as the problem radius. When designing a GNN, we
need to make sure that the number of layers is at least as large as the problem radius.

 In general, there are several methods for addressing over-squashing for GNNs:

 Ensure that not too many layers are stacked together. 
 Add in new “fake” edges between nodes that are very far/many hops apart or

introduce a single node that is attached to all other nodes so that the problem
radius is reduced to 2. 

 Use sampling, such as GraphSAGE, which samples from the neighborhood or
introduces skip connections, which similarly skip some local neighbors. For
sampling methods, it’s important to balance the loss of local information with
the gain of more long-range information. 

All of these methods are highly problem specific, and you should think carefully
about the type of interactions between nodes in your graph when deciding whether
long-range interactions are important. For example, in the next chapter, we consider
motion prediction where the head has likely little influence on the foot compared to
the knee. Alternatively, molecular graphs as described in this chapter will likely have
large influences from more distant nodes. Therefore, the most important part in
resolving problems such as over-squashing is making sure you have a solid understand-
ing of both your problem and data. 

Summary
 Discriminative models learn to separate data classes, while generative models

learn to model the entire dataspace.
 Generative models are often used to perform dimension reduction. Principal

component analysis (PCA) is a form of linear dimension reduction. 
 Autoencoders contain two key components, the encoder and the decoder, both

represented by neural networks. They learn how to take data and encode (com-
press) it into a low dimensional representation as well as decode (uncompress)

Bottleneck of GNNs

Bottleneck

Figure 5.19 Visualization of over-squashing 
(Source: Alon and Yahav [7])
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it again. For autoencoders, the low dimensional representation is known as the
latent space. 

 VAEs extend autoencoders to have a regularizing term in the loss. This regulariz-
ing term is typically the Kullback-Liebler (KL) divergence, which measures the
difference between two distributions—the learned latent distribution and a prior
distribution. The latent space of VAEs is more structured and continuous, where
each point represents a probability density rather than a fixed-point encoding. 

 Autoencoders and variational autoencoders (VAEs) can also be applied to graphs.
These are, respectively, graph autoencoders (GAE) and variational graph autoen-
coders (VGAE). They are similar to typical autoencoders and VAEs, but the
decoder element is typically the dot product applied to the edge list. 

 GAEs and VGAEs are useful for edge prediction tasks. They can help us predict
where there might be hidden edges in our graph. 





Part 3

Advanced topics

The evolution of graph neural networks (GNNs) has unlocked a wealth of
new possibilities, and this part of the book delves into some of the most exciting
and complex frontiers. We begin by examining spatiotemporal GNNs, which
model dynamic graphs that evolve over time, along with applications such as
pose estimation in motion analysis. Next, we tackle the challenge of scaling GNNs
to massive datasets, exploring strategies to efficiently process industrial-scale
graphs while maintaining high performance. Finally, we focus on the practical
considerations for building and deploying GNN projects, including how to cre-
ate graph data models from nongraph data, perform ETL (extract, transform,
load) and preprocessing from raw data sources, and construct datasets and data
loaders with PyTorch Geometric (PyG). Each chapter in this part provides action-
able insights and tools to master these advanced topics, empowering you to
unlock the full potential of GNNs in your work.





Dynamic graphs:
Spatiotemporal GNNs
So far, all of our models and data have been single snapshots in time. In practice,
the world is dynamic and in constant flux. Objects can move physically, following a
trajectory in front of our eyes, and we’re able to predict their future positions based
on these observed trajectories. Traffic flow, weather patterns, and the spread of dis-
eases across networks of people are all examples where more information can be
gained when modeled with spatiotemporal graphs instead of static graphs. 

 Models that we build today might quickly lose performance and accuracy as we
deploy them in the real world. These are problems intrinsic to any deep learning
(and machine learning) model, known as out-of-distribution (OOD) generalization,
that is, how well models generalize to entirely unseen data. 

This chapter covers
 Introducing memory into your deep learning 

models

 Understanding the different ways to model 
temporal relations using graph neural networks 

 Implementing dynamic graph neural networks

 Evaluating your temporal graph neural network 
models 
199
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 In this chapter, we consider how to make models that are suitable for dynamic
events. While this doesn’t mean they can deal with OOD data, our dynamic models will
be able to make predictions about unseen events in the future using the recent past. 

 To build our dynamic graph-based learning model, we’ll consider the problem of
pose estimation. Pose estimation relates to those classes of problems that predict how
bodies (human, animal, or robotic) move over time. In this chapter, we’ll consider a
body walking and build several models that learn how to predict the next step from a
series of video frames. To do this, we’ll first explain the problem in more detail and
how to understand this as a relational problem before jumping in to see how graph-
based learning approaches this problem. As with the rest of our book, further techni-
cal details are left to section 6.5 at the end of the chapter.

 We’ll use much of the material that we’ve already covered in the book. If you’ve
skipped ahead to this chapter, make sure you have a good understanding of the con-
cepts described in the “Building on what you’ve learned” sidebar. 

NOTE Code from this chapter can be found in notebook form at the GitHub
repository (https://mng.bz/4a8D). 

Building on what you’ve learned
To introduce temporal updates into our GNN, we can build on some of the concepts
that we’ve learned in previous chapters. As a quick refresher, we’ve summarized
some of the main important features from each chapter: 

 Message passing—In chapter 2, you learned that the main method used by
GNNs to learn from relational data is by combining message passing with arti-
ficial neural networks. Each layer of a GNN can be understood as one step of
message passing. 

 Graph convolutional networks (GCNs)—In chapter 3, you saw that message
passing itself can be understood as the relational form of the convolution
operator (as in convolutional neural networks [CNNs]), and this is the central
idea behind GCNs. Messages can also be averaged across neighborhoods by
only sampling a subset of nearest neighbors. This is used for GraphSAGE and
can considerably reduce the total compute needed. 

 Attention—In chapter 4, we showed how the aggregation function for mes-
sage passing doesn’t need to be restricted to only summing, averaging, or
max operations (though the operation must be permutation invariant). Atten-
tion allows for a weighting to be learned during training to give more flexible
message-passing aggregation functions. Using a graph attention network
(GAT) is the basic form of adding attention to message passing. 

 Generative models—While discriminative models seek to learn separations
between data classes, generative models attempt to learn the underlying
data-generating process. The autoencoder is one of the most popular frame-
works for designing generative models, where data is passed through a
neural network bottleneck to create a low-dimensional representation of the
data, also called the latent space. These are commonly implemented as graph

https://mng.bz/4a8D
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6.1 Temporal models: Relations through time
Almost every data problem will, in some way, also be a dynamic problem. In many
cases, we can ignore changes in time and build models that are suitable for snapshots
of the data that we’ve collected. For example, image segmentation methods rarely
consider video footage to train models.

 In chapter 3, we used a GCN to predict suitable products to recommend to cus-
tomers using data on a customer-purchaser network. We used a toy dataset that had
been collected over a period of several years. However, in reality, we’ll often have con-
stant streams of data and want to make up-to-date predictions that account for both
customer and cultural habit changes. Similarly, when we applied a GAT to a fraud-
detection problem, the data we used was a single snapshot of financial records that
was collected over a period of several years. However, we didn’t account for how finan-
cial behaviors changed over time in our model. Again, we would likely want to use this
information to predict where an individual’s spending behavior abruptly changes to
help us detect fraudulent activity. 

 These are just a few of the many different dynamic problems that we’re faced with
every day (see figure 6.1). GNNs are unique in that they can model both dynamic and
relational changes. This is very important as many of the networks that operate around
us are also moving in time. Take, for example, a social network. Our friendships change,
mature, and sadly (or fortunately!) weaken over time. We might become stronger
friends with work colleagues or friends of friends and see friends from our hometown
less frequently. Making predictions for social networks need to account for this. 

 As another example, we often make predictions about which way to go and when
we might arrive based on our knowledge of the roads, traffic patterns, and how much
of a rush we’re in. A dynamic GNN can also be used to help make use of this data, by
treating the road network as a graph and making temporal predictions on how this
network will change. Finally, we can consider predicting how two or more objects
move together, that is, by estimating their future trajectories. While this might seem
less useful than making friends or getting to work on time, predicting trajectories of
interacting bodies, such as molecules, cells, objects, or even stars, is vital to many sci-
ences as well as for robotic planning. Again, dynamic GNNs can help us both predict
these trajectories and infer new equations or rules that explain them. 

 These examples are just the tip of the iceberg for applications where we need to
model temporal changes. In fact, we’re sure that you can think of many others.
Given the importance of knowing how to combine relational learning with temporal
learning, we’ll cover three different methods for building dynamic models, two of
which use GNNs: a recurrent neural network (RNN) model, a GAT model, and a
neural relational inference (NRI) model. We’ll build machine learning models that

autoencoders (GAEs) or variational graph autoencoders (VGAEs) for graphs, as we
discussed in chapter 5.



202 CHAPTER 6 Dynamic graphs: Spatiotemporal GNNs
“learn to walk” by estimating how a human pose changes over time. These models
are often deployed in, for example, medical consultations, remote home security
services, and filmmaking. The models are also a great toy problem for us to learn to
walk before we can run. In that spirit, let’s first learn more about the data and build
our first benchmark model.

6.2 Problem definition: Pose estimation
In this chapter, we’ll solve a “dynamic relational” problem with one set of data: pre-
processed segmentation of a body walking. This is a useful dataset to explore these
techniques, as a moving body is a textbook example of an interacting system: our foot
moves because our knee moves because a leg moves, and our arms and torso will all
move too. This means that there is a temporal component to our problem.

 In a nutshell, our pose estimation problem is about path prediction. More pre-
cisely, we want to know where, for example, a foot will move having followed the rest
of the body for some number of previous timesteps. This type of object tracking is
something that we do every day, for example, when we play sports, catch something
that’s falling, or watch a television show. We learn this skill as a child and often take it
for granted. However, as you’ll see, teaching a machine to perform this object track-
ing was a significant challenge up until the emergence of spatiotemporal GNNs.

Road Traffic

Nodes: Street Intersections

Edges: Road Segments

Objects in Motion

Nodes: Free Moving Objects/Parts

Edges: Physical Connections and Forces between

Objects

Social Network

Nodes: People

Edges: Associations between People

Figure 6.1 Examples of different dynamic problems
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 The skills that we’ll use for path prediction are important for many other tasks.
Predicting events in the future is useful when we want to predict the next purchase of
a customer or understand how weather patterns will change based on geospatial data. 

 We’ll be using the Carnegie Mellon University (CMU) Motion Capture Database
(http://mocap.cs.cmu.edu/), which contains many examples of different dynamic
poses, including walking, running, jumping, and performing sports moves, as well as
multiple people interacting [1]. Throughout this chapter, we’ll use the same dataset
of subject #35 walking. At each timestep, the subject has 41 sensors that each follow a
single joint, ranging from the toes up to the neck. An example of the data from this
database is shown in figure 6.2. These sensors track the movement of part of the body
across snapshots of their motion. In this chapter, we won’t follow the entire motion
and consider only a small subset of the motion. We’ll use the first 49 frames for our
training and validation datasets and 99 frames for our test set. In total, there are 31
different examples of this subject walking. We’ll discuss more about the structure of
our data in the next section.

6.2.1 Setting up the problem

Our aim is to predict the dynamics for all the individual joints. Clearly, we can con-
struct this as a graph because all the joints are connected through edges, as shown
previously in figure 6.2. Therefore, it makes sense to use GNNs to solve this problem.
However, we’ll first compare another approach, which doesn’t account for the graph
data, to benchmark our GNN models.

DOWNLOADING THE DATA

We’ve included the steps to download and preprocess the data in our code repository.
The data is contained within a zip file where each of the different trials is saved as an
advanced systems format (.asf) file. These .asf files are basically just text files that con-
tain the label for each sensor and their xyz coordinates at each timestep. In the follow-
ing listing, we show a snippet of the text.

 

Figure 6.2 Snapshots in time (t = time in seconds) of a human subject walking. The dots represent 
sensors placed on key joints on the human’s body. These snapshots are across 30 seconds. To represent 
these figures as a graph, the sensor placements (joints) can be represented as nodes, and the body’s 
connections between the joints are the edges.

http://mocap.cs.cmu.edu/
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   1
   root 4.40047 17.8934 -21.0986 -0.943965 -8.37963 -7.42612
   lowerback 11.505 1.60479 4.40928
   upperback 0.47251 2.84449 2.26157
   thorax -5.8636 1.30424 -0.569129
   lowerneck -15.9456 -3.55911 -2.36067
   upperneck 19.9076 -4.57025 1.03589

Here, the first number is the frame number, and root is specific to the sensors and
can be ignored. lowerback, upperback, thorax, lowerneck, and upperneck denote
the positions of the sensors. In total, there are 31 sensors mapping the movement of a
man walking. To convert this sensor data into trajectories, we need to calculate the
change in position for each sensor. This becomes quite a complicated task, as we need
to account for both translational movements and angular rotations for the various
sensors between each frame. Here, we’ll use the same data files as in the NRI paper
[2]. We can use these to map out the trajectories of each individual sensor in x, y, and
z, or look at how the sensors are moving in two dimensions to get intuition about how
the entire body is moving. Examples of this are shown in figure 6.3, where we focus on
the movement of a foot sensor in x, y, and z, as well as the overall movement of the
body over time (with the sensor shown as solid black stars). 

Along with the spatial data, we can also calculate the velocity data. This data is pro-
vided as separate files for each of the movie frames. An example of the change in
velocity data is shown in figure 6.4. As you can see, the velocity data varies around a
smaller range. Both spatial and velocity data will be used as the features in our

Listing 6.1 Example of the sensor data text files 

Figure 6.3 Preconstructed spatial trajectories of sensors
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machine learning problem. Here, we now have six features across 50 frames for
each of our 31 sensors and across 33 different trials. We can understand this as a
multivariate time series problem. We’re trying to predict the future evolution of a
six-dimensional (three spatial and three velocity) object (each sensor). Our first
approach will treat these as independent, looking to predict future positions and
velocity based on past sensor data. We’ll then switch to treating this as a graph,
where we can couple all sensors together. 

Currently, this is a relational problem, but we’re only considering the node data and not
the edge data. Where there is node data and no edge data, we have to be careful not to
make too many assumptions. For example, if we chose to connect nodes based on their
distance from one another, then we might end up with a very strange-looking skeleton,
as shown in figure 6.5. Luckily, we have the edge data as well, which has been built using
the CMU dataset and is included in the data provided. This serves as a cautionary tale
that GNNs are only as powerful as the graphs they’re trained on and that we must take
care to ensure that the graph structure is correct. However, if edge data is entirely lack-
ing, then we can attempt to infer the edge data from the node data itself. While we
won’t be doing this here, note that the NRI model we’ll be using has this capability. 

 We now have all of our data loaded. In total, we have three datasets (training, valida-
tion, testing) that each contain 31 individual sensor positions. Each of these sensors
contain six features (spatial coordinates) and are connected by an adjacency matrix that
is constant in time. The sensor graph is undirected, and the edges are unweighted. The
training and validation sets contain 49 frames, and the test sets contain 99 frames. 

 

Figure 6.4 Preconstructed velocity data of sensors
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6.2.2 Building models with memory

Now that our problem is defined and our data is loaded, let’s consider how we might
approach the problem of predicting the joint dynamics. First, we need to think about
what the underlying aim is. At its core, we’ll be involved in sequence prediction, just
like autocomplete on a phone or search tool. These types of problems are often
approached using networks, such as transformers, for which we use an attention mecha-
nism as in chapter 4. However, before attention-based networks, many deep learning
practitioners instead approached sequence prediction tasks by introducing memory
into their models [3]. This makes intuitive sense: if we want to predict the future, we
need to remember the past. 

 Let’s build a simple model that predicts the next location for all the individual sen-
sors using past events. Essentially, this means we’ll build a model that predicts the

Figure 6.5 Sensor networks showing the error of wrongly inferring graph structures. The nodes are 
human skeletal connections. The left figure shows a network with edges inferred from node proximity 
(closest nodes connected to one another). This figure does not reflect a real human skeleton. The true 
set of edges is shown in the right figure.
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position of nodes without edge data. An example of what we’ll be attempting is shown
in figure 6.6. Here, we’ll start by preprocessing and preparing our data to be passed to
a model that can predict how the data evolves over time. This allows us to predict the
changes in the pose given a few input frames. 

To introduce memory to our neural networks, we’ll start by considering a recurrent
neural network (RNN). Similar to convolutional and attention neural networks, RNNs
are a broad class of architectures that are fundamental tools for researchers and prac-
titioners alike. For more information about RNNs, see, for example Machine Learning
with TensorFlow (Manning, 2020, https://mng.bz/VVOW). RNNs can be considered as
multiple individual networks that link together. These repeating subnetworks allow for
past information to be “remembered” and the effect from past data to affect future pre-
dictions. After initializing, each subnetwork takes in input data as well as the output of
the last subnetwork, and these are used to make new predictions. In other words, each
subnetwork takes input and information from the recent past to build inferences about
the data. However, a vanilla RNN will only ever remember the preceding step. They
have very short-term memory. To improve the effect of the past on the future, we need
something stronger. 

 Long short-term memory (LSTM) networks are another extremely popular neural
network architecture for modeling and predicting temporal or sequential informa-
tion. These networks are special cases of RNN that similarly link multiple subnetworks
together. The difference is that LSTMs introduce more complex dependencies in the
subnetwork structure. LSTMs are particularly useful for sequential data as they resolve
the problem of vanishing gradients that is observed for RNNs. Put simply, vanishing

1. Input data of format: [number of videos,
number of timesteps,
number of sensors,
number of sensor features]

2. Train a model to predict
future timesteps.

3. Predict the pose in
future timesteps.

Figure 6.6 Predicting future positions using only sensor data

https://mng.bz/VVOW
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gradients refers to where the gradient that we use to train our neural network using
gradient descent approaches zero. This is especially likely to happen when we train an
RNN that has many layers. (We won’t go into the reasons for this here, but if you’re
interested, read Deep Learning with Python (Manning, 2024, https://mng.bz/xKag) for
more information. 

 Gated recurrent unit networks (GRUs) also resolve the problem of vanishing gra-
dients by allowing new information to be added to the memory store about the recent
past. This is achieved through a gating structure, where gates within the model
architecture help to control the flow of information. These gates also add a new
design element to how we can build and adapt our neural networks. We won’t con-
sider LSTM here as it’s outside the scope of the book, but again we recommend that
you check out Deep Learning with Python (Manning, 2024, https://mng.bz/xKag) for
more information. 

CONSTRUCTING A RECURRENT NEURAL NETWORK

Let’s now look at how to use an RNN to predict the trajectories of the body sensors
over time, which will act as one of our baselines for future performance gains. We
won’t go into the details of RNNs and GRU architectures but additional information is
provided at the end of the chapter in section 6.5. 

 The idea for this model is that our RNN will predict the future positions for sen-
sors without taking into account relational data. When we start to introduce our graph
models, we’ll see how this can be improved.

 We’ll use the same standard training loop for deep learning, as shown in figure
6.7. Once we define our model and define a training and test loop, we use these to
train and then test the model. As always, we’ll keep the training and testing data com-
pletely separate and include a validation set of data to make sure our model isn’t over-
fitting during training. 

The training loop used here is fairly standard, so we’ll describe it first. In the training
loop definition shown in listing 6.2, we follow the same convention as in previous
chapters, looping through model prediction and loss updates over a fixed number of
epochs. Here, our loss will be contained in our criterion function, which we define as
a simple mean standard error (MSE) loss. We will use a learning rate scheduler, which
will reduce the learning rate parameter after our validation loss starts to plateau. We
initialize the best loss as infinity and lower the learning rate after the validation loss is
less than our best loss for N steps. 

 

Figure 6.7 Standard process for training a deep learning model that we’ll follow throughout this chapter

https://mng.bz/xKag
https://mng.bz/xKag
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   num_epochs = 200  
   train_losses = []
   valid_losses = []

   pbar = tqdm(range(num_epochs))

   for epoch in pbar:
    
        train_loss = 0.0 
        valid_loss = 0.0 

        modelRNN.train() 
        for i, (inputs, labels) in enumerate(trainloader):
             inputs = inputs.to(device)
             labels = labels.to(device)

        optimizer.zero_grad() 
    
        outputs = modelRNN(inputs) 
        loss = criterion(outputs, labels) 
        loss.backward() 
        optimizer.step() 
    
        train_loss += loss.item() * inputs.size(0) 

        modelRNN.eval()  
        with torch.no_grad():
             for i, (inputs, labels) in enumerate(validloader):
                  inputs = inputs.to(device)
                  labels = labels.to(device)

                  outputs = modelRNN(inputs) 
                  loss = criterion(outputs, labels)
                  valid_loss += loss.item() * inputs.size(0)
        
         if valid_loss < best_loss: 
              best_loss = valid_loss
              counter = 0
         else:
              counter += 1

         scheduler.step(best_loss) 

         if counter == early_stop:
         print(f"\n\nEarly stopping \
initiated, no change \
after {early_stop} steps")
         break

        train_loss = train_loss/len(trainloader.dataset) 
        valid_loss = valid_loss/len(validloader.dataset) 

        train_losses.append(train_loss) 
        valid_losses.append(valid_loss) 

Listing 6.2 Training loop

Initializes loss and 
accuracy variables

Begins the 
training loop

Zeros the parameter 
gradients

Forward + backward + optimize

Updates 
training loss, 
multiplying b
the number o
samples in th
current mini-
batch

Begins the 
validation loop

Checks for 
early stopping

Steps the 
scheduler

Calculates and 
stores losses
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Both layers are trained (using our training loop in listing 6.3) for a specific task. For both
the RNN and the GRU, the format for the data will be the individual trials or videos, the
frame timestamp, the number of sensors, and the features of the sensors. By providing
the data broken up into individual snapshots of time, the model is able to use the tempo-
ral aspects to learn from. Here, we use the RNN to predict the future position for each
individual sensor, given the 40 previous frames. For all of our calculations, we’ll normal-
ize the data based on the node features (position and velocity) using min-max scaling. 

 After we finish our training loop, we test our network. As always, we don’t want to
update the parameters of our network, so we make sure that there is no backpropa-
gated gradient (by selecting torch.no_grad()). Note that we choose a sequence
length of 40 so that our testing loop is able to see the first 40 frames and then attempt
to infer the final 10 frames. 

   model.eval()  
   predictions = [] 
   test_losses = [] 
   seq_len = 40 

   with torch.no_grad():
        for i, (inputs, targets) in enumerate(testloader):
             inputs = inputs.to(device)
             targets = targets.to(device)

             preds = []
             for _ in range(seq_len):
                  output = model(inputs)
                  preds.append(output)

             inputs = torch.cat([inputs[:, 1:]\
, output.unsqueeze(1)], dim=1) \

        preds = torch.cat(preds, dim=1) 
           loss = criterion(preds, targets) 
           test_losses.append(loss.item()) 

           predictions.append(preds.detach().cpu().numpy())

    predictions = np.concatenate(predictions, axis=0) 
   test_loss = np.mean(test_losses) 

Once our models are defined, we can next use the training loop given in listing 6.3 to
train our model. At this point, you might be wondering how we’ll amend the training
loop to correctly account for the temporal element when backpropagating. The good
news is that this is handled automatically by PyTorch. We find that the RNN model is
able to predict the future positions with 70% accuracy for the validation data and 60%
accuracy for the test data.

Listing 6.3 Testing loop

Sets the model to 
evaluation mode

Updates inputs 
for the next 
prediction

Computes the 
loss for this 
sequence

Converts predictions 
to a NumPy array for 
easier manipulation

Computes the 
average test loss
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 We also tried a GRU model to predict the future steps taken and found this model is
able to get an accuracy of 75% using the validation data. This is quite low but not as low
as it might be given the simplicity of the model and the little amount of information
that we’ve passed it. However, when we test the model performance on our test data,
we can see that performance falls to 65%. A few example outputs from our model are
shown in figure 6.8. Clearly, the model quickly degrades, and the estimated pose posi-
tion starts to vary widely. For better accuracy, we’ll need to use some of the relational
inductive biases in the pose data. 

6.3 Dynamic graph neural networks
To predict the future evolution of the graph, we need to restructure our data to account
for temporal data. Specifically, dynamic GNNs connect different sequential snapshots of
the graph’s evolution and learn to predict future evolutions [4–6]. One method for
doing so is to combine them into a single graph. This temporal graph now contains
both per-timestep data and the temporal connections encoded as nodes with temporal
edges. We’ll first approach the task of pose estimation by taking a naive approach to
modeling graph evolution. We’ll look at how we can combine our temporal data into
one large graph and then predict the future evolution by masking the nodes of interest.
We’ll use the same GAT network that you saw in chapter 3. Then, in section 6.4, we’ll
show another method for solving the pose estimation problem by instead encoding
each snapshot of the graph and predicting the evolution using a combination of varia-
tional autoencoders (VAEs) and RNNs, which is the NRI method [2]. 

6.3.1 Graph attention network for dynamic graphs

We’ll look at how to convert our pose estimation problem into a graph-based prob-
lem. To do this, we need to construct an adjacency matrix that accounts for temporal
information. First, we need to load our data in as a PyTorch Geometric (PyG) data
object. We’ll use the same location and velocity data that we used to train our RNN.
The difference here is that we’ll construct a single graph that contains all the data.
The code snippet in listing 6.4 shows how we initialize our dataset. We pass the paths
for where the location and velocity data are as well as where the edge data is located.

Figure 6.8 Predicting future movements using an RNN. Here, figures on the left represent the true data, and 
those on the right represent the predicted data.
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s 
We also pass whether we need to transform our data and the mask and window size
that we’ll predict over. 

   class PoseDataset(Dataset):
        def __init__(self, loc_path, 
                          vel_path, 
                          edge_path, 
                          mask_path, 
                          mask_size, 
                          transform=True):

       self.locations = np.load(loc_path) 
        self.velocities = np.load(vel_path) 
        self.edges = np.load(edge_path)

        self.transform=transform
        self.mask_size = mask_size 
        self.window_size = self.locations\
.shape[1] - self.mask_size 

For all our dataset objects, we need a get method inside the class to describe how to
retrieve this data, which is shown in listing 6.5. This method combines the location
and velocity data into node features. We also provide an option to transform the data
using a normalize_array function. 

   def __getitem__(self, idx):
        nodes = np.concatenate((self.locations[idx], 
   self.velocities[idx]), axis=2) 
        nodes = nodes.reshape(-1, nodes.shape[-1]) 

        if self.transform: 
             nodes, node_min, node_max\
    = normalize_array(nodes) 

        total_timesteps = self.window_size + self.mask_size 
        edge_index = np.repeat(self.\
edges[None, :], total_timesteps, axis=0) 

         N_dims = self.locations.shape[2]
        shift = np.arange(total_\
   timesteps)[:, None, None]*N_dims 
         edge_index += shift
         edge_index = edge_index.reshape(2, -1)  

         x = torch.tensor(nodes, dtype=torch.float) 
         edge_index = torch.tensor\
(edge_index, dtype=torch.long) 

Listing 6.4 Loading the data as a graph

Listing 6.5 Set up node features using location and velocity data

Loads the data 
from .npy files

Determines the 
mask size

Determines the 
window size

Concatenates location and 
velocity data for each node

Determines 
the mask size

Applies normalization 
if transform is True

Repeats the 
edges for the total 
number of timestep
(past + future)

Applies the shift to 
the edge indices

Flattens the edge indices 
into two dimensions

Converts everything 
to PyTorch tensors



2136.3 Dynamic graph neural networks
          mask_indices = np.arange(        
               self.window_size * self.\
locations.shape[2],                        
               total_timesteps * \
self.locations.shape[2]                    
                    )                      
           mask_indices = torch.tensor(mask_indices, dtype=torch.long)

           if self.transform:
                  trnsfm_data = [node_min, node_max]
                  return Data(x=x, 
                       edge_index=edge_index, 
                       mask_indices=mask_indices,  
                       trnsfm=trnsfm_data
                        )
            return Data(x=x, edge_index=\
edge_index, mask_indices=mask_indices)

We next want to combine all nodes across the different timesteps into one large graph
containing all individual frames. This gives an adjacency matrix that covers all different
timesteps. (For further details on the idea of temporal adjacency matrices, see section 6.5
at the end of this chapter.) To do this for our pose estimation data, we first construct the
adjacency matrix for each timestep, as shown in listing 6.6 and included in listing 6.5. 

 As shown in figure 6.9, the process begins by representing the graph data across
multiple timesteps, where each timestep is treated as a distinct layer (Step 1). All
nodes have node feature data (not shown in the figure). For our application, the node
feature data consists of location and velocity information.

 Nodes within a timestep are connected to each other using intra-timestep edges,
that is, connections between nodes on the same timestep layer (Step 2). These edges
ensure that each graph at a specific timestep is internally consistent. The nodes are
not yet connected across timesteps.

 To incorporate temporal relationships, inter-timestep edges (i.e., connections
between nodes on different timestep layers) are added to connect corresponding nodes
across adjacent timesteps (Step 3). These edges allow information to flow between
nodes in different timesteps, enabling temporal modeling of the graph data.

 In preparation for predicting future values, the nodes in the last timestep are
masked to represent unknown data (Step 4). These masked nodes are treated as the
target of the prediction task. Their values are unknown, but they can be inferred by
leveraging the features and relationships of the unmasked nodes in earlier timesteps.

 The inference process (Step 5) involves using the known features of unmasked
nodes from previous timesteps (t = 0 and t = 1) to predict the features of the masked
nodes in t = 2. Dotted arrows illustrate how information flows from unmasked nodes
to masked nodes, showing the dependency of the predictions on earlier graph data.
This transforms the task into a node prediction problem, where the goal is to estimate
the features of the masked nodes based on the relationships and features of the
unmasked nodes.

Calculates the indices 
of the masked nodes
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nodes using node features (location and velocity).
This is illustrated for nodes in the first position
but applies to all nodes generally.
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Figure 6.9 Illustration of the spatiotemporal graph construction and inference process. Step 1 shows 
the sequence of graphs across timesteps with nodes representing entities at each timestep. Step 2 
highlights intra-timestep edges (solid lines) connecting nodes within the same graph layer. Step 3 
introduces inter-timestep edges (dotted lines) that encode temporal dependencies by linking 
corresponding nodes across adjacent timesteps. In Step 4, nodes at the final timestep are masked 
(gray) to represent unknown values for prediction. Step 5 demonstrates the inference process (dashed 
arrows), where information from unmasked nodes in earlier timesteps is used to estimate the features 
of masked nodes. The legend clarifies the types of nodes and edges used in the graph representation.
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       total_timesteps = self.\
window_size + self.mask_size 
       edge_index = np.repeat(self.edges[None, :],\
 total_timesteps, axis=0) 

       shift = np.arange(total_timesteps)[:, None, \
None] * num_nodes_per_timestep 
       edge_index += shift 
       edge_index = edge_index.reshape(2, -1) 

Now that we have the adjacency matrix, the next step is to build a model that can pre-
dict future timesteps. Here, we’ll use a GAT model, introduced in chapter 4 [7]. We
choose this GNN because it can be more expressive than other GNNs, and we want
something that is able to account for the different temporal and spatial information.
The model architecture is provided in listing 6.7. 

 This model follows the basic structure outlined in chapter 4. We define the num-
ber of layers and heads for our model as well as the relevant input size, which depends
on the number of features that we’re predicting. Each of our GAT layers has a hidden
size and we include dropout and batch normalization to improve performance. We
then loop through the number of layers in our model, ensuring that the dimensions
are correct to match our target output. We also define our forward function, which
predicts the node features for the masked nodes. By unwrapping each timestep into a
larger graph, we start to introduce temporal effects as additional network structures
that our model can learn. 

  class GAT(torch.nn.Module):
        def __init__(self, n_feat,
                      hidden_size=32,
                      num_layers=3,
                      num_heads=1,
                      dropout=0.2,
                      mask_size=10):
             super(GAT, self).__init__()

             self.num_layers = num_layers
             self.heads = num_heads
             self.n_feat = n_feat
             self.hidden_size = hidden_size
             self.gat_layers = torch.nn.ModuleList()
             self.batch_norms = torch.nn.ModuleList()
             self.dropout = nn.Dropout(dropout)
             self.mask_size = mask_size

Listing 6.6 Constructing the adjacency matrix

Listing 6.7 Defining the GAT model

Repeats the edges for the 
total number of timesteps 
(past + future)

Creates a shift for 
each timestep

Applies the shift to 
the edge indices

Flattens the edge indices
into two dimensions
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             gat_layer = GATv2Conv(self.n_feat,\
 self.hidden_size, heads=num_heads) 
             self.gat_layers.append(gat_layer) 
             middle_size = self.hidden_size*num_heads 
             batch_layer = nn.BatchNorm1d\
(num_features=middle_size) 
             self.batch_norms.append(batch_layer)

             for _ in range(num_layers-2): 
                  gat_layer = GATv2Conv(input_size,\
 self.hidden_size, heads=num_heads) 
                  self.gat_layers.append(gat_layer) 
                  batch_layer = nn.BatchNorm1d(num_features\
=middle_size)                                          
                  self.batch_norms.append(batch_layer) 

             gat_layer = GATv2Conv(middle_size, self.n_feat)
             self.gat_layers.append(gat_layer) 

        def forward(self, data):
             x, edge_index = data.x, data.edge_index
             for i in range(self.num_layers):
                  x = self.gat_layers[i](x, edge_index)
                  if i < self.num_layers - 1: 
                       x = self.batch_norms[i](x) 
                       x = torch.relu(x) 
                       x = self.dropout(x) 

             n_nodes = edge_index.max().item() + 1 
             x = x.view(-1, n_nodes, self.n_feat)
             return x[-self.mask_size:].view(-1, self.n_feat)

With both model and dataset defined, let’s start training our model and see how it
performs. Recall that the RNN and GRU achieved 60% and 65% in test accuracy,
respectively. In listing 6.8, we show the training loop for our GAT model. This training
loop follows the same structure as that used in previous chapters. We use the MSE as
our loss functions and set the learning rate to 0.0005. We calculate the node features
of the masked nodes using our GAT and then compare these to the true data, which is
stored in data. We first train our model and then compare the model predictions
using our validation set. Note that because of the multiple graph sequences we’re now
predicting, this training loop takes more time than previous models. On a V100 GPU
through Google Colab, this took under an hour to train. 

   lr = 0.001
   criterion = torch.nn.MSELoss()                           
   optimizer = torch.optim.Adam(model.parameters(), lr=lr)  

   for epoch in tqdm(range(epochs), ncols=300):
        model.train()
        train_loss = 0.0

Listing 6.8 GAT training loop

First GAT 
layer

BatchNorm layer for 
the first GAT layer

Intermediate 
GAT layers

BatchNorm layers 
for intermediate 
GAT layers

Last GAT 
layer

Don’t apply batch 
normalization and 
dropout to the output 
of the last GAT layer.

Only outputs 
the last frame

Initializes loss and 
optimizer with 
learning rate
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        for data in train_dataset:
             optimizer.zero_grad()
             out = model(data) 
       
        loss = criterion(out, \
data.y.reshape(out.shape[0], -1)) 
        loss.backward() 
        optimizer.step()
        train_loss += loss.item()

        model.eval() 
        val_loss = 0.0 
        with torch.no_grad(): 
             for val_data in val_dataset: 
               val_out = model(val_data) 
                  val_loss += criterion(out, \
data.y.reshape(out.shape[0],\
 -1)).item() 

        val_loss /= len(val_dataset)
        train_loss /= len(train_dataset)

Finally, we test our trained model using the test set and code shown in the following listing. 

   test_loss = 0
   for test_data in test_dataset:
        test_out = model(test_data) 
        test_loss += criterion(out,\
 data.y.reshape(out.shape[0], -1)).item() 

We find that this naive approach is unable to predict the poses. Our overall test accu-
racy is 55%, and the predicted graphs look very different from our expectation of the
pose’s appearance. This is due to the large amount of data that we’re now holding in a
single graph. We’re compressing both node features and temporal data into one
graph, and we’re not emphasizing the temporal property when defining our model.
There are ways to improve this, such as by using temporal encodings to extract the
edge data that is unused, as in the temporal GAT (TGAT) model. TGAT treats edges
as dynamic rather than static, such that each edge also encodes a timestamp. 

 However, without this time data, our model has become too expressive such that
the overall structure of the pose has diverged significantly from the original structure,
as shown with the predicted poses in figure 6.10. Next, we’ll investigate how to com-
bine the best of both approaches into a GNN that uses RNN-based predictions by
learning on each graph snapshot. 

 

Listing 6.9 GAT test loop

Generates the model’s 
predictions for the input

Computes the loss between 
the outputs and the targets

Validation 
loop

Generates the model’s 
predictions for the input

Computes the loss 
between the outputs 
and the targets

Generates the model’s 
predictions for the input

Computes the loss between 
the outputs and the targets
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6.4 Neural relational inference
Our RNN focused entirely on the temporal data but ignored the underlying relational
data. This resulted in a model that was able to move in the right direction on average
but didn’t really alter the individual sensor positions very well. On the other hand, our
GAT model ignored temporal data by encoding all individual temporal graphs into a
single graph and attempting node prediction on the unknown future graphs. The
model caused the sensors to move dramatically, and our resulting graphs looked very
unlike how we would expect a human to move. 

 Neural relational inference (NRI), as mentioned earlier, is a slightly different
approach that uses a more complex encoding framework to combine the best of
both RNN and GNNs [2]. The architecture for this model is shown in figure 6.11.
Specifically, NRI uses an autoencoder structure to embed the information at each
timestep. Therefore, the embedding architecture is applied to the entire graph in a
similar way to GAE, which we discussed in chapter 5. This encoded graph data is
then updated using an RNN. One key point is that NRI evolves the latent represen-
tation of the embeddings.

Figure 6.10 Output from the GAT model

Figure 6.11 Schematic for NRI (Source: Kipf et al. [2]). The model consists of an encoder and decoder layer and 
several message-passing steps. However, here the messages are passed in the encoder from node to edge, back 
from edge to node, and then back from node to edge again. For the decoder, messages are passed from node to 
edge and then from edge to node. The final step takes the latent representation and is used to predict the next 
step in the temporal evolution of the body.
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Let’s explore how this model applies to our problem of pose estimation so that we
can best understand the different components in the model. We’ll use the same
format of masking some data during training and then using the test day to identify
these masked nodes. Recall that this is equivalent to inferring the future frames in
our video. However, we now need to change both the model architecture and the loss.
We need to change the model architecture to account for the new autoencoder struc-
ture, and we need to adjust the loss to include minimizing the reconstruction loss
as well as the Kullbeck-Liebler divergence (KL divergence). For more information
on the NRI model and relevant changes, see section 6.5 at the end of the chapter. 

 The code for the base class of an NRI model is provided in listing 6.10. As is clear
in the code, we need to define an encoder and decoder when calling this class. Along
with the encoder and decoder, there are some other model-specific details we need to
be aware of. First, we need to define the number of variables. This relates to the num-
ber nodes in our graph rather than the number of features for each node. In our case,
this will be 31, corresponding to each of the different sensors tracking a joint position.
We also need to define the different types of edges between the nodes. This will be
either 1 or 0, representing whether an edge exists. 

 We’ll assume that the way the nodes, or sensors, connect doesn’t change, that is,
that the graph structure is static. Note that this model also allows for dynamic graphs
where the connectivity changes over time, for example, when different players move
around a basketball court. The total number of players is fixed but the number of
players that can be passed to changes. In fact, this model was also used to predict how
different players would pass using footage from the NBA. 

 Finally, this model needs some hyperparameters to be set, including the Gumbel
temperature and the prior variance. Gumbel temperature controls the tradeoff between
exploration and exploitation when performing discrete sampling. Here, we need to use
a discrete probability distribution to predict the edge type. We discuss this in more detail
in section 6.5. Prior variance reflects how uncertain we are on the connectivity of the
graph before we start. We need to set this because the model assumes we don’t know the
connectivity. In fact, the model learns the connectivity that best helps it to improve its
predictions. This is exactly what we’re setting when we call the _initialize_log_prior
function. We’re telling the model what our best guess is for a likely connectivity pat-
tern. For example, if we were to apply this model to a sports team, we might use a
Gaussian distribution with a high mean for edges between players that frequently pass
to each other or even to players on the same team. 

 To demonstrate our model, we’re instead going to assume a uniform prior, which
means that all edges are as likely as all others, or in everyday terms “we don’t know.”
The prior variance sets our uncertainty bound for each of the edges. In the following
listing, we set it to be 5 × 10–5 for numerical stability, but given that our prior is uni-
form, it shouldn’t have much effect.
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   class BaseNRI(nn.Module):
        def __init__(self, num_vars, encoder, decoder,
                num_edge_types=2,
                gumbel_temp=0.5, 
                prior_variance=5e-5):
           super(BaseNRI, self).__init__()
           self.num_vars = num_vars 
           self.encoder = encoder 
           self.decoder = decoder 
           self.num_edge_types = num_edge_types 
           self.gumbel_temp = gumbel_temp 
           self.prior_variance = prior_variance 

           self.log_prior = self._initialize_log_prior()

        def _initialize_log_prior(self): 
             prior = torch.zeros(self.num_edge_types)
             prior.fill_(1.0 / self.num_edge_types) 
             log_prior = torch.log(prior)\
   .unsqueeze(0).unsqueeze(0) 
             return log_prior.cuda(non_blocking=True)

As we discovered in chapter 5, VAEs have a two-component loss—the reconstruction
error and the error in representing the distributional properties of the data—cap-
tured by the KL-divergence. The total loss function is given in listing 6.11.

 Our encoder is passed edge embeddings and then outputs log probabilities of an
edge type. The Gumbel-Softmax function converts these discrete logits into a differen-
tiable continuous distribution. The decoder takes this distribution and the edge rep-
resentations and then converts these back into node data. At this point, we’re ready to
use the standard loss machinery for VAEs, so we calculate the reconstruction loss as
MSE and the KL divergence. For further insight into VAE losses and how the KL diver-
gence is calculated, revisit chapter 5. 

   def calculate_loss(self, inputs,
       is_train=False,
       teacher_forcing=True,
       return_edges=False,
       return_logits=False):
    
       encoder_results = self.encoder(inputs)
       logits = encoder_results['logits']
       hard_sample = not is_train
       edges = F.gumbel_softmax\
               (logits.view(-1, self.num_edge_types),
               tau=self.gumbel_temp,
               hard=hard_sample).view\
                       (logits.shape) 
   

Listing 6.10 Base class for the NRI model

Listing 6.11 Loss for the NRI model

Number of variables 
in the mode

Encoder neural network

Decoder neural network

Gumbel temperature 
for sampling 
categorical variables

Prior variance

Fills the prior 
tensor with uniform 
probabilities

Takes the log and adds 
two singleton dimensions

Calculates Gumbel-Softmax 
using PyTorch's functional 
API, imported as F in code
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       output = self.decoder(inputs[:, :-1], edges)
   
       if len(inputs.shape) == 3: \
target = inputs[:, 1:] 
       else:
           Target = inputs[:, 1:, :, :]
   
       loss_nll = F.mse_loss(\
output, target) / (2 * \
self.prior_variance) 

       probs = F.softmax(logits, dim=-1)
       log_probs = torch.log(probs + 1e-16) 
       loss_kl = (probs * \
(log_probs - torch.log(\
torch.tensor(1.0 / 
       self.num_edge_types)))).\
sum(-1).mean() 
   
        loss = loss_nll + loss_kl
   
        return loss, loss_nll, loss_kl, logits, output

Finally, we need our model to be able to predict the future trajectories of the sensors.
The code for predicting the future state of the graph is given in listing 6.12. This is a
relatively simple function once we have our encoder and decoder trained. We pass the
encoder the current graph, and this returns a latent representation of whether an
edge exists. We then convert these probabilities into a suitable distribution using
Gumbel-Softmax and pass this to our decoder. The output from the decoder is our
predictions. We can either get the predictions directly or get both predictions and
whether an edge exists. 

   def predict_future(self, inputs, prediction_steps, 
      return_edges=False, 
      return_everything=False):
       encoder_dict = self.encoder(inputs)
       logits = encoder_dict['logits'] 
       edges = nn.functional.gumbel_softmax( 
           logits.view(-1, \
           self.num_edge_types),  
           tau=self.gumbel_temp,\
           hard=True).view(logits.shape\ 
           ) 
       tmp_predictions, decoder_state =\
          self.decoder( 
          inputs[:, :-1], 
          edges, 
          return_state=True 
       ) 

Listing 6.12 Predicting the future
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for Gaussian distribution
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       predictions = self.decoder( 
          inputs[:, -1].unsqueeze(1),  
          edges,  
          prediction_steps=prediction_steps,  
          teacher_forcing=False, 
          state=decoder_state 
          )
       if return_everything: 
           predictions = torch.cat([\ 
              tmp_predictions,\ 
              Predictions\ 
              ], dim=1) 

       return (predictions, edges)\
          if return_edges else predictions 

This is the basis of the NRI model. We have an encoder that converts our initial node
data into edge probabilities. The edge probabilities get passed to our decoder, and the
decoder predicts future trajectories conditional on the most likely graph representa-
tion. Our encoder will be a simple multilayer perceptron (MLP) that works on graph
data. Our decoder needs to be able to make future predictions, so we’ll use an RNN to
do this, specifically the same GRU model we discussed in section 6.2.2. Let’s next meet
our encoder and decoder networks so we can apply our model to the data and see
how it performs.

6.4.1 Encoding pose data

Now that we know the different parts of our NRI model, let’s define our encoder. This
encoder will act as the bottleneck to make our problem simpler. After encoding, we’ll
be left with a low-dimensional representation of the edge data, so we don’t need to
worry about temporal data at this stage. However, by providing our temporal data
together, we’re transferring temporal structure into our latent space. Specifically, the
encoder takes the temporal patterns and relationships from the input data and pre-
serves this in the compressed, low-dimensional representations. This makes it easier to
decode from, making our pose prediction problem easier to solve. 

 There are several subsets to implementing the encoder. First, we pass the input
data, which comprises the different sensors at different frames, across different exper-
iments. The encoder then takes this data, x, and performs a message-passing step to
transform edge data into node data and then back into edge data. The edge data is
then converted to node data again before being encoded in the latent space. This is
equivalent to three message-passing steps, from edges to nodes, edges to edges, and
edges to nodes again. The repeated transformations are useful for information aggre-
gation through repeated message passing and capturing high-order interactions in
the graph. By repeatedly transforming between nodes and edges, the model becomes
aware of both local and global structure information. 

 Throughout this book, we’ve explored how to use message passing to convert node
or edge features into complex representations of nodes or edges. These are at the

Uses the last input and 
decoder state to 
predict future steps

Concatenates initial 
and future predictions 
if needed

Returns predictions 
and edges if specified
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core of all GNN methods. The NRI model is slightly different from the methods that
we’ve explored before because messages are passed between nodes and edges, rather
than node to node or edge to edge. To make explicit what these steps are doing, we’ll
depart from PyG and code our model in plain PyTorch instead.

 In listing 6.13, we show the base class for our encoder, which requires several
key features. First, note that we haven’t described the actual neural network that
will be used to encode the data. We’ll introduce this shortly. Instead, we have two
message-passing functions, edge2node and node2edge, as well as an encoding func-
tion, one_hot_recv. 

   class BaseEncoder(nn.Module):
       def __init__(self, num_vars):
           super(BaseEncoder, self).__init__()
           self.num_vars = num_vars
           edges = torch.ones(num_vars)\
 - torch.eye(num_vars) 
           self.send_edges, self.\
recv_edges = torch.where(edges) 
   
           one_hot_recv = torch.nn.functional.one_hot( 
              self.recv_edges, 
              num_classes=num_vars 
                                                )
           self.edge2node_mat = \
nn.Parameter(one_hot_recv.\
float().T, requires_grad=False) 

       def node2edge(self, node_embeddings):
           send_embed = \
node_embeddings[:, self.send_edges] 
           recv_embed = \
node_embeddings[:, self.recv_edges] 
           return torch.\
cat([send_embed, recv_embed], dim=2) 

       def edge2node(self, edge_embeddings):
           incoming = torch.\
matmul(self.edge2node_mat, edge_embeddings) 
           return incoming / (self.num_vars - 1) 

The first step in our encoder class is to build an adjacency matrix. Here, we assume
that the graph is fully connected, such that all nodes are connected to all other nodes
but not to themselves. The node2edge function takes node embedding data and iden-
tifies the direction that these messages have been sent. Figure 6.12 shows an example
of how we’re building the adjacency matrix.

Listing 6.13 Encoder base class
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The next function call then determines which nodes are sending or receiving data by
returning two vectors that contain rows and columns for connected nodes. Recall that
in an adjacency matrix, the rows represent receiving nodes and the columns represent
sending nodes. The output is then

send_edges = tensor([0, 0, 1, 1, 2, 2])
recv_edges = tensor([1, 2, 0, 2, 0, 1])

We can interpret this as saying that the node at row 0 sends data to nodes at columns 1
and 2, and so on. This allows us to extract edges between nodes. Once we construct
our node embeddings, we then use the sending and receiving data to convert our
node data to edges. This is the principle of the node2edge function. 

 The next function we need is how to build edge2node based on our edge_
embeddings. We first construct an edge2node matrix. Here, we’re using a one-hot
encoding method that converts our receiving edges into a one-hot encoded represen-
tation. Specifically, we create a matrix where each row denotes whether that category
(receiving node) exists. For our simple three-node case, the one-hot encoding method
for the receiving edges is shown in figure 6.13. 

 We then transpose this to switch rows and columns, so that the dimension will be
(number of nodes, number of edges), and we convert it into a PyTorch parameter so
that we can differentiate over it. Once we have our edge2node matrix, we multiple this
by our edge embeddings. Our edge embeddings will be of shape (number of edges,
embedding size) so that multiplying the edge2node matrix by the edge embeddings
gives us an object of shape (number of nodes, embedding size). These are our new
node embeddings! Finally, we normalize this matrix by the number of possible nodes
for numerical stability. 

 This section is key to understanding the message-passing step in the model. (For
further information on message passing, revisit chapter 2 and 3.) As discussed there,
once we have a principled way to pass messages between nodes, edges, or some combi-
nation of both, we then apply neural networks to these embeddings to get nonlinear
representations. To do so, we need to define our embedding architecture. The code
for the complete encoder is given in listing 6.14. 

Figure 6.12 Example of creating an adjacency matrix for a fully connected graph with 
three nodes. The matrix on the left represents a fully connected graph, the matrix in 
the middle represents the identity matrix, and the matrix on the right shows the final 
adjacency matrix after subtracting the identity matrix. This results in a graph where 
each node is connected to every other node with no self-loops.
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The RefMLPEncoder is shown in listing 6.14. This encoder uses four MLPs for message
processing, each featuring exponential linear unit (ELU) activation and batch nor-
malization (defined in RefNRIMLP, shown in the chapter’s code repository). 

NOTE The exponential linear unit (ELU) is an activation function that is use-
ful in smoothing outputs across multiple layers and preventing vanishing gra-
dients. In contrast to ReLUs, ELUs have a smoother gradient built in for
negative inputs and allows for negative outputs.

The final part of the network (self.fc_out) is a sequence of linear layers with ELU
activations between them, ending with a linear layer that outputs the desired embed-
dings or predictions. The final layer of this sequence is a fully connected layer.

   class RefMLPEncoder(BaseEncoder):
       def __init__(self, 
               num_vars=31, 
               input_size=6, 
               input_time_steps=50, 
               encoder_mlp_hidden=256, 
               encoder_hidden=256, 
               num_edge_types=2, 
               encoder_dropout=0.):
           super(RefMLPEncoder, self).__init__(num_vars)

Listing 6.14 NRI MLP encoder

Figure 6.13 The one-hot encoding matrix representing incoming edges for each node in a 
fully connected graph with three nodes is shown on the left. Each row corresponds to an 
edge, and each column corresponds to a node. A 1 in position (i, j) indicates that edge i is 
directed toward node j. This matrix is used to transform edge embeddings to node 
embeddings in the edge2node function of the encoder base class, enabling the model to 
aggregate information from incoming edges for each node. In this graph structure, nodes 0, 
1, and 2 each send messages to the other two nodes, resulting in a total of six directed 
edges. The diagram of the three-node graph is shown on the right.
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           inp_size = input_size * input_time_steps
           hidden_size = encoder_hidden
           num_layers = 3
           self.input_time_steps = input_time_steps

           self.mlp1 = RefNRIMLP\
(inp_size, hidden_size, \
hidden_size, encoder_dropout) 
           self.mlp2 = RefNRIMLP\
(hidden_size*2, hidden_size,\
 hidden_size, encoder_dropout) 
           self.mlp3 = RefNRIMLP\
(hidden_size, hidden_size,\
 hidden_size, encoder_dropout) 
           mlp4_inp_size = hidden_size * 2
           self.mlp4 = RefNRIMLP\
(mlp4_inp_size, hidden_size,\
 hidden_size, encoder_dropout)

           layers = [nn.Linear\
(hidden_size, encoder_mlp_hidden), \
nn.ELU(inplace=True)] 
           layers += [nn.Linear\
(encoder_mlp_hidden, \
encoder_mlp_hidden),\ 
   nn.ELU(inplace=True)] \
   * (num_layers - 2) 
           layers.append(nn.\
Linear(encoder_mlp_hidden, \
num_edge_types)) 
           self.fc_out = nn.Sequential(*layers) 
           self.init_weights()

Here, we define architectural details related to the encoder. As discussed earlier, there
are 31 sensors that we represent using the num_vars variable. The number of features is
6, which is the input_size for our network. The number of timesteps for our training
and validation set is still 50, and our encoder network size will be 256. The number of
edge_types is 2, and we assume no dropout of the weights. We then initialize our net-
works, which are typical MLPs, described in our shared repository. The networks include
a batch normalization layer and two fully connected layers. Once the network is defined,
we also pre-initialize the weights, as shown in listing 6.15. Here, we loop through all the
different layers and then initialize the weights using the Xavier initialization approach.
This ensures that the gradients in the layers are all approximately of similar scale, which
reduces the risk of our loss rapidly diverging—known as blow-up. This is an important
step when combining multiple networks with different architectures as we do here. We
also set the initial bias to 0.1, which further helps with the stability of training. 

 
 
 
 

Defines MLP layers. 
RefNRIMLP is a 2-layer 
fully connected ELU net 
with batch norm.

Defines the final 
fully connected 
layer
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]

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Linear): 
                nn.init.xavier_normal_(m.weight.data) 
                m.bias.data.fill_(0.1) 

Finally, we need to define our forward pass method, as shown in listing 6.16. This is
where our message-passing step occurs. 

   def forward(self, inputs, state=None, return_state=False):
       if inputs.size(1) > self.input_time_steps:
           inputs = inputs[:, -self.input_time_steps:]
       elif inputs.size(1) < self.input_time_steps:
           begin_inp = inputs[:, 0:1].expand(
           -1, 
           self.input_time_steps-inputs.size(1),
           -1, -1
           )
           inputs = torch.cat([begin_inp, inputs], dim=1)

       x = inputs.transpose(1, 2).contiguous() 
       x = x.view(inputs.size(0), inputs.size(2), -1) 

       x = self.mlp1(x) 
       x = self.node2edge(x) 
       x = self.mlp2(x) 

       x = self.edge2node(x) 
       x = self.mlp3(x)

       x = self.node2edge(x) 
       x = self.mlp4(x)

       result =  self.fc_out(x) 
       result_dict = {
          'logits': result,
          'state': inputs,
           }
       return result_dict

Our encoder lets our model transform different sets of frames of our sensor graphs
into latent representation of edge probabilities. Next, let’s explore how to construct a
decoder that transforms the latent edge probabilities into trajectory using the recent
sensor data. 

Listing 6.15 Weight initialization

Listing 6.16 Encoder forward pass
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linear layers
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initializationSets bias to 0.1
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Converts edge embeddings 
back to node embeddings

Converts node embeddings 
to edge embeddings again

Final fully connected 
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6.4.2 Decoding pose data using a GRU

To transform the latent representations into future frames, we need to account for the
temporal evolution of the trajectories. To do so, we train a decoder network. Here,
we’ll follow the original structure of the NRI paper [2] and use a GRU as our RNN. 

 We introduced the concept of a GRU in section 6.2.2 earlier. As a quick reminder,
gated recurrent units (GRUs) are a type of RNN that uses a gated process to allow
RNNs to capture long-term behaviors in the data. They are composed of two types of
gates—reset gates and update gates. 

 For the NRI model, we’ll apply GRUs to our edges, rather than across the entire
graph. The update gates will be used to determine how much of the node’s hidden
state should be updated, given the receiving data, and the reset gate decides how
much should be erased or “forgotten.” To put it another way, we’ll use a GRU to pre-
dict what the future state of a node should be based on the edge type probabilities
from our encoder network. 

 Let’s look at how we construct this step-by-step. The initialization code for our
decoder is given in listing 6.17. First, we note some of the variables passed to this net-
work. We again define the number of variables or nodes in our graphs, 31, and the
number of input features, 6. We assume there is no dropout of the weights and the
hidden size for each layer is 64. Again, we need to make clear that our decoder should
be predicting two different types of edges. We’ll also skip the first edge type when
making predictions as this denotes that there is no edge. 

 Once we have the input parameters defined, we can introduce the network archi-
tecture. The first layer is a simple linear network that needs to have twice the input
dimension to account for the mean and variance provided by our encoder, and we
define this network for each of the edge types. We then define a second layer to fur-
ther increase the expressivity of our network. The output from these two linear layers
is passed to our RNN, which is a GRU. Here, we have to use a custom GRU to account
for both node data and edge data. The output from the GRU is passed to three more
neural network layers to provide the future predictions. Finally, we need to define our
edge2node matrix and sending and receiving nodes, as we did with our encoder.

   class GraphRNNDecoder(nn.Module):
       def __init__(self, 
           num_vars=31, 
           input_size=6, 
           decoder_dropout=0., 
           decoder_hidden=64, 
           num_edge_types=2, 
           skip_first=True):
           super(GraphRNNDecoder, self).__init__()
           self.num_vars = num_vars
           self.msg_out_shape = decoder_hidden
           self.skip_first_edge_type = skip_first
           self.dropout_prob = decoder_dropout

Listing 6.17 RNN decoder
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           self.edge_types = num_edge_types
            
           self.msg_fc1 = nn.ModuleList\
([nn.Linear(2 * decoder_hidden,\
 decoder_hidden) for _ in \
range(self.edge_types)]) 
           self.msg_fc2 = nn.ModuleList\
([nn.Linear(decoder_hidden, decoder_hidden)\
 for _ in range(self.edge_types)])

           self.custom_gru = CustomGRU\
(input_size, decoder_hidden) 

           self.out_fc1 = nn.Linear\
(decoder_hidden, decoder_hidden) 
           self.out_fc2 = nn.Linear(decoder_hidden, decoder_hidden)
           self.out_fc3 = nn.Linear(decoder_hidden, input_size)

           self.num_vars = num_vars
           edges = np.ones(num_vars) - np.eye(num_vars)
           self.send_edges = np.where(edges)[0]
           self.recv_edges = np.where(edges)[1]
           self.edge2node_mat = \
                torch.FloatTensor\
                (encode_onehot(self.recv_edges))
           self.edge2node_mat = self.edge2node_mat.cuda(non_blocking=True)

In listing 6.18, we provide the architecture for our GRU. The first overall architecture
for this network is the same structure as a typical GRU. We define three hidden layers
which represent the reset gates defined by hidden_r and input_r, the update gates
defined by hidden_i and input_i, and the activation networks defined by hidden_h
and input_h. The forward network, however, needs to account for the aggregated mes-
sages from the message-passing output of our encoder. This is shown in the forward pass.
We’ll pass the edge probabilities in agg_msgs, along with the input node data, and these
combine to return future predictions. This can be seen in the predict_future code in
our base NRI class: 

      predictions = self.decoder(inputs[:, -1].unsqueeze(1), edges,
      prediction_steps=prediction_steps, teacher_forcing=False, 
      state=decoder_state)

Our decoder gets passed the last time frame of our graphs. The edge data that is out-
put from our encoder is also passed to the decoder. 

   class CustomGRU(nn.Module):
       def __init__(self,input_size, n_hid,num_vars=31):
           super(CustomGRU, self).__init__()
           self.num_vars = num_vars
           self.hidden_r = nn.Linear

Listing 6.18 Custom GRU network
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(n_hid, n_hid, bias=False) 
           self.hidden_i = nn.Linear\
(n_hid, n_hid, bias=False) 
           self.hidden_h = nn.Linear\
(n_hid, n_hid, bias=False) 
   

           self.input_r = nn.Linear\
(input_size, n_hid, bias=True) 
           self.input_i = nn.Linear(\
input_size, n_hid, bias=True) 
           self.input_n = nn.Linear\
(input_size, n_hid, bias=True) 

       def forward(self, inputs, agg_msgs, hidden):
           inp_r = self.input_r(inputs)\
.view(inputs.size(0), self.num_vars, -1)
           inp_i = self.input_i(inputs)\
.view(inputs.size(0), self.num_vars, -1)
           inp_n = self.input_n(inputs)\
.view(inputs.size(0), self.num_vars, -1)
   

           r = torch.sigmoid(inp_r + \
self.hidden_r(agg_msgs)) 
           i = torch.sigmoid(inp_i + \
self.hidden_i(agg_msgs)) 
           n = torch.tanh(inp_n + \
r*self.hidden_h(agg_msgs)) 
           hidden = (1 - i)*n + i*hidden 

           return hidden

The output from the decoder network is then the future prediction timesteps. To bet-
ter understand this, let’s look at the forward pass method for our decoder, given in
listing 6.19. Our forward pass is given the inputs and sampled edges to build a predic-
tion. There are also four additional arguments that help control the behavior. First,
we define a teacher_forcing variable. Teaching forcing is a typical method used
when training sequential models, such as RNNs. If this is true, we use the ground
truth (the real graph) to predict the next time frame. When this is false, we use the
output from the model’s previous timestep. This makes sure that the model isn’t led
astray by incorrect predictions during training. Next, we include a return_state vari-
able, which allows us to access the hidden representations given by the decoder net-
work. We use this when we predict the future graph evolution, as shown here: 

     tmp_predictions, decoder_state = \
        self.decoder(inputs[:, :-1], edges, 
        return_state=True)
     predictions = self.decoder\
        (inputs[:, -1].unsqueeze(1), edges, 
        prediction_steps=prediction_steps, \
        teacher_forcing=False, state=decoder_state)

Defines hidden layer 
transformations for 
reset, input, and 
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new gates

Computes reset 
gate activations

Computes input 
gate activations
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Let’s now discuss the prediction process. First, we predict a temporary prediction set.
Then, we use the hidden representations to predict as many steps in the future as is
needed. This is particularly useful when we want to predict more than one timestep, as
we show in the testing phase of this model. This is controlled by the prediction_steps
variable, which tells us how many times to loop through our RNN, that is, how many
timesteps in the future we want to predict. Finally, we have a state variable, which is
used to control the information being passed to our decoder. When it’s left empty, we
initialize a tensor of zeros so that there is no information being passed. Otherwise,
we’ll use information from previous timesteps. 

     def forward(self, inputs, sampled_edges,
         teacher_forcing=False,
         return_state=False,
         prediction_steps=-1,
         state=None):

         batch_size, time_steps, num_vars, num_feats = inputs.size()
         pred_steps = prediction_steps if \
            prediction_steps > 0 else time_steps 
   

         if len(sampled_edges.shape) == 3: 
             sampled_edges = sampled_edges.unsqueeze(1) 
             sampled_edges = sampled_edges.expand\
                (batch_size, pred_steps, -1, -1) 

         if state is None: 
             hidden = torch.zeros(batch_size, 
                Num_vars, 
                Self.msg_out_shape, 
                device=inputs.device) 
         else: 
             hidden = state 
             teacher_forcing_steps = time_steps 
   

         pred_all = []
         for step in range(pred_steps): 
         if step == 0 or (teacher_forcing \
            and step < teacher_forcing_steps): 
             ins = inputs[:, step, :] 
         else: 
             ins = pred_all[-1] 
   

         pred, hidden = self.single_step_forward( 
              ins,  
              sampled_edges[:, step, :],  
              hidden 
              ) 
              pred_all.append(pred)
   

Listing 6.19 Decoder forward pass

Determines the number 
of prediction steps

Expands the 
sampled_edges 
tensor if needed

Initializes the hidden 
state if not provided

Determines the number 
of steps to apply 
teacher forcing to

Decides the input for 
this step based on 
teacher forcing

Performs a single 
forward step using the 
ins calculated from 
inputs or pred_all (see 
the previous comment)



232 CHAPTER 6 Dynamic graphs: Spatiotemporal GNNs

 

         preds = torch.stack(pred_all, dim=1)
   
         return (preds, hidden) if return_state else preds 

To predict timesteps into the future, we make an additional forward pass that is based
on a single timestep, as defined in listing 6.20. This is where our network performs
additional message-passing steps. We take our receiver nodes and sending nodes,
which are defined from the edge probabilities from our encoder. We ignore the first
edges, as these are unconnected nodes, and the network then loops through the dif-
ferent networks for the different edge types to get all edge-dependent messages from
the network. This is the critical step that makes our predictions dependent on the
graph data. Our GRU then takes the messages from the connected node to inform its
predictions of the trajectories. At this step, we’re learning to predict how the body is
walking from what we’ve learned about how the body is connected. The output is both
the predicted trajectories of the sensors on the body as well as the network data for
why it made these predictions, encoded in the hidden weights. This completes the
NRI model for estimating poses. 

     def single_step_forward(self, inputs, rel_type, hidden):
         receivers = hidden[:, self.recv_edges, :] 
         senders = hidden[:, self.send_edges, :] 

         pre_msg = torch.cat([receivers, senders], dim=-1) 
         
         all_msgs = torch.zeros(
             pre_msg.size(0), 
             pre_msg.size(1), 
             self.msg_out_shape, 
             device=inputs.device
             )

         start_idx = 1 if self.skip_first_edge_type else 0
         norm = float(len(self.msg_fc2) - start_idx)
   
         for i in range(start_idx, len(self.msg_fc2)): 
             msg = torch.tanh(self.msg_fc1[i](pre_msg)) 
             msg = F.dropout(msg, p=self.dropout_prob) 
             msg = torch.tanh(self.msg_fc2[i](msg)) 
             msg = msg * rel_type[:, :, i:i+1] 
             all_msgs += msg / norm 
   
         agg_msgs = all_msgs.transpose(-2, -1) 
         agg_msgs = agg_msgs.matmul(self.edge2node_mat) 
         agg_msgs = agg_msgs.transpose\
            (-2, -1) / (self.num_vars - 1) 
   
         hidden = self.custom_gru(inputs, agg_msgs, hidden) 

Listing 6.20 Decoder single step forward
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         pred = F.dropout(F.relu\
           (self.out_fc1(hidden)), \
           p=self.dropout_prob) 
         pred = F.dropout(F.relu\
         (self.out_fc2(pred)), \
         p=self.dropout_prob) 
         pred = self.out_fc3(pred) 
   

         pred = inputs + pred   
         return pred, hidden

6.4.3 Training the NRI model

Now that we’ve defined the different parts of our model, let’s train the model and see
how it performs. To train our model, we’ll take the following steps:

1 Train an encoder that converts sensor data into a representation of edge proba-
bilities, indicating whether a sensor is connected to another or not.

2 Train a decoder to predict future trajectories, conditional on the probability of
there being an edge connecting the different sensors. 

3 Run the decoder to predict the future trajectories using a GRU, which is passed
the edge probabilities.

4 Reduce the loss based on the reconstructed poses. This loss has two compo-
nents: the reconstruction loss and the KL divergence.

5 Repeat steps 1 through 4 until training converges.

This is also shown in figure 6.14, and the training loop is given in listing 6.21.
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Figure 6.14 Pipeline for the NRI model
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   pbar = tqdm(range(start_epoch, num_epochs + 1), desc='Epochs')
   for epoch in pbar:
       model.train() 
       model.train_percent = epoch / num_epochs
       total_training_loss = 0
       for batch in train_data_loader:
           inputs = batch['inputs'].cuda(non_blocking=True)
           loss, _, _, _, _ = model.\
              calculate_loss(inputs, 
              is_train=True, 
              return_logits=True)
           loss.backward() 
           optimizer.step() 
           optimizer.zero_grad() 
           total_training_loss += loss.item()
      
      if training_scheduler is not None:
          training_scheduler.step()

      total_nll, total_kl = 0, 0
      for batch in val_data_loader:
          inputs = batch['inputs'].cuda(non_blocking=True)
            , loss_nll, loss_kl, _, _ = model.calculate_loss(inputs,
            is_train=False, 
            teacher_forcing=True, 
            return_logits=True)
          total_kl += loss_kl.sum().item()
          total_nll += loss_nll.sum().item()

          total_kl /= len(val_data)
          total_nll /= len(val_data)
          total_loss = total_kl + total_nll
          tuning_loss = total_nll 

      if tuning_loss < best_val_result:
          best_val_epoch, best_val_result = epoch, tuning_loss

We’ll train for 50 epochs with a learning rate of 0.0005, a learning rate scheduler that
reduces the learning rate by a factor of 0.5 after 500 forward passes, and a batch size of
8. Most of the training is based on the calculate_loss method call, which we defined
earlier in listing 6.14. We find that our model loss falls along with the validation loss,
reaching a validation loss of 1.21 based on the negative log likelihood (nll). This
looks good but let’s see how it performs on the test data, where it needs to predict
multiple steps into the future. To do so, we need to define a new function, given in the
following listing. 

def eval_forward_prediction(model, 
  dataset, 
  burn_in, 

Listing 6.21 NRI training loop

Listing 6.22 Evaluating future predictions

Training loop
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Zero gradients for 
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  forward_steps, 
  gpu=True, batch_size=8, 
  return_total_errors=False):
   
  dataset.return_edges = False

  data_loader = DataLoader\
    (dataset, batch_size=\
    batch_size, pin_memory=gpu)
  model.eval()
  total_se = 0
  batch_count = 0
  all_errors = []

  for batch_ind, batch in enumerate(data_loader):
    inputs = batch['inputs']
    with torch.no_grad():
      model_inputs = inputs[:, :burn_in]
      gt_predictions = inputs[:, burn_in:burn_in+forward_steps]
      model_inputs = model_inputs.cuda(non_blocking=True)
      model_preds = model.predict_future(
          model_inputs,
          forward_pred_steps
          ).cpu()
      batch_count += 1
      if return_total_errors:
          all_errors.append(
            F.mse_loss(
              model_preds, 
              gt_predictions,
              reduction='none'
             ).view(
               model_preds.size(0), 
               model_preds.size(1), -1
             ).mean(dim=-1)
          )
      else:
          total_se += F.mse_loss(
            model_preds, 
            gt_predictions,
            reduction='none'
          ).view(
            model_preds.size(0),
            model_preds.size(1),
            -1
          ).mean(dim=-1).sum(dim=0)
    
  if return_total_errors:
         return torch.cat(all_errors, dim=0)
     else:
            return total_se / len(dataset)

This function loads our test data and then calculates the MSE for our predictions given
different time horizons. When we test our model, we find that it’s able to predict the
next timestep with an MSE of 0.00008. Even better, it predicts 40 timesteps into the
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future with an accuracy of 94%. This is significantly better than our LSTM and GAT
models, which achieved 65% and 55%, respectively. The reduction in accuracy over
future timesteps is shown in figure 6.15, and the example output is given in figure 6.16. 

We’ve covered all the core components for the NRI model, with the full working code
provided in the GitHub repository (https://mng.bz/4a8D). The accuracy is impressive
and highlights the power of combining generative and graph-based methods with

Figure 6.15 Reduction in accuracy as we predict into the future

Figure 6.16 Example output from the NRI model

https://mng.bz/4a8D
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temporal models. This is shown in figure 6.15, where we see good agreement with the
predicted pose and the resulting estimated pose.

 Furthermore, this method is robust at not just predicting graphs but also learning
the underlying structure even when all the graph data isn’t available. In this problem,
we knew what interaction network to expect. However, there are many instances
where we don’t know the interaction network. One example is particles that are mov-
ing in a confined space. When they are within some interaction radius, then they will
influence each other, but not when they are farther away. This is true of organisms
from cells to sports players. In fact, the majority of the world involves interacting
agents with secret interaction networks. NRI models provide a tool to not only predict
the behavior and movement of these agents but also learn about their interaction pat-
terns with other agents. Indeed, the original NRI paper demonstrated this using video
tracking data of basketball games and showed that the model can learn typical pat-
terns between ball, ball handler, screener, and defensive matchups for the different
players. (For more information, refer to Kipf et al. [2].) 

6.5 Under the hood
In this chapter, we showed how to tackle temporal or dynamic problems. Here, we go
into more detail for some of the key model components that we used. 

6.5.1 Recurrent neural networks

In figure 6.16, we showed a schematic for RNN models. The main difference for RNN
models compared to all the other models that we’ve seen is that the model can cope with
sequential data. This means that each timestep has a hidden layer, and output from this
hidden layer is combined with new input at subsequent timesteps. In figure 6.17, this is
shown in two ways. First, on the left side, we show the temporal updates as a single self-
loop denoted by Whh. To get a better understanding of what this self-loop is doing, we’ve
“unfolded” the model in time so that we can explicitly see how our model updates. Here,
we change our input, output, and hidden layers (x, y, h) to be temporal variables (xt, yt,
ht). At our initial step, t, we update our current hidden layer with input data from xt and
the weights from our previous hidden layer ht–1 and then use this to output yt. The
weights from ht are then passed to ht+1 along with the new input at xt+1 to infer yt+1. 

 One of the key features for this model is that when we backpropagate to update our
weights, we need to backpropagate through time (BPTT). This is a specific feature for
all RNNs. However, most modern deep learning packages make this very straightfor-
ward to do and hide all the difficult computational details for the practitioner. 

 Let’s see how to implement an RNN using PyTorch. This is as straightforward as
defining a neural network class and then introducing specific RNN layers within the
network. For example, in listing 6.23, we show the code for defining a network with a
single RNN layer. This is a very basic definition of an RNN, given there is only one hid-
den layer. However, it’s useful to see this example to get some solid intuition on how a
model can be trained. For each timestep, our input is passed both to the hidden layer
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and the output. When we perform a forward pass, the output goes back to output and
the hidden layer. Finally, we need to initialize our hidden layer with something, so
we’re using a fully connected layer. 

   class PoseEstimationRNN(nn.Module):
       def __init__(self, input_size, hidden_size, output_size, num_layers):
           super(PoseEstimationRNN, self).__init__()
   
           self.hidden_size = hidden_size
           self.num_layers = num_layers
   
           self.rnn = nn.RNN\
(input_size, hidden_size, \
num_layers, batch_first=True) 
           self.fc = nn.Linear(hidden_size, output_size) 
   
       def forward(self, x):    
           h0 = torch.zeros(self.num_layers,\
             x.size(0), self.hidden_size) 
           H0 = h0.to(x.device) 
       
           out, _ = self.rnn(x, h0) 
           out = self.fc(out[:, -10:, :])
           return out

Listing 6.23 Defining an RNN
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Figure 6.17 Structure for an RNN. Temporal updates as a single self-loop denoted by Whh (left). An 
unfolded model in time showing the model updates (right). Here, we change our input, output, and hidden 
layers (x, y, h) to be temporal variables (xt, yt, ht). At our initial step, t, we update our current hidden 
layer with input data from xt and the weights from our previous hidden layer ht–1 and then use this to 
output yt. The weights from ht are then passed to ht+1 along with the new input at xt+1 to infer yt+1. 
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In practice, we often want to use more complicated RNNs. This includes extensions to
RNNs such as LSTM networks or GRU networks. We can even stack RNNs, LSTMs,
and GRUs together using our deep learning library of choice. A GRU is similar to an
RNN in that it’s useful for sequences of data. They were specifically designed to
resolve one of the key drawbacks of RNNs, the vanishing gradient problem. It uses two
gates, which determine both how much past information to keep (the update gates)
and how much to forget or throw away (the reset gates). We show an example design
for a GRU in figure 6.18. Here, zt denotes the update gates, and rt denotes the reset
gates. The ~ht term is known as the candidate activation and reflects a candidate for
the new state of the representations, while the ht term is the actual hidden state.

In listing 6.24, we show how to build a model with GRU layers. Here, the majority of
the implementation is handled by PyTorch, where the layer is imported from the stan-
dard PyTorch library. The rest of the model definition is a typical neural network. 

   class PoseEstimationGRU(nn.Module):
       def __init__(self, input_size, hidden_size, output_size, num_layers):
           super(PoseEstimationGRU, self).__init__()
           self.hidden_size = hidden_size
           self.num_layers = num_layers

Listing 6.24 GRU
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           self.gru = nn.GRU\
(input_size, hidden_size, \
num_layers, batch_first=True) 
           self.fc = nn.Linear(hidden_size, output_size) 
   
        def forward(self, x):
       
            h0 = torch.zeros\
(self.num_layers, \
x.size(0), self.hidden_size) 
            h0 = h0.to(x.device) 
            out, _ = self.gru(x, h0) 
            out = self.fc(out[:, -10:, :]) 
            return out

6.5.2 Temporal adjacency matrices
When considering temporal graphs, we might start with two nodes connected by
one edge, then at each subsequent timestep, another few nodes and/or edges are
added. This results in several distinct graphs, each with a differently sized adjacency
matrix. 

 This might present a difficulty when designing our GNN. First, we have different
sized graphs at each timestep. This means we won’t be able to use node embeddings
because the number of nodes will keep changing across input data. One method is to
use graph embeddings at each timestep to store the entire graph as a low-dimensional
representation. This method is at the heart of many temporal approaches, where
graph embeddings are evolved in time rather than the actual graph. We can even use
more complex transformations on our graph, such as using an autoencoder model as
in our NRI model. 

 Alternatively, we can transform all the individual graphs at each timestep into one
single larger graph by creating a temporal adjacency matrix. This involves wrapping
each timestep into a single graph that spans both per-timestep data as well as dynamic
temporal data. Temporal adjacency matrices can be useful if a graph is small and
we’re only interested in a few timesteps in the future. However, they can often become
very large and difficult to work with. On the other hand, using temporal embedding
methods can often involve multiple complicated subcomponents and become diffi-
cult to train. Unfortunately, there is no one-size-fits-all temporal graph, and the best
approach is almost always problem specific. 

6.5.3 Combining autoencoders with RNNs

In this section, to build intuition around the NRI model, we’ll summarize its compo-
nents and illustrate its application in predicting graph structures and node trajecto-
ries. To start, in figure 6.19, we repeat the schematic for the NRI model. 

 In this model, there are two key components. First, we train an encoder to encode
the graphs from each frame into the latent space. Explicitly, we use the encoder to
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predict the probability distribution, qϕ(z|x) over the latent interactions (z), given the
initial graphs (x). Once we’ve trained the encoder, we then use the decoder to con-
vert samples from this probability distribution into trajectories using the latent encod-
ing as well as previous timesteps. In practice, we use the encoder-decoder structure to
infer the trajectories of nodes with different interaction types (or edges). 

 In this chapter, we’ve only considered two edge types: where there is or isn’t a phys-
ical connection between sensors. However, this method can be scaled to consider
many different connections, all changing with time. Additionally, the decoder model
needs an RNN to effectively capture the temporal data in our graph. To build some
intuition around the NRI model, let’s repeat the process once more. 

1 Input—Node data.
2 Encoding—

a The encoder receives the node data. 
b The encoder converts the node data into edge data. 
c The encoder represents the edge data in a latent space.

3 Latent space—The latent space represents probabilities of different edge types.
Here, we have two edge types (connected and not connected), though multiple
edge types are possible for more complex relationships. We always need to
include at least two types as otherwise the model would assume all the nodes are
connected or, worse, none of them are.

4 Decoding—

a The decoder takes the edge type probabilities from the latent space. 
b The decoder learns to reconstruct the future graph state based on these

probabilities.

5 Prediction—The model predicts future trajectories by learning to predict graph
connectivity.

Figure 6.19 Schematic for NRI (Source: Kipf et al. [2]). The model consists of an encoder and decoder layer and 
several message-passing steps. However, here the messages are passed in the encoder from node to edge, back 
from edge to node, and then back from node to edge again. For the decoder, messages are passed from node to 
edge and then from edge to node. The final step takes the latent representation and is used to predict the next 
step in the temporal evolution of the body.
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Note that this model gives us graph and trajectory predictions simultaneously! While
this might not be helpful for our problem, for cases where we don’t know the underly-
ing graph structure such as social media networks or sports teams, this can provide
ways to discover new interaction patterns in a system. 

6.5.4 Gumbel-Softmax

In the NRI model, there is an additional step before calculating both of these
losses, which is calculating the probability of an edge using Gumbel-Softmax. The
key reason we need to introduce Gumbel-Softmax is that our autoencoder is learn-
ing to predict the adjacency matrix representing our edges, that is, the network
connectivity, rather than the nodes and their features. Therefore, the end predic-
tions for the autoencoder have to be discrete. However, we’re also inferring a prob-
ability. Gumbel-Softmax is a popular approach whenever probability data needs to
be made discrete. 

 Here, we have two discrete types of edges, that is, whether something is or isn’t
connected. This means that our data is categorical—each edge is either in category 0
(isn’t connected) or category 1 (connected). Gumbel-Softmax is used to draw and
score samples from a categorical distribution. In practice, Gumbel-Softmax will
approximate the output from our encoder, which comes in the form of log probabili-
ties or logits, as a Gumbel distribution, which is an extreme value distribution. This
approximates the continuous distribution of our data as a discrete one (edge types)
and allows us to then apply a loss function to the distribution. 

 The temperature of a Gumbel distribution, one of our hyperparameters, reflects
the “sharpness” of the distribution, similar to how variance controls the sharpness of
a Gaussian distribution. In this chapter, we used a temperature of 0.5, which is about
medium sharpness. We also specify Hard as a hyperparameter, which denotes whether
one or more categories exist. As discussed, we want it to have two categories when train-
ing to represent whether an edge exists. This allows us to approximate the distribution
as a continuous one, and then we can backpropagate this through our network as a loss.
However, when testing, we can set Hard to True, which means that there is only one cat-
egory. This makes the distribution fully discrete, meaning we can’t optimize using the
loss, as discrete variables are nondifferentiable by definition. This is a useful control to
make sure that our test loop doesn’t propagate any gradients.
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Summary
 While some systems can use single snapshots of data to make predictions, oth-

ers need to consider changes in time to avoid errors or vulnerabilities. 
 Spatiotemporal GNNs consider previous timesteps to model how graphs evolve

over time.
 Spatiotemporal GNNs can solve pose-estimation problems where we predict the

next position of the body given some data on how the body position was in the
recent past. In this case, nodes represent sensors placed on body joints, and
edges represent the body connections between joints.

 Adjacency matrices can be adapted to consider temporal information by con-
catenating different adjacency matrices along the diagonal. 

 Memory can be introduced into models, including GNNs, such as by using a
recurrent neural network (RNN) or a gated recurrent unit network (GRU). 

 The neural relational inference (NRI) model combines recurrent networks
such as a GRU with autoencoder GNNs. These models can infer temporal pat-
terns, even where adjacency information is unknown.



Learning and
inference at scale
For most of our journey through graph neural networks (GNNs), we’ve explained
key architectures and methods, but we’ve limited examples to problems of rela-
tively small scale. Our reason for doing so was to allow you to access example code
and data readily. 

 However, real-world problems in deep learning are not often so neatly pack-
aged. One of the major challenges in real-world scenarios is training GNN models
when the dataset is large enough to fit in memory or overwhelm the processor [1]. 

 

This chapter covers
 Strategies for handling data overload in small 

systems

 Recognizing graph neural network problems that 
require scaled resources

 Seven robust techniques for mitigating problems 
arising from large data

 Scaling graph neural networks and tackling 
scalability challenges with PyTorch Geometric
244
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 As we explore the challenges of scalability, it’s crucial to have a clear mental model
of the GNN training process. Figure 7.1 revisits our familiar visualization of this pro-
cess. At its core, the training of a GNN revolves around acquiring data from a source,
processing this data to extract relevant node and edge features, and then using these
features to train a model. As the data grows in size, each of these steps can become
increasingly resource-intensive, making necessary the scalable strategies we’ll explore
in this chapter.

In deep learning development projects, accounting for large or scaled-up data in
training and in deployment can make the difference between a successful and a failed
venture. The machine learning engineer working on tight deadlines with demanding
stakeholders doesn’t have the luxury of spending weeks on long training routines or
rectifying errors triggered by processor overloads. Heading off scale problems by plan-
ning ahead can prevent such time sinks.

 In this chapter, you’ll learn how to handle problems that arise when data is too
large for a small system. To characterize a scale problem, we focus on three metrics:
memory usage during processing or training, the time it takes to train an epoch, and
the time it takes for a problem to converge. We explain these metrics and point to
how to calculate them in the Python or PyTorch Geometric (PyG) environment.

 In this chapter, the emphasis is on scaling from modest beginnings, optimizing
from a single machine. While the primary focus of this book isn’t on data engineering

Graph Representations (ch. 2)

Preprocessed
Data (ch. 8)

Scaling Training for
Large Data (ch. 7)

Training
Loop (ch. 3–7)

Node Embeddings (ch. 2)

Trained Model

Untrained Model

Structural

Data Sources (ch. 8)

Node Features

Edge Features

Figure 7.1 Mental model for the GNN training process. We will focus on scaling our system for large data in 
this chapter.
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or architecting large-scale solutions, some of the concepts discussed here might be
pertinent in those contexts. To solve scale problems, seven methods are explained
that can be used in tandem or by themselves:

 Choosing and configuring the processor (section 7.4)
 Using sparse versus dense representation of your dataset (section 7.5)
 Choosing the GNN algorithm (section 7.6)
 Training in batches based on sampling from your data (section 7.7)
 Using parallel or distributed computing (section 7.8)
 Using remote backends (section 7.9)
 Coarsening your graph (section 7.10)

To illustrate how to make decisions regarding these methods in practice, examples or
mini-cases are provided. The fictional company GeoGrid Inc. (hereafter, GeoGrid) is
followed through various cases as the company deals with relevant problems related to
large data. 

 In addition, the Amazon Products dataset you encountered in chapter 3, where a
graph convolutional network (GCN) and GraphSAGE were used to perform node
classification, is used to demonstrate the various methods. For relevant methods,
example code can be found in the GitHub repository for this book. 

 This chapter diverges from previous ones. Whereas earlier chapters honed in on
one or two examples to illustrate a range of concepts, the unique nature of scale prob-
lems means that various methods will be explored, each accompanied by brief exam-
ples. Consequently, this chapter’s sections can be read in any order after section 7.3. 

 We’ll start by reviewing the Amazon Products dataset from chapter 3 and introduc-
ing GeoGrid. Then, we’ll discuss ways to characterize and measure scale, focusing on
the three metrics. Finally, we’ll go through each method in more detail and provide
code where appropriate.

NOTE Code from this chapter can be found in notebook form at the GitHub
repository (https://mng.bz/QDER). Colab links and data from this chapter
can be accessed in the same locations.

7.1 Examples in this chapter
In this chapter, two cases are used to illustrate various concepts. We use the Amazon
Products dataset from chapter 3. We’ll use this dataset to demonstrate code examples,
which can be found in the GitHub repository. Secondly, mini-cases featuring a fic-
tional company called GeoGrid will be used to illuminate guidelines and the practice
of using the methods presented.

7.1.1 Amazon Products dataset

This subsection will reintroduce the dataset and its training from chapter 3. First, the
dataset is reviewed and then the configuration of the hardware used to train it. Finally,

https://mng.bz/QDER
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as a prelude to the sections that follow, we highlight a couple of methods we applied
in chapter 3 to accommodate the dataset size. This dataset will be used extensively in
the GitHub code examples of the sections that follow. 

 In chapter 3, we studied node classification problems using two convolutional
GNNs: GCN and GraphSAGE. To this end, we used the Amazon Products dataset with
co-purchasing information, which is popularly used to illustrate and benchmark node-
classification [2]. This dataset (also referred to as ogbn-products) consists of a set of prod-
uct nodes linked by being purchased in the same transaction, illustrated in figure 7.2.
Each product node has a set of features, including its product category. The ogbn-
products dataset consists of 2.5 million nodes and 61.9 million edges. More informa-
tion on this dataset is summarized in table 7.1.

NOTE For more details on this dataset and its origin, as well as GCN and
GraphSAGE, refer to chapter 3.

Table 7.1 Summary characteristics of the ogbn-products dataset 

Nodes Edges
Average 

Node Degree
Number of 

Class Labels
Number of Node 

Feature Dimensions
Size of Zipped 

Data (GB)

2.5 million 61.9 million 51 47 100 1.38

Product = Node

Connection between Products = Edge

Figure 7.2 A graph representation of one of the co-purchases from the Amazon Products 
dataset used in chapter 3. Each product’s picture is a node, and the co-purchases are the edges 
(shown as lines) between the products. For the four products shown here, this graph is only the 
co-purchasing graph of one customer. If we show the corresponding graph for all Amazon 
customers, the number of products and edges could feature tens of thousands of product nodes 
and millions of co-purchasing edges.
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For the implemented code in chapter 3, we used a Colab instance with the following
configuration:

 Storage: 56 GB HDD
 Two CPUs: 2-core Xeon 2.2GHz
 CPU RAM: 13 GB 
 One GPU: Tesla T4
 GPU RAM: 16 GB

While we’ll discuss the details later, we’ve already identified three factors that will
affect whether we’ll have trouble due to too much data. One is obviously the size of
the dataset itself—not only in its raw, unzipped size in storage but also its representa-
tion, which affects working size when processing and training are applied to it (cov-
ered in detail in section 7.5). A second factor is the storage and memory capacity of
the hardware (section 7.4). Finally, the choice of GNN training algorithm—such as
GraphSAGE—will significantly influence the computational demands, particularly in
terms of time and memory constraints (section 7.6).

 As we were implementing the example in chapter 3, we indeed ran into problems
whose root cause was the size of the dataset. Our focus in that chapter was on showcas-
ing the algorithms, so we didn’t point this out and silently used one of the methods to
alleviate this problem. Specifically, we used an optimal representation of the dataset
(sparse instead of dense). 

7.1.2 GeoGrid

As you navigate through this chapter, we’ll draw upon a fictional yet representative
example of a tech company—GeoGrid—grappling with the challenges and opportu-
nities in the field. GeoGrid is a geospatial data analysis and modeling company. Using
advanced technologies such as GNNs, the company provides solutions for problems
ranging from traffic prediction to climate change planning. As a startup in a competi-
tive space, GeoGrid is often faced with crucial technical decisions that could make or
break the company, especially as it competes for large-scale government projects.

 GeoGrid will be used to explore a range of concepts and technical decisions
related to scale problems. Whether the team is debating the pros and cons of different
machine learning architectures, considering the use of distributed data parallel
(DDP) training across multiple GPUs, or strategizing on how to scale their algorithms
for massive datasets, the company’s story offers a real-world context to the theories
and methodologies discussed in this chapter.

 In the next section, we’ll provide a framework to judge and characterize scale
problems. We’ll then summarize the methods of solving such problems. Finally, we’ll
survey these methods in detail.
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7.2 Framing problems of scale
Before we dive into solutions, let’s define the challenge presented by scaling. This sec-
tion provides an overview of the root causes of data size problems and their symptoms.
Then, it highlights the essential metrics that are crucial in identifying, diagnosing,
and remedying such problems [1, 3]. 

 From the point of view of machine resources, the development process is broken
down into three phases. Of the following three, in this chapter, the focus will be on
preprocessing and training: 

 Preprocessing—Transforming a raw dataset into a format suitable for training
 Training—Creating a GNN model by applying a training algorithm to the pre-

processed dataset
 Inference—Creating predictions or other output from the trained model

7.2.1 Root causes

In simple terms, problems of scale arise when the training data becomes too large for
our system. Determining when data size becomes problematic is complex and depends
on several factors, including hardware capabilities, graph size, and constraints on time
and space.

HARDWARE SPEED AND CAPACITY

A suitable system has to be able to support the preprocessing and training process via
its memory capacity and processing speed. Memory should not only support the graph
size itself but also accommodate the data needed for implementing the transforma-
tions and training algorithms. Processing speed should be enough to finish training in
some reasonable amount of time. 

 We wrote this book assuming you have access to free cloud resources such as those
found on Google’s Colab and Kaggle, or modest local resources that host at least one
GPU processor. When these resources are exceeded, upgrading the hardware setup
may be an option if resources exist. For training on the largest enterprise graphs,
using computing clusters is unavoidable. We’ll look more closely at computing hard-
ware in section 7.4.

GRAPH SIZE

Fundamentally, we can go by the number of nodes and edges to get a rough idea of
scale and how it may affect our training solution. Understanding these characteristics
gives us an idea of how long an algorithm will take to process the graph. Further, the
data representation that holds the structural information will affect the size of data. 

 Aside from structural information, nodes and edges can contain features that
encompass one or many dimensions. Often, the sizes of the node and edge features
can be greater than the graph’s structural information. 

 Defining the exact size of small, medium, and large graphs for GNNs is somewhat
contextual. This depends on the specific problem domain, hardware, and computa-
tional resources available. At the time of writing, here’s a general categorization:
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 Small graphs—These may include graphs with hundreds to a few thousand
nodes and edges. They can usually be processed on standard hardware without
requiring specialized resources.

 Medium graphs—This category might encompass graphs with tens of thousands
of nodes and edges. The complexity in medium-sized graphs may require more
sophisticated algorithms or hardware, such as GPUs, to process efficiently.

 Large graphs—Large graphs can include hundreds of thousands to millions (or
even billions) of nodes and edges. Handling such graphs often require distrib-
uted computing and specialized algorithms designed for scalability.

 Time and space complexity of algorithms—Time and space complexity point to the
computational and memory resources needed to run the algorithm. These
directly affect processing speed, memory usage, and efficiency. Understanding
these complexities helps in making informed decisions about algorithm selec-
tion and resource allocation. High time complexity may lead to slower run-
times, affecting your model training schedule. High space complexity can limit
the size of the dataset the GNN can handle, affecting your ability to process
large, complex graphs. We examine this further in section 7.6.

7.2.2 Symptoms

The root causes of scalability problems manifest in several ways. One common prob-
lem is long processing times, which can occur when larger datasets require more compu-
tational power and time to process. Slower algorithms can increase the time required
to train models, making it difficult to iterate and improve models quickly. However,
the amount of time that is seen as too long will depend on the problem at hand. Sev-
eral hours might be fine for results that need to be provided weekly but can be far too
long if the model needs to be retrained throughout the day. Similarly, compute costs
can quickly increase if processing times are long, especially if a large machine is
required to run the model. 

 Another problem is memory usage at or over capacity, which can happen when large
datasets consume a significant amount of memory. If the dataset is too large to fit into
your system’s memory, it can cause the system to slow down or even crash. 

 Finally, an inability to scale to larger datasets can occur when your algorithms and
system setup can’t handle the increase in data size. Ensuring efficiency in terms of time
and space is critical for your system to remain effective and scalable.

7.2.3 Crucial metrics

For understanding scalability insights, running empirical analyses on key perfor-
mance metrics is helpful. These metrics include memory, time per epoch, FLOPs, and
convergence speed, as described here: 

 Memory usage—Memory usage (units in gigabytes), specifically the amount of
RAM or processor memory available, plays a significant role in determining the
size and complexity of the models you can train [4, 5]. This is because GNNs
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require storing node features, edge features, and adjacency matrices in mem-
ory. If your graph is large or the node and edge features are high-dimensional,
your model will require more memory.

There are several modules in PyTorch and Python that can do memory pro-
filing. PyTorch has a built-in profiler that can be used alone or in combina-
tion with the PyTorch Profiler Tensorboard plugin [4]. There is also a torch_
geometric.profile module. In addition, cloud notebooks hosted on Colab
and Kaggle provide real-time visualizations of memory usage per processor.

In our repository’s code examples, we use two libraries for monitoring
system resources: psutil (Python system and process utilities library) and
pynvml (Python bindings for NVIDIA Management Library). psutil is a cross-
platform utility that provides an interface for retrieving information on sys-
tem utilization (CPU, memory, disks, network, sensors), running processes,
and system uptime. It’s particularly useful for system monitoring, profiling,
and limiting process resources in real time. Here’s a snippet of how psutil is
used in the code:

import psutil 

def get_cpu_memory_usage(): 
process = psutil.Process(os.getpid()) 
return process.memory_info().rss

In this snippet, psutil.Process(os.getpid()) is used to get the current pro-
cess, and memory_info().rss retrieves the resident set size, or the portion of
the process’s memory that is held in RAM.

Alongside psutil, pynvml is a Python library for interacting with NVIDIA
GPUs. It provides detailed information about GPU status, including usage, tem-
perature, and memory. pynvml allows users to programmatically retrieve GPU
statistics, making it an essential tool for managing and monitoring GPU resources
in machine learning and other GPU-accelerated applications. Here’s how pynvml
is used in the code:

import pynvml 

pynvml.nvmlInit() 
def get_gpu_memory_usage(): 
   handle = pynvml.nvmlDeviceGetHandleByIndex(0) 
  info = pynvml.nvmlDeviceGetMemoryInfo(handle) 
  return info.used

Here, pynvml.nvmlInit() initializes the NVIDIA Management Library, pynvml
.nvmlDeviceGetHandleByIndex(0) retrieves the handle of the GPU at index 0,
and pynvml.nvmlDeviceGetMemoryInfo(handle) provides detailed information
about the GPU’s memory usage.
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Both psutil and pynvml are used in our examples for providing insights into
the performance characteristics of the preprocessing and training processes,
offering a detailed view of system and GPU resource utilization.

 Time per epoch—Time per epoch (aka “seconds per epoch” because the unit for
this metric is usually in seconds) refers to the time it takes to complete one pass
over the entire training dataset. This factor is influenced by the size and complex-
ity of your GNN, the graph size, the batch size, and the computational resources
at your disposal. A model with a lower time per epoch is preferable as it allows
for more iterations and faster experimentation. The profilers proved by PyTorch
or PyG can also be used for such measurement.

In the provided code, the time taken for each epoch is measured by calcu-
lating the difference between the start and end times of the epoch. At the
beginning of each epoch, the current time is captured using start_time =
time.time(). The model is then trained for 1 epoch, and upon completion,
the current time is again captured using end_time = time.time(). The epoch
time, which is the time taken to complete 1 epoch of training, is then calculated
as the difference between the end time and start time (epoch_time = end_time
- start_time). This gives a precise measurement of how long it takes for the
model to be trained for 1 epoch, including all the steps involved in the training
process such as forward pass, loss calculation, backward pass, and model param-
eter updates.

 FLOPs—Floating point operations (not to be confused with floating point opera-
tions per second, FLOP/s [6, 7]) calculates the number of floating-point opera-
tions that are needed to train a model. This can include operations such as matrix
multiplications, additions, and activations. For our purposes, the total number of
FLOPs gives an estimate of the computational cost of training the GNN. 

FLOPs aren’t all created equal in terms of execution time. This variability
arises from several factors. First, the types of operations involved can greatly
influence computational costs: simple operations such as addition and subtrac-
tion are generally faster, while more complex operations, such as division or
square root calculations, typically take longer. Second, the execution time of
FLOPs can vary significantly depending on the hardware being used. Some pro-
cessors are optimized for specific types of operations, and specialized hardware
such as GPUs may handle certain operations more efficiently than CPUs. Addi-
tionally, the structure of an algorithm affects how efficiently FLOPs are exe-
cuted; operations that can be parallelized may be processed faster on multicore
systems, whereas sequential operations that depend on previous results may
take longer overall. Despite these variations in execution time, the total num-
ber of FLOPs required for a given algorithm remains constant.

At the time of writing, while there are some external modules that can pro-
file PyTorch operations, these aren’t compatible with PyG models and layers.
Efforts seen in the literature rely on custom programming.
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In our code examples on GitHub, we often use the thop library to estimate
the FLOPs associated with each epoch during the training of a neural network.
Here’s a brief snippet where FLOPs are calculated:

from thop import profile  

input = torch.randn(1, 3, 224, 224) 
macs, params = profile(model, inputs=(input, )) 
print(f"FLOPs: {macs}")

The profile function from thop is invoked, with the model and a sample input
batch passed as arguments. It returns the total FLOPs and parameters for a for-
ward pass. In this context, FLOPs measure the total number of operations, not
operations per second.

FLOP is a useful metric for a general sense of the model’s computational
requirements and complexity when used alongside other indicators for a com-
prehensive understanding of performance.

 Convergence speed—Convergence speed (units of seconds or minutes) is how
quickly the model learns or reaches an optimal state during training. Conver-
gence speed is influenced by factors such as the model’s complexity, the learning
rate, the optimizer used, and the quality of the training data. Faster convergence
is often desirable as it means the model requires fewer epochs to reach its opti-
mal state, saving time and computational resources.

As with memory and time-per-epoch profiling, the PyTorch and PyG profilers
can be used to measure time to convergence.

In our code examples, convergence time is calculated by measuring the time
interval it takes to complete the training of the model over a specified number of
epochs. At the beginning of the training process, the convergence_start_time is
recorded using time.time(), marking the start of training. The model then
undergoes training through several epochs, with each epoch involving steps
such as forward pass, loss computation, backward pass, and parameter updates.
After all epochs are completed, the current time is captured again, and the
convergence_time is calculated by subtracting convergence_start_time from
this final timestamp. This convergence_time gives the total time taken for the
model to complete its training over all epochs, offering insights into the
model’s efficiency and performance in terms of time. The shorter the conver-
gence time, the faster the model learns and reaches a satisfactory level of per-
formance, assuming quality of learning is maintained.

The right balance among these four factors depends on the specific project con-
straints such as available computational resources, project timeline, and the complex-
ity and size of the dataset. For some real-world benchmarking of these metrics, Chiang
[8] does a great job at using these metrics to do a comparative analysis between his
proposed GNN, ClusterGCN, and benchmark GNNs. Given this background on what

Heterogeneous GCNs
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constitutes a scale problem, as well as ways to benchmark and measure such problems,
we turn to methods that can alleviate these challenges.

7.3 Techniques for tackling problems of scale
As we outlined in the previous section, when data becomes voluminous, we must deal
with problems related to memory constraints, processing time, and efficiency. To navi-
gate these challenges, it becomes essential to have a toolkit of strategies at our dis-
posal. In the following sections, we present an array of methods designed to provide
flexibility and control over the training process. These strategies range from hardware
configuration to algorithm optimization and are tailored to suit different scenarios
and requirements. These methods were drawn from best practices in deep learning
and graph deep learning across academia and industry.

7.3.1 Seven techniques

First, we start with three basic choices that can be planned for ahead of time and recon-
figured during the course of a project. To prepare, choose the following for your project:

 Hardware configuration—These choices cover the processor type, the memory
configuration of the processor, and whether to use a single machine/processor
or many. 

 Dataset representation—PyG provides support for dense and sparse tensors. Con-
version from dense to sparse may significantly reduce the memory footprint
when dealing with large graphs. You can convert dense adjacency matrices or
node feature matrices into sparse representations using PyG’s torch_geometric
.utils.to_sparse function.

 GNN architecture—Certain GNN architectures are designed to be computation-
ally efficient and scalable for large graphs. Choosing an algorithm that scales
well can significantly mitigate size problems.

Given these three categories of choices, if the problem overwhelms our system, then
the following are techniques we can use to alleviate the problems:

 Sampling—Instead of training on the entire large graph, you can sample a sub-
set of nodes or subgraphs for each training iteration. The cost in complexity
(adding sampling and batching routines) can be made up for with the gains in
memory efficiency. To perform sampling of nodes or graphs, PyG provides
functionalities from its torch_geometric.sampler and torch_geometric.loader
modules.

 Parallelism and distributed computing—You can use multiple processors or clusters
of machines to reduce the training time by spreading the dataset from one to
many machines during training. Depending on the way you do this, some devel-
opment and configuration overhead may be required. 

 Use of remote backends—Instead of storing the training graph dataset in memory,
it can be stored completely in the backend database and pull in mini-batches
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when needed. The simplest case of this involves storing data on the local hard
drive, and reading mini-batches iteratively from there. In PyG, this method is
called a remote backend. This is a relatively new method in PyG, with some exam-
ples but not many. At the time of writing, two database companies have devel-
oped some support for PyG’s remote backend functionality. This method
requires the most development and maintenance overhead, but it’s most
rewarding in alleviating big data problems. 

 Graph coarsening—Graph coarsening techniques are used to reduce the size of
the graph while (hopefully) preserving its essential structure. These techniques
aggregate nodes and edges, creating a coarser version of the original graph.
PyG provides graph clustering and pooling operations for this purpose. The
drawbacks are that you must be careful that the coarsened graph will truly rep-
resent the original, and, for supervised learning, you must make decisions
about how targets will be consolidated.

The multifaceted problem of scale in training GNNs requires a thoughtful approach.
Through the application of various levers such as hardware choice, optimization tech-
niques, memory management, and architectural decisions, you can tailor the process
to fit specific needs and constraints. 

7.3.2 General Steps

In this section, we provide some general guidelines for planning and evaluating a
project with scale in mind. The general steps are provided here:

1 Planning stage
– Anticipate hardware needs—Familiarize yourself with available hardware options

in advance. Many online and local systems have published configurations.
– Understand your data—Have a clear idea of your dataset size for every phase of

the machine learning lifecycle.
– Memory-to-data ratio—As a rule of thumb, your memory capacity should ide-

ally be between 4 and 10 times the size of your dataset.
2 Benchmarking stage

– Establish baselines—Benchmark these metrics using a representative dataset.
These initial figures can then serve as a foundation to predict training and
experimentation timelines for your project.
 Metrics for preprocessing—Track memory usage and time to completion.
 Metrics for training—Monitor and measure key metrics such as memory uti-

lization, time per epoch, floating point operations per second (FLOP/s),
and time to convergence.

3 Troubleshooting—If you encounter challenges and lack the resources for a hard-
ware upgrade, consider implementing the strategies detailed in this chapter to
navigate around hardware constraints. 
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Now that we’ve learned about scale problems, the metrics to gauge them, and a set of
techniques to alleviate them, let’s dig into these individual methods in more detail.

7.4 Choice of hardware configuration
This section examines choosing and adjusting hardware configuration to solve scale
problems. First, we’ll review general choices for hardware configurations, followed by
taking a broad overview of relevant system and processor choices. Guidelines and rec-
ommendations are given for these options. The section ends with the first GeoGrid
mini-case study.

7.4.1 Types of hardware choices

Various hardware configurations are available for training GNNs. Each configuration
is tailored to meet different needs and optimize performance:

 Processor type—PyTorch offers the flexibility to run on different types of proces-
sors, including central processing units (CPUs), graphics processing units
(GPUs), neural processing units (NPUs), tensor processing units (TPUs), and
intelligence processing units (IPUs). While CPUs are ubiquitous and can handle
most general tasks, GPUs, equipped with parallel processing capabilities, are
specifically designed for intensive computations, making them ideal for train-
ing large-scale neural network models. TPUs are custom accelerators for
machine learning tasks. They can offer even greater computational capabili-
ties, but their availability might be restricted. More details are given in the
next subsection. Two other accelerators, NPUs (processors specially designed
to run neural network workloads in phones, laptops, and edge devices) and
IPUs (designed for highly parallel workloads that require large-scale data pro-
cessing), are important classes of processors. PyTorch only supports Graph-
core IPUs at this time. 

 Memory size—Each processor type comes with its associated RAM. The size of this
RAM plays a pivotal role in determining the scale of workload a system can han-
dle. Adequate RAM ensures smooth model training, especially for networks that
require processing large volumes of data or those with complex architectures.

 Single versus multiple GPUs or TPUs—For those fortunate enough to have access
to multiple GPUs or TPUs, they can significantly expedite training times. PyTorch
offers the DistributedDataParallel module, which harnesses the power of
multiple GPUs or TPUs to train a model in parallel. This means you can distrib-
ute the computational load across several devices, enabling faster iteration and
model convergence.

 Single machine versus computing clusters—Beyond just the scope of a single machine,
sometimes training demands can scale up to require entire clusters. A cluster,
in this context, refers to a collective of machines, each equipped with its distinct
set of computational, memory, and storage resources. If you find yourself with
access to such a resource, PyTorch’s DistributedDataParallel module is again



2577.4 Choice of hardware configuration
the tool of choice, at least for clustering at a small scale. In this case, it lets you
span your training process across the entire cluster, which proves invaluable
when working with especially large models or massive datasets.

As you scale up in terms of hardware capabilities—from individual processors to multi-
ple devices and then to whole clusters—the complexity of planning, setup, and man-
agement also rises. Making informed decisions based on the task’s requirements and
available resources can make this journey smoother and more productive. As high-
lighted in the introduction, we’ll focus on single machine optimizations in this chapter. 

7.4.2 Choice of processor and memory size

As we pivot to the topic of hardware considerations, it’s important to understand the
primary options for training GNNs: CPUs, GPUs, NPUs, IPUs, and TPUs. In this sec-
tion, we offer a concise overview of each type of hardware and present guidelines for
their application. These key points are encapsulated in table 7.2.

 Central processing units (CPUs)—CPUs excel in general-purpose computing tasks,
from data preprocessing to model training. However, they aren’t optimized for
specialized deep learning tasks, which can affect their speed and efficiency. On
the plus side, CPUs are generally more budget-friendly compared to other
hardware options, making them accessible for a broader range of users.

 Graphics processing units (GPUs)—GPUs are engineered for tasks requiring parallel
computing capabilities. From reading this book so far, you know they frequently
serve as the preferred hardware for training GNNs in a PyTorch environment,
particularly when using libraries (e.g., PyG) that are designed to make the most
of GPU parallelism. Most of the examples in this book have been run on
NVIDIA GPUs available on the Colab platform, which include Tesla T4, A100,
and V100.

 Tensor processing units (TPUs)—TPUs represent a specialized choice, built by
Google to boost machine learning computations. They provide rapid computa-
tional speeds and can be cost-effective. However, their scope may be limited
because they are a proprietary technology primarily compatible with Google
Cloud and TensorFlow, and they may not offer full PyTorch compatibility.

 Neural processing units (NPUs)—Both AMD and Intel have NPU product lines,
accompanied by an acceleration library that can be integrated with PyTorch.
NPUs are dedicated hardware for parallelized processing, similar to TPUs. While
GPUs were designed originally for processing graphics, they typically contain cir-
cuits that are dedicated to machine learning tasks. NPUs make a dedicated unit
out of these circuits, improving efficiency and performance. Apple typically
provides a similar dedicated unit (known as the Apple Neural Engine [ANE])
in most of their laptops and computers. 

 Intelligent processing units (IPUs)—These are specialized circuit chips, designed
and optimized with deep learning tasks in mind. IPUs were developed by
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Graphcore and specialize in graph-based computing. These are extremely well
suited for GNN-based models as they allow for independent tasks to be paral-
lelized as needed for GNN models during message passing. IPUs are compati-
ble with both PyTorch and PyG but require rewriting certain tasks. Other
companies designing very large and powerful specialized chips include Cere-
bras and Groq. 

 Configuration considerations—When selecting hardware, it’s crucial to account for
memory constraints, as GNNs are often data-intensive due to the unique struc-
ture of graph data. The choice of hardware can also influence the pace of both
training and inference. Therefore, it’s essential to weigh the tradeoffs between
cost and performance, tailored to the specific demands of your project.

The principal factors to contemplate while selecting hardware for GNN training in
PyTorch include the processor type (e.g., CPU, GPU, or TPU), the available memory,
and your budgetary limitations. These considerations are organized for quick refer-
ence in table 7.2.

One last thing to consider is that certain processor types shine in particular steps in
the machine learning lifecycle:

 Data collection and preprocessing—CPUs are typically sufficient for these steps.
Often, they can handle a variety of tasks efficiently without requiring specialized

Table 7.2 Pros and cons of processor choice

Hardware
Recommended 

Workload
Pros Cons

CPU Preprocessing Suitable for data collection and pre-
processing

More affordable than GPUs and 
TPUs

Slower for training due to 
lack of accelerated parallel 
processing

GPU Training Excellent for training due to parallel 
processing

More expensive than CPUs

Surpassed by TPUs for deep 
learning tasks

TPU Preprocessing 
and training

Faster computation time and cost-
effectiveness for deep learning 
tasks

Requires specific software 

infrastructure

Limited to Google platforms

NPU Training Optimized for deep learning and 
especially good for on-device AI 
applications, reducing reliance on 
cloud services

Limited to specific AI work-
loads, primarily neural net-
work-based tasks

IPU Training Especially good for graph-based 
tasks such as GNNs

Can be more complex to 
program and optimize com-
pared to NPUs
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hardware. However, in our experience, for some memory-intensive, long pre-
processing steps, a TPU will perform better when available.

 Model training—Usually, this is the most compute-intensive part of the lifecycle,
and GPUs are usually the best option here. They are designed for parallel pro-
cessing, which accelerates the training of neural networks. GNNs, in particular,
benefit from this as they often involve calculations across multiple nodes and
edges in a graph. When available, TPUs may provide a performance edge.

 Model evaluation and inference—For evaluation and inference, the choice between
CPUs and GPUs depends on the specific use case. If cost-effectiveness is more
important, CPUs might be preferred. TPUs, with their high computational
speed and cost-effectiveness, could be a good choice for large-scale deploy-
ments, but their usage is more limited compared to CPUs and GPUs.

Note that the best choice of processor may vary depending on the specific require-
ments of the project, such as the model complexity, the size of the dataset, the plat-
form used, and the available budget. We end this section with an example from our
fictional company, GeoGrid.

EXAMPLE

Dr. Smith works for GeoGrid, a leading mapping company, on a research project
involving GNNs to analyze the spread of infectious diseases across different cities. Her
dataset comprises data from 10,000 connected towns (nodes), with each town having
approximately 1,000 node features. This dataset has a size of 10 GB. The following
outlines some of the different steps required in preparing this project for analysis
using a GNN: 

1 Planning stage
– Anticipate hardware needs—Dr. Smith reviews her university’s computational

resources and finds they have access to both GPUs and CPUs, but TPUs are
currently in limited supply.

– Understand your data—Dr. Smith estimates that her dataset will be about
10 GB in total. Via exploratory data analysis, she has determined that her
data is sparse.

– Memory-to-data ratio—Keeping the rule of thumb to reserve capacity of 4 to 10
times the data size in mind, she deduces that she’d ideally want access to a
machine with at least 40 GB to 100 GB of RAM.

2 Benchmarking stage—Using a subset of her data, Dr. Smith benchmarks the data
preprocessing time and model training time on both a GPU and CPU. She
notices a significant speed-up when using the GPU for model training, as
expected, but the CPU performs comparatively well for data preprocessing. She
decides to use a CPU device for preprocessing and a GPU for model training.

3 Troubleshooting—By investigating the cause of frequent system crashes and mem-
ory errors, Dr. Smith realizes that her current GPU doesn’t have sufficient mem-
ory to handle the larger graphs. Instead of requesting a machine with a device
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with larger memory (in short supply at the time), she decides to use subgraph
sampling methods, a technique detailed in section 7.7, to make her data more
manageable for her current hardware.

Through this example, we see the importance of understanding your dataset and
available resources, benchmarking to set expectations, and troubleshooting to find
solutions within the constraints. Next, we examine the choice of how to represent
our data.

7.5 Choice of data representation
Depending on the characteristics of your input graph(s), how you store and represent
them in PyG will have an effect on time and space constraints. In PyG, the primary
data classes, torch_geometric.data.Data and torch_geometric.data.HeteroData,
can be represented in two formats to represent graphs in a sparse or dense format. In
PyG, the difference between dense and sparse representation lies in how the graph’s
adjacency matrix and node features are stored in memory. Dense representation has
the following characteristics:

 The entire adjacency matrix is stored in memory, both zero and nonzero ele-
ments, using a 2D tensor of size N × N, where N is the number of nodes.

 Node features are stored in a dense 2D tensor of size N × F, where F is the num-
ber of features per node.

 This representation is memory-intensive but allows for faster computation when
the graph is dense, meaning most of the graph’s vertices are connected to one
another; that is, its adjacency matrix has a high percentage of nonzero ele-
ments, as explained in appendix A.

Sparse representation, on the other hand, has these characteristics:

 The adjacency matrix is stored in a sparse format, such as the COO (coordi-
nate) format, which only stores the nonzero elements’ indices and their values.

 Node features can be stored in a sparse 2D tensor or a dictionary mapping
node with indices to their feature vectors.

 This representation is memory-efficient, especially when the graph is sparse,
meaning few of the graph’s vertices are connected to one another; that is, its
adjacency matrix has a low percentage of nonzero elements, as explained in
appendix A. However, it may result in slower computation compared to dense
representation for specific tasks.

NOTE To understand the difference between sparse or dense formats and
the characteristic of a graph being sparse or dense, refer to appendix A, sec-
tion A.2.

In PyG, two approaches that can be used to convert a dense dataset into a sparse rep-
resentation are using the built-in function or performing the conversion manually: 
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 torch_geometric.transforms.ToSparseTensor—This transformation in PyG
can be used to convert a dense adjacency matrix or edge index to a sparse ten-
sor representation. It constructs a sparse adjacency matrix using the COO
(Coordinate) format. You can apply this transformation to your dataset to con-
vert the dense representation to a sparse one:

torch_geometric.transforms import ToSparseTensor
 
dataset = YourDataset(transform=ToSparseTensor())

 Manual conversion—You can manually convert a dense adjacency matrix or edge
index to a sparse representation using PyTorch or SciPy sparse tensor function-
alities. You can create a torch_sparse.SparseTensor or scipy.sparse matrix
and construct it from the dense representation:

from torch_sparse import SparseTensor
 
dense_adj = ...   
sparse_adj = SparseTensor.from_dense(dense_adj)

In general, the primary motive for using sparse tensors is to save memory, especially
when dealing with large-scale graphs or matrices with a high percentage of zeros. But,
if your data has very few zero elements, dense tensors could provide a slight advantage
in terms of memory access and computation speed, as the overhead associated with
indexing and accessing sparse tensors may outweigh the space savings. Note that con-
verting your graph dataset from one representation to another can itself tax your
memory and processing power.

EXAMPLE

A school district has hired GeoGrid to study the relationships of its honor students
across its many campuses. One aspect of this work is a social network where students
are nodes and associations between students are edges. Dr. Barker is researching a
social network graph of the students, hoping to determine patterns of friendship
formation:

 Initial analysis—Dr. Barker finds that within this small community, almost every-
one knows everyone else. In terms of raw data, there are 1,000 students (nodes)
and around 450,000 friendships (edges). Dr. Barker compares the existing edges
to the total possible connections: n(n-1)/2, where n is the number of nodes;
this equals 499,500. Because the existing edges (450,000) are nearly equal to
the total number of edges (499,500), he determines he is dealing with a dense
graph.

 Dense representation—Considering the density of the graph:
– The adjacency matrix is of size 1,000 × 1,000.
– If each student has a feature vector capturing 10 attributes (e.g., grade, num-

ber of clubs, etc.), the node features are stored in a tensor of size 1,000 × 10.

Dense adjacency 
matrix
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Given the high number of nonzero elements in the adjacency matrix due to the dense
nature of the graph, Dr. Barker first considers using the dense representation for
more efficient computation:

 Memory consideration—However, as Dr. Barker’s research progresses, he plans to
incorporate more schools into his dataset, expecting the graph to become
much larger but not necessarily denser. He anticipates that the increased size
could become memory-intensive with a dense representation.

 Sparse representation—To handle this potential problem, he decides to experiment
with sparse representation as well. He uses the torch_geometric.transforms
.ToSparseTensor transformation to convert his current dense graph dataset
into a sparse tensor representation.

 Results—Upon conversion, he observes memory-saving with the sparse repre-
sentation that is substantial enough to choose it, especially considering his
future plans. Although there’s a slight increase in computation time, the mem-
ory savings make the sparse format more suitable for his expanding dataset.

7.6 Choice of GNN algorithm
Choosing your GNN algorithm well is essential to ensure the scalability and efficiency
of your machine learning tasks, particularly when dealing with large-scale graphs and
limited computational resources. Leaving aside predictive performance and task suit-
ability, two ways to choose the GNN algorithm with scalability in mind is by consider-
ing time and space complexity and by gauging a few key metrics.

7.6.1 Time and space complexity

We gauge time and space complexity by using Big O notation, which is a kind of math
shorthand used to explain how fast a function grows or declines as the input size
changes. It’s like a speedometer for functions or algorithms, telling you how they’ll
behave when the input gets really big or goes toward a specific value. It’s especially
useful in machine learning engineering and development to measure the efficiency
of algorithms.

NOTE For a more comprehensive explanation of Big O notation, see Goodrich
et al. [9]. In addition, any beginning text on algorithms should cover this topic. 

We also discuss time and space complexity with respect to graphs and graph algo-
rithms in the appendix, but here are a few examples of Big O notation for time com-
plexity, sorted in rising order:

 Constant time complexity, O(1)—This is the best-case scenario, where the algo-
rithm always takes the same amount of time, regardless of the input size. An
example is accessing an array element by its index.
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 Linear time complexity, O(n)—The running time of the algorithm increases linearly
with the size of the input. An example is finding a specific value in an array.

 Logarithmic time complexity, O(log n)—The running time increases logarithmically
with the size of the input. Algorithms with this type of time complexity are
highly efficient. An example is binary search.

 Quadratic time complexity, O(n2)—The running time of the algorithm is propor-
tional to the square of the size of the input. An example is bubble sort.

When you understand the basics of how to assess Big O, you can use the information
provided by the authors of a GNN algorithm to assess this. Often in a publication of
an algorithm, the authors will provide the steps of the algorithm itself, which can be
used to conduct a Big O analysis. In addition, authors will also often provide their own
complexity analysis.

 Now that we’ve covered the benefits of Big O, we’ll list some of its caveats. Con-
ducting a standalone or comparative complexity analysis of GNN algorithms can be
challenging due to reasons that include the following:

 Diverse operations—GNN algorithms involve a variety of operations, such as
matrix multiplications, nonlinear transformations, and pooling. Each opera-
tion has different complexities, making it hard to provide a singular measure.
Further, not all GNNs employ the same operations, so comparing them side-
by-side can be of limited use. Often, in the literature, when comparisons are
made between GNNs, one major operation is compared instead of the entire
algorithm.

 Implementation specifics—The actual implementation of the GNN algorithm such
as the use of specific libraries, hardware optimization, or parallel computing
strategies, also influences the complexity.

As an example, table 7.3 compares the complexity of GCN with GraphSAGE found
in Bronstein et al. [10]. This comparison specifically looks at one operation (the
convolution-like operation in forward propagation) on a type of input graph (sparse).
Specifically, Bronstein et al. compare the time and space complexities of the opera-
tion Y = ReLU(A × W). Broken down, this operation consists of two main stages:

 Matrix multiplication (A × W)—This means we’re multiplying matrix A (which
could be our input data) by matrix X (our weights or parameters that the algo-
rithm is trying to optimize) and then by matrix W. Matrix multiplication is a way
of transforming our data.

 Activation (ReLU)—The rectified linear unit (ReLU) is a type of activation func-
tion that’s used to introduce nonlinearity into our model. Essentially, ReLU
takes the result of our matrix multiplication and, for each element, if the value
is less than 0, it sets it to 0. If it’s greater than 0, ReLU leaves it as is.
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One takeaway from this comparison is that while GCN’s complexities have a depen-
dence on the entire node count in the input graph, GraphSAGE’s complexity is
independent of this, offering a great improvement in both space and time perfor-
mance. GraphSAGE accomplishes this by employing neighborhood sampling and
mini-batching.

EXAMPLE

GeoGrid is tasked with predicting the likelihood of an area undergoing development
based on various urban factors. The nodes in the graph represent geographical areas,
while the edges could represent proximity to amenities, road networks, or other areas
that have undergone development:

 Team analysis—While the current project consists of only one metropolitan area,
GeoMap hopes to gradually expand the system in the future to have nationwide

Table 7.3 Factors on the scalability of two graph algorithms: GCN and GraphSAGE.

Algorithm
Time 

Complexity
Space 

Complexity

Memory/Epoch 
Time/Convergence 

Speed
Notes

GCN O(Lnd²) O(Lnd + Ld²) Memory: Bad
Epoch time: Good
Convergence speed: 
Bad

Pros: 
Spectral convolution: Efficient and 
suitable for large-scale graphs

Versatility: Applicable to various 
graph-related problems

Node feature learning: Rich feature 
learning that captures the topologi-
cal structure of the graph

Con: 
High memory and time complexity 
due to the need to store the entire 
adjacency matrix and node features 

Graph-
SAGE

O(Lbd²kL) O(bkL) Memory: Good
Epoch time: Bad
Convergence speed: 
Good

Pro: 
Solves GCN’s scalability problem by 
using neighborhood sampling and 
mini-batching

Cons: 
May introduce redundant computa-
tions when sampled nodes appear 
multiple times in the neighborhood

Keeps O(bkL) nodes in memory for 
each batch, but the loss is com-
puted only on b of them

n = Number of nodes in the graph
d = Dimensions of the node feature representation
L = Number of message-passing iterations or layers in the algorithm
k = Number of neighbors sampled per hop
b = Number of nodes in a mini-batch
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coverage, including a database with millions of geographical nodes and billions
of edges. Each node has a feature vector that may include attributes such as
land value, proximity to public transit, and zoning regulations.

Due to the current size of the graph, the plans to expand it, and the need for
timely predictions, GeoGrid’s data science team must carefully select an appro-
priate GNN architecture.

 GCN—GCNs are easy to interpret, but their time complexity of O(Lnd) may
pose challenges as the graph scales. However, with the use of PyG’s mini-batch
method, the team can manage the graph without needing to store the entire
adjacency matrix, making GCN a reasonable candidate.

 GraphSAGE—GraphSAGE offers a time complexity of O(Lbdk), appealing for its
memory efficiency and scalability. It allows for the adjustment of the mini-batch
size b and the number of sampled neighbors k, providing flexibility in perfor-
mance tuning.

 GAT—Graph attention networks (GATs) offer the potential for nuanced
insights through attention mechanisms, but they come with added computa-
tional costs. While the Big O complexity might be similar to GCN, the attention
mechanisms could introduce additional computational overhead.

ALGORITHM COMPARISON

While GCN appears simpler than GraphSAGE, its dependency on the number of
nodes n can be problematic as the graph grows. GraphSAGE offers scalability due to
its dependency on b and k. GAT, although potentially more accurate, comes with com-
putational complexities due to its attention mechanism.

 Using PyG for mini-batch processing makes GCN more manageable. However, the
team also liked GraphSAGE for its inherent scalability advantages. GAT, despite its
likely higher accuracy, could be too resource-intensive for this application.

 Decision—After a thorough assessment, the GeoGrid team decides that Graph-
SAGE offers the most balanced approach, optimizing between computational
efficiency and prediction accuracy. 

 Conclusion—They plan to trial GAT in a controlled setting later to assess whether
its added computational demands genuinely yield more accurate urban devel-
opment predictions. They will set out user acceptance testing with clear metrics
before moving to production. 

The previous three sections have covered the fundamental choices to be made when
planning to train a GNN with size problems in mind. In the next five sections, we review
the methods that can solve scale problems, including deep learning optimizations, sam-
pling, distributed processing, use of remote backends, and graph coarsening.

7.7 Batching using a sampling method
In this section, we explore how to piece large data into batches chosen by a sampling
method. We’ll explain this in general, and then break down a few implementations
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from the PyG package. We close with a GeoGrid case, highlighting the practical choices
and implications of using these methods. 

7.7.1 Two concepts: Mini-batching and sampling

Two distinct methods—batching and sampling—can often be combined into one
function. Batching (done by loaders in PyG) is breaking up a large dataset into subsets
of nodes or edges to be run through the training process. But how do we determine
the subset of nodes or edges to include in the smaller groups? Sampling is the specific
mechanism that we use to choose the subsets. These subsets can be in the form of con-
nected subgraphs, but they don’t necessarily have to be. Batching done in this way will
alleviate the memory load. During an epoch, instead of storing the entire graph in
memory, we can store smaller pieces of it at a time. 

 Batching with sampling can have drawbacks. One concern is the loss of essential
information. For instance, if we consider the message passing process, every node and
its neighborhood are critical for updating node information. Sampling could miss
important nodes, thus affecting the model’s performance. This can be likened to
omitting crucial messages in a message-passing framework. Additionally, the sampling
process may introduce bias, affecting the generalizability of the model. This is equiva-
lent to having a biased aggregation operation in a message passing framework.

BATCHING IMPLEMENTED IN PYG
Batching methods can be found in the loader and sampler modules. Most of these
combine a sampling method with functions that batch and serve the sampled data to a
model training process. There are vanilla classes that allow you to write custom samplers

Sampling: Literature versus implementation
In the literature, there is much discussion covering various types of sampling tech-
niques (usually classified as node-, layer-, and graph-sampling) designed into GNN
algorithms, but in this section, we’ll focus on sampling implementations in the PyG
package. Many of these techniques are derived from the literature, but are nonethe-
less meant to generalize sampling to support various GNN algorithms and training
operations. For the purposes of this section, we use these sampling implementations
to support mini-batching.

A GCN provides a good illustration for this. While it’s true that the GCN model as con-
ceived in its standard form doesn’t involve sampling, PyG’s NeighborSampler function
can still be applied with the GCNConv layer. This is possible because NeighborSampler
is essentially a dataloader that returns a batch of subgraphs from the larger graph.

In this context, the subgraphs are used to approximate the full graph convolution
operation. The obvious advantage is that we can work with large graphs that may oth-
erwise overwhelm the algorithm or our machine’s memory. A drawback is that the
accuracy of GCNConv with NeighborSampler might not be as high as the full batch
training due to this approximation.
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(baseloader, basesampler) as well as loaders with predetermined sampling mecha-
nisms [11, 12].

CHOOSING THE RIGHT SAMPLER

Choosing the ideal sampling method can be nontrivial and depends on the nature of
the graph and the training objectives. Different samplers will yield a range of epoch
times and convergence times. There is no general rule to determine the best sampler;
it’s best to experiment with limited sets of your data to see what works best. Imple-
menting sampling adds another layer of complexity to the GNN architecture, just as
message passing requires carefully orchestrated aggregation and update steps.

7.7.2 A glance at notable PyG samplers

As we’ve seen, GNNs work by aggregating across local neighborhoods. However, for very
large graphs, it can be infeasible to consider all the nodes or edges in the aggregation
operation, so samplers are typically used instead. The following lists some of the com-
monly used samplers that are also supported by default from the PyG libraries: 

 NeighborLoader—Ideal for capturing local neighborhood dynamics and fre-
quently used in social network analysis.

 ImbalancedSampler—Built for imbalanced datasets, such as in fraud-detection
scenarios.

 GraphSAINT Variants—Designed to minimize the gradient noise, making them
apt for large-scale training [9].

 ShaDowKHopSampler—Useful for sampling larger neighborhoods, capturing
broader structural information.

 DynamicBatchSampler—Designed to group nodes by neighbor count, optimiz-
ing batch-wise computational consistency.

 LinkNeighborLoader—A loader that samples edges using a methodology analo-
gous to neighborloader.

NOTE This overview isn’t exhaustive, and functionalities may differ based on
the PyG version in use. For in-depth information, consult the official PyG doc-
umentation (https://mng.bz/DMBa).

Let’s look at a code snippet using the Neighborloader loader. The full code is in the
GitHub repository, and we’ll look at snippets here. The code runs a training loop for a
GNN using the sampler. For each batch, it moves node features, labels, and adjacency
information to the device, that is, the GPU. It then clears prior gradients, performs a
forward and backward pass through the model to compute the loss, and updates the
model parameters accordingly. To add neighbor batching using the NeighborSampler
in your code, you can follow these steps:

1 Import the required modules:

from torch_geometric.loader import NeighborLoader

https://mng.bz/DMBa
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2 Define the mini-batch size and the number of layers to sample:

batch_size = 128   
num_neighbors = 2   

3 Create the NeighborLoader instance for sampling over a neighborhood during
mini-batch training:

loader = NeighborLoader(data, input_nodes = train_mask, 
batch_size=batch_size\

   num_neighbors=*num_neighbors)

Here, data is the input graph, input_nodes contains the indices of the training
nodes, and num_neighbors specifies the number of neighbors to sample for
each layer.

4 Modify your training loop to iterate over the mini-batches using the sampler, as
shown in the following listing.

for batch_size, n_id, adjs in sampler:   
  x = data.x[n_id].to(device)       
  y = data.y[n_id].squeeze(1).to(device)  
  adjs = [adj.to(device) for adj in adjs] 
 
  optimizer.zero_grad()             
  out = model(x, adjs)            
  loss = F.nll_loss(out, y)        
  loss.backward()              
. optimizer.step()    

To round out this section, we’ll look at a case where a team at GeoGrid has to decide
among three batchers for a project.

Listing 7.1 Training loop using NeighborSampler

Sets the desired 
mini-batch size

Sets the number of layers 
to sample for each node

Initiates the training loop, iterating through batches using
NeighborSampler. batch_size is the size of the batch, n_id

contains the node IDs, and adjs stores adjacency
information for the sampled subgraph.

Fetches node features (x) for nodes in the current batch and
moves them to the target device (usually GPU). This is similar

to fetching embeddings in a message-passing paradigm. Fetches the corresponding labels (y) 
for nodes in the current batch, 
removes any singleton dimensions, 
and moves them to the device.

Moves the adjacency 
information for the sampled 
subgraph to the device. 

Sets the gradients of all optimized 
variables to zero. This is essential 
for correct gradient computation 
during backpropagation.

Forward pass through the GNN 
model to compute predictions. The 
model receives the node features 
and adjacency information as input.

Computes the loss between the model 
output and the true labels using 
negative log likelihood lossBackward pass to compute the

gradients based on the loss

Updates the model parameters
based on the computed gradients
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EXAMPLE

Let’s return to GeoGrid, a leading mapping company. A team is developing a graph-
based representation of the entire US road system, with intersections as nodes and
road segments as edges. The sheer scale of this project presented computational and
memory challenges.

 After a thorough investigation, the team shortlisted three prominent batching
techniques, for which we’ll assess the tradeoffs of each here: 

 GraphSAINTSampler is advantageous for its noise-reduction capabilities, offer-
ing more accurate gradient estimates, and is scalable—ideal for expansive sys-
tems such as the US road network. However, its implementation might be
complex, and there’s a risk of overrepresenting highly connected nodes. 

 NeighborSampler is memory-efficient, focusing on essential road segments, and
emphasizes local neighborhood connections, offering insights into significant
intersections. Yet, it might omit crucial data from less-traveled routes and poten-
tially be biased toward densely connected nodes. 

 ShaDowKHopSampler effectively samples k-hop subgraphs, capturing larger neigh-
borhoods, and its depth is adjustable to accommodate various road system
complexities. However, certain k values can make it computationally demand-
ing, and the broad capture might introduce excessive and not immediately
relevant data.

In the following, we demonstrate how different samplers are used in practice, with the
same GeoGrid company as our case study: 

 Decision—After extensive deliberation, the team leaned toward ShaDowKHop-
Sampler. The method’s ability to capture broader neighborhoods without being
restricted to immediate neighbors seemed apt for the varied complexity of the
US road system. They believed that with the right value of k, determined by
experimentation, they could achieve a balance between depth and computa-
tional efficiency.

To counteract potential information overload and ensure relevance, Geo-
Grid planned to check the results against real-world traffic data, ensuring the
sampled graph remained practical and accurate.

 Conclusion—GeoGrid’s decision to adopt the ShaDowKHopSampler stemmed from
an in-depth analysis of their requirements against the pros and cons of each tech-
nique. By pairing the sampling method with real-world data, they aimed to strike
a balance between granularity and relevance in their graph representation.

Now that we have a grasp on batching, we can examine two techniques that work
hand-in-hand with sampling: parallel processing and using a remote backend. 
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7.8 Parallel and distributed processing
Batching lends itself well to the next two methods, parallel processing and the use of
remote backends, because these methods work best when data is split up. Parallel pro-
cessing is a method of training machine learning models by spreading the computa-
tional tasks across multiple compute nodes or multiple machines. In this section, we
focus on spreading the model training across multiple GPUs in a single machine [13–
17]. We’ll use PyTorch’s DistributedDataParallel for this purpose.

7.8.1 Using distributed data parallel

In plain language, distributed data parallel (DDP) is a way to train a machine learning
model on multiple graphics cards (GPUs) at the same time. The idea is to split the
data and the model across different GPUs, perform computations, and then bring the
results back together. To make this work, you first need to set up a process group, which
is just a way to organize the GPUs you’re using. Unlike some other methods, DDP
doesn’t automatically split your data; you have to do that part yourself.

 When you’re ready to train, DDP helps by synchronizing the updates made to the
model across all GPUs. This is done by sharing the gradients. Because all GPUs get
these updates, they’re all helping to improve the same model, even though they’re
working on different pieces of data.

 The method is particularly fast and efficient, especially when compared to running
on a single GPU or using simpler methods of parallelism. However, there are some
technical details to keep in mind, such as making sure that you’re loading and saving

DataParallel and DistributedDataParallel
In the realm of PyTorch, you’ll encounter two main options for parallelizing your neural
network models: DataParallel and DistributedDataParallel. Each has its mer-
its and limitations, which are critical to making an informed decision.

DataParallel is tailored for multi-GPU setups on a single machine but comes with
a few caveats, such as the model’s replication during each forward pass incurs addi-
tional computational costs. These limitations become more pronounced as your
model and data scale up.

On the other hand, DistributedDataParallel scales across multiple machines
and GPUs. It outperforms DataParallel by allocating dedicated Compute Unified
Device Architecture (CUDA) buffers for inter-GPU communication and by generally
incurring less overhead. This makes it ideal for large-scale data and complex models.

Both DataParallel and DistributedDataParallel offer pathways to parallelize
your models in PyTorch. Understanding their respective strengths and weaknesses
enables you to choose the technique that best suits your specific machine learning
challenges. Given its advantages in scalability and efficiency, especially for complex
or large-scale projects, we’ve chosen DistributedDataParallel as our go-to option
for model parallelization.
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your model correctly if you’re using multiple machines. The general steps to train are
as follows:

 Model instantiation—Initialize the GNN model that will be used for training.
 Distributed model setup—Wrap the model in PyTorch’s DistributedDataParallel

to prepare it for distributed training.
 Training loop—Implement a training loop that includes forward propagation,

computing the loss, backpropagation, and updating the model parameters.
 Process synchronization—Use PyTorch’s distributed communication package to

synchronize all the processes, ensuring that all processes have finished training
before proceeding to the next step. This can be done using dist.barrier()
before moving on to the next epoch. Once all epochs are done, it destroys the
process group.

 Entry point guard—Use if __name__ == '__main__': to specify the dataset and
start the distributed training. This ensures that the training code is executed
only when the script is run directly, not when it’s imported as a module.

Using distributed processing requires careful handling of synchronization points to
ensure that the models are trained correctly. You must also ensure that your machine
or cluster has enough resources to handle the parallel computations.

 Torch.distributed supports various backends for distributed computing. The two
most recommended are the following:

 NVIDIA Collective Communications Library (NCCL)—Nvidia’s NCCL is used for
GPU-based distributed training. It provides optimized primitives for collective
communications.

 Gloo—Gloo is a collective communications library, developed by Facebook, pro-
viding various operations such as broadcast, all-reduce, and so on. This library is
used for CPU training.

7.8.2 Code example for DDP

Following is an example of distributed training using PyTorch. For simplicity, we train
a simple neural network using the Modified National Institute of Standards and Tech-
nology (MNIST) dataset. An example using GCN on the Amazon Products dataset
can be found in the GitHub repository. In that case, instead of Google Colab to run
the code, we use a Kaggle notebook, which has a dual GPU system. Another differ-
ence in the GCN example is that we use the NeighborLoader dataloader, which uses
the NeighborSampler sampler.

 Let’s break down what’s happening in this code. The GCN version essentially fol-
lows this logic as well.

SETTING UP FOR DISTRIBUTED TRAINING

The script imports necessary modules such as torch, torch.distributed, and so
on. It initializes the DDP environment using dist.init_process_group. It sets up
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communication using NCCL and specifies a localhost address and port (tcp://
localhost:23456) for synchronization.

PREPARING THE MODEL AND DATA

The code defines a simple Flatten layer, which is a part of the neural network that
reshapes its input. The data transformation and loading steps are set up using
PyTorch’s DataLoader and torchvision datasets. The data loaded is MNIST.

TRAINING FUNCTION

train is the function responsible for training the model. It iterates through batches of
data, performs forward and backward passes, and updates the model parameters.

MAIN FUNCTION

Within the main() function, each process (representing a single GPU in this exam-
ple) sets its random seed and device (CUDA device based on the rank of the process).
The neural network model is defined as a sequential model with the Flatten layer fol-
lowed by a Linear layer. It’s then wrapped with DistributedDataParallel. Loss func-
tion (CrossEntropyLoss) and optimizer (SGD) are defined.

MULTIPROCESSING SPAWN

Finally, the script uses the mp.spawn function to start the distributed training. It runs
main() on the world_size number of processes (basically, two GPUs). Each process
will train the model on its subset of data.

RUNNING THE TRAINING

Each process trains the model using its subset of data, but the gradients are synchro-
nized across all processes (GPUs) to ensure that the processors are updating the same
global model. This process is summarized in figure 7.3.

Initialize DDP Environment

Use dist.init_process_group to

set up the distributed data

parallel (DDP) environment.

Model Initiation

Set Random Seed and Devices

Set the random seed and specify

the CUDA device for each

process based on its rank.

Data Preparation

Define the data transformations

and load dataset using

DataLoader.

Wrap Model with DDP

Wrap the model with

DistributedDataParallel to enable

distributed training.

Main Function

Initialize DDP; set device; define

the model, loss, and optimizer;

and call the training function.

Multiprocessing Spawn

Use mp.spawn to run the main()

function across multiple

processes (each corresponding

to a different GPU in this case).

Figure 7.3 Process diagram for initiating and running a training with multiple processor devices
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The following listing uses the DistributedDataParallel module to train a neural
network.

import torch 
import torch.distributed as dist 
import torch.multiprocessing as mp 
import torch.nn as nn 
from torch.nn.parallel import DistributedDataParallel   
from torch.utils.data import DataLoader   
from torchvision import datasets, transforms 
 

class Flatten(nn.Module): 
  def forward(self, input): 
    return input.view(input.size(0), -1) 
 

def train(model, trainloader, 
                 criterion, 
                 optimizer,
                 device):  
    model.train() 
    for batch_idx, (data, target) in enumerate(trainloader): 
      print(f'Process {device}, Batch {batch_idx}') 
       data, target = data.to(device), target.to(device) 
       optimizer.zero_grad() 
       output = model(data) 
       loss = criterion(output, target) 
       loss.backward() 
       optimizer.step() 
 

def main(rank, world_size):   
    filepath = '~/.pytorch/MNIST_data/'
    dist.init_process_group(  
    backend='nccl', 
    init_method='tcp://localhost:23456', 
    rank=rank,
    world_size=world_size   
    )

    torch.manual_seed(0)  
    device = torch.device(f'cuda:{rank}')   
    

    transform = transforms.Compose(
                        [transforms.ToTensor(),
                        transforms.Normalize((0.5,),
                        (0.5,))]
                        )
 

    trainset = datasets.MNIST(filepath ,               
                                download=True,         
                                train=True,            
                                transform=transform)   

Listing 7.2 Training using DDP

Imports the 
DistributedDataParallel 
class for distributed 
training

Imports the DataLoader 
utility for data loading

Defines the main 
training function

Defines the main function 
for the distributed 
training setup

Initializes the distributed 
process group

Specifies the total number 
of participating processes

Sets a random seed 
for reproducibility

Sets the device based 
on the process rank

Loads and 
transforms the 
MNIST dataset
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    train_loader = DataLoader(trainset,          
                                batch_size=64,   
                                shuffle=True,    
                                num_workers=2)   
 
    model = nn.Sequential(Flatten(), nn.Linear(784, 10)).to(device) 
    model = DistributedDataParallel(model, device_ids=[rank])  
 
    criterion = nn.CrossEntropyLoss() 
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01) 
 
    train(model, train_loader, criterion, optimizer, device)   

We end this section with another example from our friends at GeoGrid.

EXAMPLE

GeoGrid had the opportunity to submit a proof-of-concept for a government project
that aimed to use GNNs for complex environmental modeling. Winning this contract
could establish them as leaders in the field, but they were up against stiff competition.
The government set a tight deadline to review a proof-of-concept demo, making the
situation tense for GeoGrid, which was still in the early stages of development.

 During a team meeting, the focus shifted to a crucial technical decision and an
important dilemma: the potential use of DDP training across multiple GPUs. The
lead data scientist saw the allure of DDP’s capability to speed up training times,
offering a potentially impressive demonstration of efficiency and readiness for the
government project.

 On the other hand, an experienced engineer on the team harbored concerns.
DDP, despite its advantages, could introduce problems such as computational over-
head from synchronizing gradients between GPUs. Another layer of complexity came
from other team members who pointed out that their specialized GNN algorithms
hadn’t been tested with DDP. They expressed concerns over how the data would dis-
tribute across the GPUs and the potential for imbalances and inefficiencies. Other
concerns centered around the time needed to develop and test the code.

 The team weighed these factors carefully. Producing a demo quickly and on time
would be desirable. Yet, the complexities and unknowns of applying DDP to their spe-
cific GNN model could risk unexpected delays and costs, maybe causing them to miss
the submission deadline.

 Further consideration was given to the iterative nature of model development. At
the proof-of-concept stage, quick iterations for performance optimization were cru-
cial. Adding DDP into the mix could complicate debugging and extend the develop-
ment cycle:

 Decision—In the end, the team opted for a measured approach. They decided
to conduct a one-week feasibility study to rigorously evaluate the effect of using

Creates a 
DataLoader for 
the training data

Wraps the 
model for 
distributed 
training

Calls the training function to
start the training process
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DDP on their GNN architecture. This would allow them to make an informed
decision based on empirical data, which tracked convergence time and average
time per epoch. IT would be consulted to ensure that the necessary computa-
tional resources were available exclusively for this critical study.

 Conclusion—The decision to roll out GNNs is typically highly dependent on
data, timelines, and compute requirements. Feasibility studies are an import-
ant part of the decision-making progress, especially when identifying compute
requirements. 

In the next section, we look at another technique that rests upon sampling, training
while drawing data directly from a remote storage system.

7.9 Training with remote storage
A prominent approach to data pipelining in this book is to source data from a data
storage system and then preprocess this data by transforming it for use in the GNN
platform. This preprocessed data is stored in memory during training. 

 By contrast, when data gets too big for memory, one approach is to integrate the
preprocessing into the training process. Instead of preprocessing the entire dataset,
placing it in memory, and then training, we can basically sample and mini-batch
directly from the initial data storage system when training. Using an interface between
our GNN platform and our data source, we can process each batch pulled directly
from the data source [18]. In PyG, this is called remote backend and is designed to be
agnostic of the particular backend that is used [19–22].

 The benefit is that our dataset’s size is now limited by the capacity of our database.
The tradeoffs are as follows:

 We have to do a bit of work to set up the remote backend, as detailed in this
section. 

 Pulling from a remote backend will introduce I/O latency.
 Integrating a remote backend adds complexity to a training setup. Basically,

more things can go wrong, and there will be more items to debug.

In PyG, remote backends are implemented by storing and sampling from two aspects
of a graph: the structural information (i.e., the edges) using a GraphStore, and the
node features using a FeatureStore (at the time of writing, edge features aren’t yet
supported). For storing graph structures, the PyG team recommends using graph
databases as the backend, such as Neo4J, TigerGraph, Kùzu, and ArangoDB. Likewise
for node features, the PyG team recommends using key-value databases, such as Mem-
cached, LevelDB, and RocksDB. The key elements to implementation of a remote
backend are as follows:

 Remote data sources—Databases that store your graph structure and node fea-
tures. This choice may be simply the database system you’re currently using to
store your graph. 
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 A graphstore object—The torch_geometric.data.GraphStore object stores edge
indices of a graph, enabling node sampling. Core components of your custom
class must be the connection to your database, and CRUD (create, read, update,
delete) functions, including put_edge_index(), get_edge_index(), and remove_
edge_index(). 

 A featurestore object—The torch_geometric.data.FeatureStore manages features
for graph nodes. The size of node features is considered to be a major storage
problem in graph learning applications. Like the GraphStore, custom implemen-
tations include connecting to the remote database and CRUD functions.

 A sampler—A graph sampler, linked to a GraphStore, uses sampling algorithms
to produce subgraphs from input nodes via the torch_geometric.sampler
.BaseSampler interface. PyG’s default sampler pulls edge indices, converts them
to Compressed Sparse Column (CSC) format, and uses in-memory sampling
routines. Custom samplers can use specialized GraphStore methods by imple-
menting sample_from_nodes() and sample_from_edges() of the BaseSampler
class. This involves node-level and link-level sampling, respectively.

 A dataloader—A dataloader operates similarly to what has been presented in
previous chapters. The differences here are that the dataloader uses the Graph-
Store, FeatureStore, and sampler objects created instead of the usual PyG
data objects. An example from the PyG docs is shown in the next listing.

loader = NodeLoader(
    data=(feature_store, graph_store),
    node_sampler=node_sampler,
    batch_size=20,
    input_nodes='paper',
)

for batch in loader:
    <training loop>

While custom classes and functionalities can be developed, using tools crafted by data-
base vendors is encouraged. Currently, KuzuDB and ArangoDB offer implementa-
tions for PyG’s remote backend [14, 18–20, 23]. We close this section with another
mini-case featuring GeoGrid.

7.9.1 Example

GeoGrid has a graph so large that it can’t fit into the memory of the available hard-
ware. They want to employ GNNs to analyze the large graph, predicting features such
as traffic congestion and route popularity. But how can they train a GNN on a graph
that doesn’t even fit into memory? Following are some specific examples of working
with large GNNs:

Listing 7.3 Loader object using remote backend
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 Adopting remote backend with PyG—GeoGrid uses PyG’s remote backend feature,
which aligns perfectly with the company’s need to handle large-scale graphs.
They use Neo4J as the graph database for storing the graph structure and
RocksDB for storing node features such as location type, historical traffic data,
and so on.

 Remote data sources—GeoGrid chose Neo4J and RocksDB as their data storage
systems. The first task was to write scripts that load their vast graph data into
these databases. This involved data validation to ensure that the loaded data was
correct and consistent.

 GraphStore object—The development team at GeoGrid spent a significant
amount of time implementing the GraphStore object. They needed to build
secure and reliable connections to the Neo4J database. Once the connections
were established, they implemented CRUD operations.

 FeatureStore object—Similarly, implementing the FeatureStore object for
RocksDB wasn’t trivial. The main challenge was handling the varying sizes and
types of node features, which required thorough testing to ensure efficiency
and correctness.

 Sampler—Developing the custom sampling strategy was a project on its own.
The sampler needed to be both effective and efficient, and it went through sev-
eral iterations before it met the performance criteria.

 Dataloader—The NodeLoader was the final piece of the puzzle, combining all
the preceding elements into a coherent pipeline for training. The development
team had to ensure that the NodeLoader was optimized for speed to minimize
I/O latency.

TESTING AND TROUBLESHOOTING

As with all software development, machine learning, or AI projects, testing is a critical
part of the workflow. The following lists some of the typical testing and quality assur-
ance (QA) steps when working on a project:

 Unit testing—Each component underwent rigorous unit testing. This was crucial
to catch bugs early and ensure that each part of the system worked as expected
in isolation.

 Integration testing—After unit testing, the team performed integration tests where
they ran the entire pipeline from loading a batch of data to running it through
the GNN model. They found a few bottlenecks and bugs, particularly with the
sampler and the database connections, which took considerable time to trou-
bleshoot and resolve.

 I/O latency—One significant problem the company encountered was the I/O
latency when pulling data from Neo4J and RocksDB. GeoGrid optimized its
queries and also used some caching mechanisms to mitigate this.

 Debugging—During the development and testing phases, the team encountered
various bugs and errors, from data inconsistencies to unexpected behavior in
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the sampling process. Each problem had to be debugged meticulously, adding
to the overall development time.

Despite these challenges, GeoGrid was able to successfully implement a scalable solu-
tion for training GNNs on their enormous geographical graph. The project was time-
consuming and had its complexities, but the scalability and capability to train on out-
of-memory graphs were invaluable benefits that justified the effort. 

7.10 Graph coarsening
Graph coarsening is a technique used to reduce the size of a graph while preserving its
essential features. This technique reduces the size and complexity of a graph by creat-
ing a coarser version of the original graph. Graph coarsening reduces the number of
nodes and edges, making them more manageable and easier to analyze. It involves
aggregating or merging nodes and edges to form a simplified representation of the
original graph while trying to preserve its structural and relational information.

 One approach to graph coarsening involves starting with an input graph G, with its
labels Y, and then generating a coarsened graph G’ using the following steps [23]:

1 Apply a graph coarsening algorithm on G, producing a normalized partition
matrix (i.e., set of node clusters) P.

2 Use this partition matrix to do the following:

a Construct a course graph, G’.
b Compute the feature matrix of G’.
c Compute the labels of G’.

3 Train using the coarsened graph, producing a weight matrix that can be tested
on the original graph.

While we can use graph coarsening to reduce the size of large graphs by reducing ver-
tices and edges, it has drawbacks. It can result in information loss, as key details of the
original graph may be removed, complicating subsequent analyses. It may also intro-
duce inaccuracies, not fully representing the original graph’s structure. Finally, no
universal method exists for graph coarsening, leading to varied results and possible
bias. In PyG, graph coarsening involves two steps:

1 Clustering—This involves grouping similar nodes together to form super-nodes.
Each super-node represents a cluster of nodes in the original graph. The clus-
tering algorithm determines which nodes are similar based on certain criteria.
In PyG, there are various clustering algorithms available such as graclus() and
voxel_grid().

2 Pooling—Once the clusters or super-nodes are formed, pooling is then used to
create a coarser graph from the original graph. Pooling combines the informa-
tion from the nodes in each cluster into a single node in the coarser graph. The
max_pool() and avg_pool() functions in PyG are pooling operations that input
clusters from the first step.
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If used repeatedly, the combination of clustering and pooling allows us to create a
hierarchy of graphs, each one simpler than the last, as shown in figure 7.4.

If used in supervised or semi-supervised learning, labels have to be generated for
the new set of nodes. This generation must be carefully tended to preserve the new
labels as closely as possible to the originals. Simple methods for this involve using a
centrality statistic for the new assigned label, such as the mode or average of the
labels in the cluster.

 In listing 7.4, graph coarsening is implemented through the use of the Graclus algo-
rithm, which recursively applies a clustering procedure to the nodes of the graph, group-
ing them into clusters of roughly equal size. The resulting clusters are then merged into
a new graph, which is coarser than the original one. This is a type of hierarchical cluster-
ing that operates on the graph’s edge indices. The function graclus(edge_index) clus-
ters the nodes of the graph together based on the structure of the graph. The resulting
cluster tensor maps each node to the cluster it belongs to.

 The max_pool function is then applied to this clustered data. This operation essen-
tially coarsens the graph, reducing the number of nodes based on the clusters formed
by Graclus. The most influential node (based on certain criteria, e.g., edge weight) in
each cluster becomes the representative of that cluster in the coarsened graph. 

import torch
from torch_geometric.data import Data
from torch_geometric.nn import graclus, max_pool
from torch_geometric.utils import to_undirected
from torch_geometric.datasets import KarateClub

Listing 7.4 Graph coarsening using graclus and Max_Pool
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2

8

7

5

10

6

3

4

9

1

Coarsened Graph

1

4

5
2

3

6
2

1

3
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Figure 7.4 Graph coarsening process: The original graph (left) is progressively simplified through 
coarsening. The first stage (middle) merges nearby nodes to create a coarsened graph, while the second 
stage (right) further reduces the graph’s complexity, highlighting the essential structure for efficient 
processing.
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dataset = KarateClub()
data = dataset[0]  # Get the first graph

edge_index = to_undirected(data.edge_index) 

batch = torch.zeros(data.num_nodes, dtype=torch.long)  

cluster = graclus(edge_index)  

data_coarse = max_pool(cluster, data)  

This code applies two major operations on the graph data, which changes its structure
and properties. The result is a coarsened version of the original graph. The number
of nodes decreases from 34 to 22 due to the max pooling operation. Meanwhile, the
number of edges also reduces from 156 to 98 as the graph becomes more compact.
This is summarized in table 7.4.

This table provides an overview of the structure and features of both the input and
output graphs described in listing 7.4. The input graph is represented as data, with 34
nodes, each having 34 features, as indicated by x=[34, 34]. It contains 156 edges,
described by the edge index tensor edge_index=[2, 156]. Additionally, the input
graph includes a label tensor y=[34], representing one label per node, and a training
mask train_mask=[34], specifying which nodes are part of the training set.

 The output graph, processed and represented as DataBatch, shows a reduction in
size. It now contains 22 nodes, while each node retains the original 34 features
(x=[22, 34]). The number of edges is also reduced to 98, as indicated by edge_
index=[2, 98]. This transformation demonstrates a typical graph reduction process,
which simplifies the graph for downstream tasks. 

7.10.1 Example

GeoGrid has a mammoth task: to analyze an extensive graph of the US road system for
their ambitious traffic management solution. With an initial dataset comprising 50,000
nodes and 200,000 edges, the computational toll is daunting. In the initial explora-
tion when GeoGrid considered the computational load, graph coarsening seemed like
a tempting strategy. But apprehensions were high. Initial concerns ranged from the
loss of crucial information and the introduction of inaccuracies given the complexi-
ties around label preservation and method bias.

Table 7.4 Input and output graphs from listing 7.4

Input Output

Data(x=[34, 34], edge_index=[2, 156], y=[34], 
train_mask=[34])

DataBatch(x=[22, 34], 
edge_index=[2, 98])

Nodes: 34
Edges: 156

Nodes: 22
Edges: 98

Converts to undirected graph 
for the graclus function

Creates a batch 
vector for max_pool

Applies Graclus clustering

Sets the early stopping criteria
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 GeoGrid decided to proceed cautiously with a trial run using the Graclus algo-
rithm and max_pool for pooling on the entire graph. The trial run confirmed the
company’s fears. The graph’s size was reduced significantly but at the cost of losing
detail in high-traffic zones. Newly generated labels for clustered nodes didn’t reflect
the original optimally, affecting machine learning model performance.

 Given the unsatisfactory trial results, GeoGrid explored alternative optimizations.
GeoGrid’s breakthrough idea was a multilayer analytical framework as follows:

 National level—A broad, high-level layer where each node signifies a state or
major region

 State level—An intermediate layer representing cities or counties
 City level—The most granular layer, focusing on individual intersections and

road segments

The team speculated that applying graph coarsening at an intermediate layer might
alleviate some of the initial concerns. The state level became the company’s target for
coarsening, which promised a balance between computational efficiency and data
integrity. With this new approach in mind, GeoGrid reevaluated the disadvantages of
graph coarsening:

 Loss of granular information—While still a concern, the damage appeared to be
minimized because coarsening was being applied to an intermediate layer, pre-
serving the city level’s details.

 Introduction of inaccuracies—GeoGrid theorized that the other layers could serve
as compensatory mechanisms for any inaccuracies introduced at the state level.

 Label preservation—Coarsening at the state level seemed less risky regarding
label reconciliation, as they could reference both the national and city levels for
corrections.

They went ahead and coarsened the state level with the same Graclus algorithm and
max_pool technique. The subsequent evaluation found that the loss of granularity was
acceptable for this specific layer, and any inaccuracies introduced were mostly bal-
anced by the city and national levels.

 Though the company initially shied away from graph coarsening, GeoGrid found a
way to incorporate it meaningfully into a more complex, multilayer system. The com-
promise allowed GeoGrid to conserve computational resources without severely com-
promising the model’s accuracy. However, they remained cautious and committed to
ongoing research to fully grasp the tradeoffs involved.

 Table 7.5 summarizes the tradeoffs of graph coarsening. Graph coarsening pres-
ents a balance between computational efficiency and data fidelity. On the upside, it
enables quicker real-time processing, simplifies high-level analyses, and offers scalabil-
ity. Its flexibility allows selective application to specific layers of a hierarchical graph,
as demonstrated when GeoGrid applied coarsening only to its state level layer. 



282 CHAPTER 7 Learning and inference at scale
As we wrap up this section, it becomes clear that the ability to scale for expansive data-
sets is crucial for individuals working with GNNs. Handling large-scale data problems
demands careful strategy, and this section has supplied a detailed outline of diverse
methods to address such hurdles. From choosing the ideal processor to making deci-
sions regarding sparse versus dense representations, from batch processing strategies
to distributed computation—the options for scaling optimization are numerous. 

 As you move forward, the code provided in our repository can be used as a useful
benchmark, ensuring that the methods mentioned here aren’t just high-level ideas
but actionable plans. 

 Navigating the vast landscape of GNNs requires a blend of strategic foresight and
hands-on execution. Irrespective of your data’s size or complexity, the trick lies in
planning, optimizing, and iterating. Let our insights be your compass, guiding you
confidently through challenges, no matter their scale.

Table 7.5 Tradeoffs of using graph coarsening, with insights from the GeoGrid case

Category Insight GeoGrid’s Use Case

Computational effi-
ciency

Ideal for real-time processing with lim-
ited computational resources

Enabled quicker analyses at the state 
level, reducing computational load

Simplified analysis Useful for high-level overviews for initial 
understanding or macro-level decision-
making

The national level layer provided a 
broad picture, serving as a basis for 
more detailed analyses at lower layers.

Scalability Allows handling of larger graphs that 
might otherwise be computationally 
infeasible

Multilayer approach could be further 
extended to include additional hierarchi-
cal layers if needed.

Flexibility Can be applied to selected layers or 
segments of a graph, rather than the 
entire graph

Applied coarsening only to the state 
level layer, mitigating some disadvan-
tages while still gaining computational 
benefits

Loss of granular 
information

Not suitable for tasks requiring precise, 
detailed data

Initially avoided coarsening due to 
loss of critical details at the intersec-
tion level

Potential for inac-
curacies

Requires validation from more detailed 
layers or additional data to mitigate 
inaccuracies

The city level and national level acted 
as checks against the coarsened state 
level.

Label preserva-
tion challenges

Requires additional steps to generate 
or map new labels, which could intro-
duce errors

Found it easier to reconcile labels when 
coarsening was applied to an intermedi-
ate layer

Method bias Choosing a coarsening algorithm can 
affect the outcome and introduce 
biases.

Identified as an area for ongoing 
research to understand its effect 
better
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Summary
 Time and scale optimization methods are critical when training on very large

datasets. We can characterize a large graph by the raw number of vertices and
edges, the size of their edge and node features, or the time and space complex-
ity of the algorithms used in the processing and training of our datasets.

 A few well-known techniques exist to manage scale problems, which can be used
singularly or in tandem:
– Your choice of processor and its configuration
– Using sparse versus dense representation of your dataset
– Your choice of the GNN algorithm
– Training in batches based on sampling from your data
– Using parallel or distributed computing
– Use of remote backends
– Coarsening your graph

 Being selective of how graph data is represented for training can affect per-
formance. PyTorch Geometric (PyG) provides support for sparse and dense
representations.

 Choice of training algorithm can affect the time performance of training and
the space requirements of memory. Using Big O notation and benchmarking
key metrics can help you select the optimal GNN architecture.

 Node or graph batching can improve time and space complexity by using por-
tions of your data instead of the full dataset in training.

 Parallelism, dividing the work of training across several processor nodes on one
machine or across a cluster of machines, can improve the speed of execution
but requires the overhead of setting up and configuring the additional devices.

 Remote backends pull directly from your external data source (graph database
and key/value stores) to mini-batch during training. This can alleviate memory
problems but requires additional work to set up and configure.

 Graph coarsening can reduce memory requirements by replacing a graph with
a smaller version of itself. This smaller version is created by consolidating nodes.
A drawback of this method is that the coarsened graph will deviate from the
representation of the original graph. Graph coarsening is a tradeoff between
computational efficiency and data fidelity. It’s most effective when applied judi-
ciously and as part of a larger, layered analytical strategy. Application to inter-
mediate layers can mitigate some drawbacks.



Considerations
for GNN projects
In this chapter, we describe the practical aspects of working with graph data, as well
as how to convert nongraph data into a graph format. We’ll explain some of the
considerations involved in taking data from a raw state to a preprocessed format.
This includes turning tabular or other nongraph data into graphs and preprocess-
ing them for a graph-based machine learning package. In our mental model,
shown in figure 8.1, we are in the left half of the figure.

 We’ll proceed as follows. In section 8.1, we introduce an example problem that
might require a graph neural network (GNN) and how to proceed with tackling
this project. Section 8.2 goes into more detail on how to use nongraph data in
graph models. We then put these ideas into action in section 8.3 by taking a dataset

This chapter covers
 Creating a graph data model from nongraph 

data

 Extract, transform, load and preprocessing 
from raw data sources 

 Creating datasets and data loaders with 
PyTorch Geometric
284
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from a raw file to preprocessed data, ready for training. Finally, ideas for finding more
graph datasets are given in section 8.4.

 In this chapter, we’ll consider how to apply GNNs to a social graph created by a
recruiting firm. In our example, nodes are job candidates, and edges represent rela-
tionships between job candidates. We generate graph data from raw data, in the form
of edge lists and adjacency lists. We then use that data in a graph processing frame-
work (NetworkX) and a GNN library (PyTorch Geometric [PyG]). The nodes in this
data include the candidate’s ID, job type (accountant, engineer, etc.), and industry
(banking, retail, tech, etc.). 

 We frame the goals of candidates as a graph-based challenge, detailing the steps to
transform their data for graph learning. Our aim here is to map out the data work-
flow, starting with raw data, converting it into a graph format, and then preparing it
for the GNN training we use in the rest of the book. 

NOTE Code from this chapter can be found in notebook form at the GitHub
repository (https://mng.bz/Xxn1). Colab links and data from this chapter
can be accessed in the same locations.

8.1 Data preparation and project planning
Consider the case of a hypothetical recruiting firm called Whole Staffing. Whole
Staffing headhunts employees for a variety of industries and maintains a database of
their candidate profiles, including their history of engagement with the firm and

Graph Representations (ch. 2)

Preprocessed
Data (ch. )8

Scaling Training for
Large Data (ch. )7

Training
Loop (ch. –7)3

Node

Embeddings (ch. )2

Trained Model

Untrained Model

Structural

Data Sources (ch. )8

Node Features

Edge Features

Figure 8.1 Mental model for graph training process. We’re at the start of the process, where we prepare our data 
for training.

https://mng.bz/Xxn1
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other candidates. Some candidates get introduced to the firm via referrals from
other candidates. 

8.1.1 Project definition

Whole Staffing wants to get the most value from its database. They have a few initial
questions about their collection of job candidates:

1 Some profiles have missing data. Is it possible to fill in missing data without
bothering the candidate?

2 History has shown that candidates who have worked on similar projects in the
past can work well together in future work. Is it possible to figure out which can-
didates could work well together?

Whole Staffing has tasked you with exploring the data to answer these questions.
Among other analytical and machine learning methods, you think there may be an
opportunity to represent the data as a graph and use a GNN to answer the client’s
questions. 

 Your idea is to take the collection of referrals and convert it into a social network
where the job candidates are nodes and the referrals between candidates are edges.
To simplify things, you can ignore the direction of the referrals so that the graph can
be undirected. You also ignore repeat referrals, so that relationships between candi-
dates remain unweighted. 

 We’ll walk through the steps needed to prepare the data and establish a pipeline to
pass the data to a GNN model. First, let’s consider the project planning stage.

8.1.2 Project objectives and scope

Given any problem, having clear objectives, requirements, and scope will serve as a
compass that steers all subsequent actions and decisions. Every facet, from planning
and schema creation to tool selection should follow the core objectives and scope.
Let’s consider each of these for our problem.

PROJECT OBJECTIVES

Whole Staffing wants to optimize the use of its candidate database. First, the project
should enhance data quality by filling in missing information in candidate profiles,
reducing the need for direct candidate engagement. Second, the work ahead should
facilitate informed candidate suggestions, predicting which teams will work well using
the historical success of candidates. 

PROJECT REQUIREMENTS AND SCOPE

Several key requirements will directly affect your project. Let’s run through a few and
point out their importance to our client’s industry. Then, we’ll draw some conclusions
about the project at hand. Requirements include the following:

 Data size and velocity—What is the size of the data, in terms of item counts, size
in bytes, or number of nodes? How fast is new information added to the data, if
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at all? Is data expected to be uploaded from a real-time stream, or from a data
lake that is updated daily?

The planned graph might grow with the increase in data, affecting the com-
putational resources needed and the efficiency of algorithms. Accurately assess-
ing data size and velocity ensures that the system can handle the expected load,
can offer real-time insights, and is scalable for future growth.

 Inference speed—How fast are the application and the underlying machine learn-
ing models required to be? Some applications may require sub-second responses,
while for others, there is no constraint on time.

Response time is particularly vital in providing timely recommendations and
insights. For a recruitment firm, matching candidates with suitable job open-
ings is time-sensitive, with opportunities quickly becoming unavailable.

 Data privacy—What are the policies and regulations regarding personally identi-
fiable information (PII), and how would this involve data transformation and
preprocessing?

Data privacy becomes a huge concern when dealing with sensitive informa-
tion such as candidate profiles, contact details, and employment histories. In a
graph and GNN setting, ensuring that nodes and edges don’t reveal PII is essen-
tial. Compliance with regulations such as General Data Protection Regulation
(GDPR) or the California Consumer Privacy Act (CCPA) is mandatory to avoid
legal complications. The graph data should be handled, stored, and processed
in a way that respects privacy norms. Anonymization and encryption techniques
may be needed to protect individuals’ privacy while still allowing for effective
data analysis. Understanding these requirements early in the project planning
ensures that the system architecture and data processing pipelines are designed
with privacy preservation in mind.

 Explainability—How explainable should the responses be? Will direct answers
be enough, or should there be additional data that sheds light on why a recom-
mendation or prediction was made?

In the recruitment sector, explainability and transparency are pivotal. They
instill trust among candidates and employers by ensuring fairness and clarity in
the talent-selection process. Ethical standards are upheld, and unintended
biases should be mitigated. These elements aren’t just ethical imperatives but
often legally binding. 

Given the objectives and scope, for Whole Staffing, the deliverables might be a system
that does the following:

1 Fortnightly scan the candidate data for missing items. Missing items can be
inferred and suggested or filled in. 

2 Predict candidates that will work well together by using link prediction and/or
node classification. Unlike the first deliverable, the response time here should
be fast.
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The following lists some of the specifications for the preceding requirements:

 Data size—This is conservatively set at enough capacity for 100,000 candidates
and their properties, which is estimated to be 1 GB of data.

 Inference speed—Application will run biweekly and can be completed overnight
so we don’t have a considerable speed constraint.

 Data privacy—No personal data that directly identifies a candidate can be used.
However, data known to the recruitment company, such as whether employees
have been successfully placed at the same employer, can be used to improve
operations of the company, provided this data isn’t shared.

 Explainability—There must be some level of explainability for the results. 

The objectives and requirements will guide the decisions regarding system design,
data models, and, often, GNN architecture. The preceding gives an example for the
type of considerations needed when beginning or scoping a graph-based project. 

8.2 Designing graph models
Given an appropriate scope of work, the next step is in building the graph models.
For most machine learning problems, data will be organized in a standard way. For
example, when dealing with tabular data, rows are treated as observations, and col-
umns are treated as features. We can join tables of such data by using indexes and
keys. This framework is flexible and relatively unambiguous. We may quibble about
which observations and features to include, but we know where to place them.

 When we want to express our data with graphs, in all but the simplest scenarios,
we’ll have several options for what structure to use. With graphs, it’s not always intui-
tive where to place the entities of interest. It’s this ambiguity that drives the need for
systemic methods in using graph data, but getting it right early on can serve as a foun-
dation for downstream machine learning tasks [1].

 In this section, we embark on a journey of transforming Whole Staffing’s recruit-
ment data into graph-based data to support our downstream pipeline. We start by con-
sidering the domain and use case, a critical step to understanding the data. Next, we
create and refine a schema, pivotal for organizing and interpreting complex datasets.
Through rigorous testing of the schema, we could then ensure its robustness and reli-
ability. Any necessary refinements should be made to optimize performance and accu-
racy. This approach ensures that our future analytic systems, which ingest graph-based
data, can answer complex queries about job candidates with precision and reliability.
Here’s the process to follow, and figure 8.2 provides a visual:

1 Understand the data and the use case.
2 Create a data model, schema, and instance model.
3 Test your model using the schema and instance model.
4 Refactor if necessary.
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8.2.1 Get familiar with the domain and use case

As with most data projects, to be effective, we have to come to grips with the dataset
and the context. For our immediate goal of creating a model, understanding our
referral data in its raw format and digging into the intricacies of the recruiting indus-
try can provide critical insights. This knowledge also gives us a basis to design tests for
the model during deployment. For example, preliminary analysis on the raw data
gives us the information in table 8.1. 

From the raw data, it’s apparent that there are many relationships, offering poten-
tial insights into candidate referrals. The large number of referrals in comparison to
the number of candidates suggests an interconnected network. Our models need to
be sufficiently large to translate this structure into results within the recruitment
problem-space.

 Turning to domain knowledge, beyond the immediate asks of the client, we should
be asking questions that solidify our understanding of the industry. In setting the
requirements for our data model, we should consider the key questions and challenges

Table 8.1 Features of the dataset

Number of candidates 1,933

Number of referrals 12,239

Understand the Data and Use Case

Explore your starting data and become

intimate with the domain and use case.

Design the Data Model

Design your data model, schema, and

instance model.

Test the Data Model

Create tests and validate the data models

using the instance model and the schema.

Refactor

Refactor the schema if necessary.

Figure 8.2 Process of creating a 
robust graph data model from 
nongraph data
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to the industry. For the recruitment problem, we might ask how we can optimize the
referral process or what underlying structures and patterns govern candidate refer-
rals. By addressing these types of questions, we can align our model with domain
expertise, with a likely boost in both its relevance and validity.

8.2.2 Constructing the graph dataset and schemas

Next, we’ll discuss how to design our database. The term graph dataset denotes a gen-
eral effort to describe data using the elements and structure of a graph: nodes, edges,
and node features and edge features. To achieve this, we need a schema and an
instance. These specify the structure and rules of our graph explicitly and allow our
graph dataset to be tested and refined. This section is drawn from several references,
listed at the end of the book for further reading.

 By addressing the details of our graph dataset up front, we can avoid technical
debt and more easily test the integrity of our data. We can also experiment more sys-
tematically with different data structures. In addition, when the structure and rules of
our graphs are designed explicitly, it increases the ease with which we can parameter-
ize these rules and experiment with them in our GNN pipeline. 

 Graph datasets can be simple, consisting of one type of node and one type of edge.
Or they can be complex, involving many types of nodes and edges, metadata, and, in
the case of knowledge graphs, ontologies. 

Key terms
The following are key terms used in this section (for more details on graph data mod-
els and types of graphs, see appendix A):

 Bi-graph (or bipartite graph)—A graph with two sets of nodes. There are no
edges between nodes of the same set.

 Entity-relationship diagram (ER diagram)—A figure that shows the entities,
relationships, and constraints of a graph.

 Graph dataset—A representation of nodes, edges, and their relationships.
 Heterogeneous/homogeneous graphs—A homogeneous graph has only one

type of node or edge. A heterogeneous graph can have several different types
of nodes or edges.

 Instance model—A model based on a schema that holds a subset of the
actual data.

 Ontology—A way of describing the concepts and relationships in a specific
domain of knowledge, for example, connections between different entities
(writers) in a semantic web (of works of literature). The ontology is the struc-
tured framework that defines the roles, attributes, and interrelations of these
writers and their literary works.
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Graph datasets are good at providing conceptual descriptions of graphs that are quick
and easy to grasp by others. For example, for people who understand what a property
graph or an RDF graph is, telling them that a graph is a bi-graph implemented on a
property graph can reveal much about the design of your data (property graphs and
RDF graphs are explained in appendix A). 

 A schema is a blueprint that defines how data is organized in a data storage sys-
tem, such as a database. A graph schema is a concrete implementation of a graph
dataset, explaining in detail how the data in a specific use case is to be represented
in a real system. Schemas can consist of diagrams and written documentation. Sche-
mas can be implemented in a graph database using a query language or in a process-
ing system using a programming language. A schema should answer the following
questions:

 What are the elements (nodes, edges, properties), and what real-world entities
and relationships do they represent? 

 Does the graph include multiple types of nodes and edges?
 What are the constraints regarding what can be represented as a node?
 What are the constraints for relationships? Do certain nodes have restrictions

regarding adjacency and incidence? Are there count restrictions for certain
relationships?

 How are descriptors and metadata handled? What are the constraints on this
data?

Depending on the complexity of your data and the systems in use, you may use multiple
but consistent schemas. A conceptual schema lays out the elements, rules, and constraints

 Property graph—A model that uses metadata (labels, identifiers, attributes/
properties) to define the graph’s elements.

 Resource Description Framework graph (RDF graph, aka Triple Stores)—Model
that follows a subject-predicate-object pattern, where nodes are subjects and
objects, and edges are predicates.

 Schema—A blueprint that defines how the elements of the graph will be orga-
nized as well as which specific rules and constraints will be used for these
elements.

 Conceptual schema—A schema not tied to any particular database or pro-
cessing system.

 System schema—A schema designed with a specific graph database or pro-
cessing system in mind.

 Technical debt—The consequences of prioritizing speedy delivery over quality
code, which later has to be refactored.
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of the graph but isn’t tied to any system. A system schema reflects the conceptual
schema’s rules but just for a specific system, such as a database of choice. A system
schema could also omit unneeded elements from the conceptual schema. Here are
the steps to create a schema: 

1 Identify main entities and relationships. For instance, in our social network
example, entities can be candidates, recruiters, referrals, hiring events, and
relationships.

2 Define node and edge labels. These labels serve as identifiers for the types of enti-
ties and their interrelationships in the graph.

3 Specify properties and constraints. Each vertex and edge label is associated
with specific properties and constraints that store and restrict information,
respectively.

4 Define indices (optional, for database-oriented schemas). Indexes, based on properties
or combinations thereof, enhance query speeds on graph data.

5 Apply the graph schema to a database (optional, for database-oriented schemas). Com-
mands or codes, contingent on the specific graph database, are employed to
create the graph schema, with specifications on its static or dynamic nature.

Depending on the complexity of the graph dataset and the use cases, one or several
schemas could be called for. In the case of more than one schema, compatibility
between the schemas via a mapping must also be included.

 For a dataset with few elements, a simple diagram with notes in prose can be suffi-
cient to convey enough information to fellow developers to be able to implement in
query language or code. For more complex network designs, ER diagrams and associ-
ated grammar are useful in illustrating network schemas in a visual and human read-
able way. 

Entity-relationship diagrams (ER diagrams)
ER diagrams have the elements to illustrate a graph’s nodes, edges, and attributes
and the rules and constraints governing a graph [2, 3]. The following figure (left)
shows some connectors notation that can be used to illustrate edges and relation-
ship constraints. The figure (right) shows an example of a schema diagram conveying
two node types that might be represented in our recruitment example (Recruiter and
Candidate), and two edge types (Knows, and Recruits/Recruited By). The diagram
conveys implicit and explicit constraints. 
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Turning to our example, to design conceptual and system schemas for our example
dataset, we should think about the following:

 The entities and relationships in our data
 Possible rules and constraints
 Operational constraints, such as the databases and libraries at our disposal
 The output we want from our application

Our data will consist of candidates and their profile data (e.g., industry, job type,
company, etc.), as well as recruiters. Properties can also be treated as entities; for
instance, Medical Industry could be treated as a node. Relations could be Candidate
Knows Candidate, Candidate Recommended Candidate, or Recruiter Recruited Can-
didate. As stated previously, graph data can be extremely flexible in how entities can
be represented.

 Given these choices, we show a few options for the conceptual schema. Option A is
shown in figure 8.3.

 
 
 
 

Some explicit constraints are that one employee can refer many other employees and
that one referee can be referred by many employees. Another explicit constraint is
that a person can only be employed full-time by one business, but one business
might have many employees. An implicit constraint is that, for this graph model, there
can be no relationship between a business and a referral.

One

Many

One (and only one)

Zero or one

One or many

Zero or many

At left is the relationship nomenclature for ER diagrams. At right is an 
example of a conceptual schema using an ER diagram. 
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As you can see, example A consists of one node type (Candidate) connected by one
undirected edge type (Knows). Node attributes are the candidate’s Industry and their
Job Type. There are no restrictions on the relationships, as any candidate can know 0
to n-1 other candidates, where n is the number of candidates. The second conceptual
schema is shown in figure 8.4.

Example B consists of two node types (Candidate and Recruiter), linked by one undi-
rected edge type (Knows). Edges between candidates have no restrictions. Edges
between candidates and recruiters have a constraint: a candidate can only link to one
recruiter, while a recruiter can link to many candidates.

 The third schema is shown in figure 8.5. It has multiple node and relationship types.
In example C, the types are Candidate, Recruiter, and Industry. Relation types include
Candidate Knows Candidate, Recruiter Recruits Candidate, Candidate Is a Member of
Industry. Note, we’ve made Industry a separate entity, rather than an attribute of a can-
didate. These types of graphs are known as heterogeneous, as they contain many different

A.

knows

knows

candidate
# candidate ID

# industry

# job type

candidate
# candidate ID

# industry

# job type

Figure 8.3 Schema with one node type and one edge type

B.

knows

knows

knows

knows
candidate
# candidate ID

# industry

# job type

candidate
# candidate ID

# industry

# job type

recruiter

# r uecr iter ID

Figure 8.4 Schema with two node types and one edge type
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types of nodes and edges. In a way, we can imagine these as multiple graphs that are
layered on top of each other. When we have only one type of nodes and edges, then
graphs are known as homogenous. Some of the constraints for example C include the
following:

 Candidates can only have one Recruiter and one Industry. 
 Recruiters don’t link to Industries.

Depending on the queries and the objectives of the machine learning model, we
could pick one schema or experiment with all three in the course of developing our
application. Let’s stick with the first schema, which can serve as a simple structure for
our exploration and experimentation.

8.2.3 Creating instance models

An instance model contrasts the abstract nature of the graph dataset by providing a tan-
gible, specific example of the data, according to the schema. Such an example serves
to validate and test the schema. Following are the steps to create an instance model:

 

C.

recruits

is recruited by

knows

knows

belongs to

contains

candidate candidate

recruiter

# recruiter ID

# candidate ID

# job type

# candidate ID

# job type

industry

# industry name

Figure 8.5 Schema with three node types and three edge types
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1 Identify the schema. Begin by identifying the general model or schema that your
instance will be based upon. Ensure that the class definition, attributes, and
methods are well established.

2 Select a subset of the data. Choose a specific subset of data to represent, adhering
to the established graph schema.

3 Create nodes. Develop nodes for each entity within your data subset, ensuring
each has a label, unique identifier, and associated properties.

4 Create edges. Develop links for each relationship, assigning labels and properties
and specifying edge directions and multiplicities.

5 Adhere to the rules and constraints of your schema. In constructing the instance
model, make sure to follow the rules and constraints of the schema.

6 Visualization. Use visualization tools to represent the instance model graphically.
7 Instantiation. Realize the instance model using a graph database or graph pro-

cessing system. This will allow for queries that can test and validate it.

Figure 8.6 shows an example of an instance model derived from the schema discussed
formerly. The nodes and edges have features filled with the real data of candidates
instead of placeholders.

ID: 5698

industry: entertainment

job type: manager

ID: 3853

industry: legal

job type: manager

ID: 3742

industry: technology

job type: senior manager

ID: 8393

industry: technology

job type: senior engineer

ID: 8473

industry: IT

job type: engineer

ID: 3643

industry: legal

job type: associate

ID: 5739

industry: retail

job type: analyst

Figure 8.6 Example of an instance model with nodes filled with actual data from the recruiter example. Real 
instance models may have much more data.
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8.2.4 Testing and refactoring

Technical debt can occur when we have to change and evolve our data or code, but we
haven’t yet planned for backward- or forward-compatibility in our models. It can
also happen when our modeling choices aren’t a good fit for our database and soft-
ware choices, which may call for expensive (in time or money) workarounds or
replacements.

 Having well-defined rules and constraints on our data and models gives us explicit
ways to test our pipeline. For example, if we know that our nodes can at most have two
degrees, we can design simple functions or queries to process and test every node
against this criterion. 

 Testing and refactoring are iterative processes and crucial in scaling an optimized
graph schema and instance model [4, 5]. It will involve executing queries, analyzing
results, making necessary adjustments, and validating against metrics. In the context
of Whole Staffing’s recruitment data, this practice would ensure the model is tailored
to capture real-world relationships and robust new data streams. Following are some
examples for tests and refactoring:

1 Cast your instance model in a system. Store the model in your graph database or
processing system of choice. 

2 Create tests and run queries. Based on the specific requirements, draft queries to
test the integrity of your model. Use query languages such as Cypher or
SPARQL to execute queries on a graph database. Programming languages, for
example, Python, can also be used to query graphs within graph processing sys-
tems such as NetworkX.

For our example’s simple schema, here are some possible tests:

– Node attributes verification—Each node should be checked to confirm that it
possesses the required attributes, specifically the candidate’s industry and
job type, and that these attributes have non-null values. 

– Edge type verification—All connections between candidates should be vali-
dated to confirm that they are of the Knows type, ensuring consistency in
relationship labeling.

– Relationship verification—Check the average number of relationships that
exist to ensure it’s consistent with the average number of referrals.

– Unique IDs—Every candidate node should be checked for unique identifiers
to prevent data duplication and ensure data integrity.

– Attribute data type—The data types of industry and jobType attributes should
be validated to ensure consistency across all candidate nodes.

– Network structure—The structure of the network should be validated to ensure
it’s undirected, confirming the bidirectional nature of the Knows relation-
ships between candidate nodes.
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– Edge cases—Determine edge cases and query for those. In our case, the nodes
that are unconnected may present a problem. Using queries to understand
the extent of unconnected nodes and their effect on the analytics will drive
decisions to refactor. Another edge case could be an isolated group of candi-
dates whose relationships form a cycle. It would be important to ensure the
data model and the analytical tools could handle such complex or unusual
data patterns and still produce valid answers.

3 Validate and evaluate performance—Based on the results of the tests, determine if
there are logical problems with your model and your use case, or problems with
the data and attributes.

4 Refactor—Make adjustments to labels, properties, relationships, or constraints as
needed to minimize errors.

5 Repeat—Iterate the preceding steps, refining the model based on evaluations
and ensuring alignment with the project needs and constraints.

6 Final assessment—Evaluate the final model against criteria and best practices to
ensure its readiness for complex queries and machine learning applications.

With this iterative process of testing and refactoring, we refine the dataset for Whole
Staffing’s recruitment data and use case. Attention to detail guarantees the model is
ready to support evaluation of the complex, nuanced relationships hidden within the
recruitment data.

 As we transition into the next section, our focus shifts to the practical implementa-
tion of some of these concepts. We’ll look at creating data pipelines in PyG, showing
how to convert data from its initial raw form to a preprocessed state, ready for input
into other downstream model training and testing routines. 

8.3 Data pipeline example
With the schema decided, let’s walk through an example of a data pipeline. In this sec-
tion, we assume our objective is to create a simple data workflow that takes data from a
raw state and ends with a preprocessed dataset that can be passed to a GNN. These
steps are summarized in figure 8.7.

 Note that while the overall steps shown can be consistent from one problem to
another, the details of implementation for each step can be unique to the problem, its
data, and the chosen data storage, processing, and model training options. 
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Key terms
The following are key terms used in this section (for more details on graph data mod-
els and types of graphs, see appendix A):

 Adjacency list—A basic representation of graph data. In this format, each
entry contains a node with a list of its adjacent nodes.

 Adjacency matrix—A basic representation of graph data. In a matrix, each row
and column correspond to a node. The cells, where these rows and columns
intersect, signify the presence of edges between the nodes. A cell with a non-
zero value indicates an edge between the nodes, while a zero value signifies
no connection.

 Degree—The degree of a node is the count of its adjacent nodes.
 Edge list—A basic representation of a graph. It’s an array of all the edges in a

graph; each entry in the array contains a unique pair of connected nodes.
 Mask—A Boolean array (or tensor in the case of PyTorch) that is used to

select specific subsets of data. Masks are commonly used for splitting a
dataset into different parts, such as training, validation, and testing sets.

Raw Data Collection and Processing

Collect raw data from various sources,

such as relational database tables or files.

ETL (Extract, Transform, Load)

Extract data from sources and transform it

into a specific format that matches the

predetermined schema.

Data Exploration

Use visual and statistical methods to

explore and analyze the data, ensuring it

aligns with assumptions and requirements.

Preprocessing

Convert the processed data into formats

compatible with GNN frameworks such as

PyTorch Geometric (PyG) or Deep Graph

Library (DGL).
Figure 8.7 Summary of steps in the 
data pipeline process in this section



300 CHAPTER 8 Considerations for GNN projects
8.3.1 Raw data

Raw data refers to data in its most unprocessed state; such data is the starting point for
our pipeline. This data can be in various databases, serialized in some way, or generated.

 In the development stage of an application, it’s important to know how closely the
raw data used will match the live data used in production. One way to do this is by
sampling from data archives.

 As mentioned in section 8.1, there are at least two sources for our example prob-
lem: relational database tables that contain recommendation logs and candidate pro-
files. To keep our example contained, we assume a helpful engineer has already queried
the log data and transformed it into a JSON format, where keys are a recommending
candidate, and the values are the recommended candidates. From our profile data, we
have two other fields: industry and job type. For both data sources, our engineer has used
a hash to protect PII, which we can consider a unique identifier for the candidate. In
this section, we’ll use the JSON data, where an example snippet is shown in figure 8.8.
The data is displayed in two ways: with a hash and without a hash.

DATA ENCODING AND SERIALIZATION

One key consideration when constructing the pipeline is the choice of what data for-
mat to use when importing and exporting data from one system to another. For trans-
ferring graph data into another system or sending it over the internet, encoding or
serialization is typically used. These terms refer to the process of putting data in a form
that is easily transferable [6, 7]. Before choosing an encoding format, you must have
decided upon the following:

 Data model—Simple model, property graph, or other?
 Schema—Which entities in your data are nodes, edges, and properties?
 Data structure—How is the data stored: in adjacency matrices, adjacency lists, or

edge lists?
 Receiving systems—How does the receiving system (in our case, GNN libraries

and graph-processing systems) accept data? What encodings and data structures
are preferred? Is imported data automatically recognized, or is custom pro-
gramming required to read in data?

(continued)

 Rank—In our context, rank refers to the position of each node’s degree in a
sorted list. So, the node with the highest degree has rank 1, the next highest
has rank 2, and so on.

 Raw data—Data in its most unprocessed form.
 Serialization—Putting data into a format that is easily stored or exported.
 Subgraph—A subgraph is a subset of a larger graph’s nodes and edges.



3018.3 Data pipeline example
Here are a few encoding choices you’re likely to encounter:

 Language and system-agnostic encodings formats—These are most popular as they
are extremely flexible and work across many systems and languages. However,
data arrangement can still differ from system to system. Therefore, an edge list
in a CSV file, with a specific set of headers, may not be accepted or interpreted
in the same way between two different systems. Following are some examples
for this format: 
– JSON—Has advantages when reading from APIs or feeding into JavaScript

applications. Cytoscape.js, a graph visualization library, accepts data in
JSON format. 

– CSV—Accepted by many processing systems and databases. However, the
required arrangement and labeling of the data differs from system to system. 

– XML—Graph Exchange XML (GEXF) format is of course an XML format. 

Figure 8.8 View of raw data: JSON file. The figure on the left is in key/value format. The keys 
are the members, and the values are their known relationships. The figure on the right shows 
unhashed values, demonstrating example names for these individuals. 
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 Language specific—Python, Java, and other languages have built-in encoding
formats.

 Pickle—Python’s format. Some systems accept Pickle encoded files. Despite this,
unless your data pipeline or workflow is governed extensively by Python, pickles
should be used lightly. The same applies for other language-specific encodings.

 System driven—Specific software, systems, and libraries have their own encoding
formats. Though these may be limited in usability between systems, an advan-
tage is that the schema in such formats is consistent. Software and systems that
have their own encoding format include Stanford Network Analysis Platform
(SNAP), NetworkX, and Gephi.

 Big data—Aside from the language-agnostic formats listed previously, there are
other encoding formats used for larger sizes of data.

 Avro—This encoding is used extensively in Hadoop workflows
 Matrix based—Because graphs can be expressed as matrices, there are a few for-

mats that are based on this data structure. For sparse graphs, the following for-
mats provide substantial memory savings and computational advantages (for
lookups and matrix/vector multiplication):
– Sparse column matrix (.csc filetype)
– Sparse row matrix (.csr filetype)
– Matrix market format (.mtx filetype)

8.3.2 The ETL step

With the schema chosen and data sources established, the ETL (extract, transform, load)
step consists of taking raw data from its sources and then producing data that fits the
schema and is ready for preprocessing or training. For our data, this consists of pro-
gramming a set of actions that begin with pulling the data from the various databases
and then joining them as needed. 

 We need data that ends up in a specific format that we can input into a preprocess-
ing step. This could be a JSON format or an edge list. For either the JSON example or
edge list example, our schema is fulfilled; we’ll have nodes (the individual persons)
and edges (the relationships between these people).

 For our recruitment example, we want to transform our raw data into a graph data
structure, encoded in CSV. This was chosen for ease of manipulation with Python.
This file can then be loaded into our graph-processing system, NetworkX, or a GNN
package such as PyG. To summarize the next steps, we’ll do the following:

1 Convert the raw data file to a graph format, following your chosen graph data
model. In our case, we convert the raw data into an edge list and an adjacency
list. We then saved it as a CSV file.

2 Load the CSV file into NetworkX for exploratory data analysis (EDA) and
visualization.

3 Load into PyG and preprocess.
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RAW DATA TO ADJACENCY LIST AND EDGE LIST

Starting with our CSV and JSON files, we next convert the data into two key data mod-
els: an edge list and an adjacency list, which we define in appendix A. Both adjacency
and edge lists are two basic data representations used with graphs. An edge list is a list
where every item in this structure contains a node with a list of its adjacent nodes.
These representations are illustrated in figure 8.9.

First using the json module, we load the data from a JSON file into a Python dictio-
nary. The Python dictionary has the same structure as the JSON, with member hashes
as keys and their relationships as values.

CREATING AN ADJACENCY LIST

Next, we create an adjacency list from this dictionary. This list will be stored as a text
file. Each line of the file will contain the member hash, followed by hashes of that
member’s relationships. The process for creating an adjacency list is illustrated in fig-
ure 8.10.

 This function transforms our raw data into an adjacency list, which we’ll apply to
our recruitment example. We’ll have inputs that consist of the following: 

 A dictionary of candidate referrals where the keys are members who have referred
other candidates, and the values are lists of the people who were referred

 A suffix to append to the filename

2
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{0,3,3}
{0,4,5}
{1,3,1}
{1,4,1}
{2,3,3}

{0:[3,4],
1:[3,4],
2:[3],
3:[0,1,2],
4:[0,1]}

Figure 8.9 A graph with nodes and edges 
marked (top). An edge list representation 
(middle); each entry contains the edge number 
and the pair of nodes connected. An adjacency 
list representation in a dictionary (bottom); 
each key is a node, and the values are its 
adjacent nodes.
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We’ll have outputs that consist of the following: 

 An encoded adjacency list in a txt file
 A list of the node IDs found

This is shown in the following listing.

def create_adjacency_list(data_dict, suffix=''):
   list_of_nodes = []

   for source_node in list(data_dict.keys()): 
      
       if source_node not in list_of_nodes:
           list_of_nodes.append(source_node)
      
       for y in data_dict[source_node]:              
           if y not in list_of_nodes:                
               list_of_nodes.append(y)               
           if y not in data_dict.keys():             
               data_dict[y]=[source_node]            
           Else:                                     
               if source_node not in data_dict[y]:   
                   data_dict[y].append(source_node)  
               else: continue                        
 
   g= open("adjacency_list_{}.txt".format(suffix),"w+") 
   for source_node in list(data_dict.keys()): 
       dt = ' '.join(data_dict[source_node])  
       print("{} {}".format(source_node, dt)) 
       g.write("{} {} \n".format(source_node, dt))  

   g.close
   return list_of_nodes

Listing 8.1 Create an adjacency list from relationship dictionary

Initialize and populate

the list of nodes.

Iterate through every node

in the input data dictionary,

and create a list of nodes.

Check if the node already

exists in the list to avoid

duplication.

Record nodes and their

connections.

For each node, convert its

connections to a string, and

write it to the adjacency list

file.

Validate and enforce

symmetry in connections.

Check for symmetry in the

graph. If node A is

connected to node B,

ensure node B is also

connected to node A.

Update the dictionary if

necessary.

Finalize and output the

result.

For each node, write a

member hash with its

adjacent nodes as an array

of values.

Record in the text file.

Figure 8.10 Flow diagram illustrating the process of transforming a relationship dictionary into a well-structured 
adjacency list, stored in a text file, while ensuring the symmetry of connections in the undirected graph.

Runs through every 
node in the input 
data dictionary

Because this is an undirected 
graph, there must be a symmetry
in the values; that is, every value
a key must contain that key in its
own entry. As an example, for ent
F, if G is a value, then for entry G,
must be a value. These lines chec
for that and fix the dictionary if 
these conditions don’t exist.

Creates a text file
that will store 
the adjacency list

For every key in 
the dictionary

Creates a string from
the list of dictionary 
values. This value is a
string of member IDs
separated by empty 
spaces.Optional print

Writes a line to the text
file. This line will contain

the member hash, and then a
string of relationship hashes.
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CREATING AN EDGE LIST

Next, we show the process to create an edge list. As with the adjacency list, we trans-
form the data to account for node pair symmetry. Note that either format could work
for this project. For your own project, another format could also be warranted. Fig-
ure 8.11 illustrates the process.

As with the adjacency list function, the edge list function illustrates the transformation
of raw data into an edge list and has the same inputs as the previous function. The
outputs consist of the following: 

 An edge list in a .txt file
 Lists of the node IDs found and the edges generated

By definition, every entry of an edge list must be unique, so we must ensure that our
produced edge list is the same. Here’s the code to create an edge list from a relation-
ship dictionary.

def create_edge_list(data_dict, suffix=''):
    edge_list_file = open("edge_list_{}.txt".format(suffix),"w+")
    edges = []    
    nodes_all = []
      

    for source in list(data_dict.keys()):
        if source not in list_of_nodes_all:
            nodes_all.append(source)
        connections = data_dict[source]
         

Listing 8.2 Create an edge list from relationship dictionary

Iterate through relationships.

For each key in the member dictionary,

iterate through every value, which

represents a list of relationships.

Record node pairs.

Write each unique node pair to the text file.

Check for duplicate edges.

Check for and avoid creating duplicate edges

in the undirected graph, using a set object

to ensure that each node pair is unique.

Figure 8.11 Process of 
creating an edge list file 
programmed into listing 8.2
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        for destination in connections:  
            if destination not in nodes_all:
                nodes_all.append(destination)

           if {source, destination} not in edges:  
               print(f"{source} {destination}")
               out_string =  f"{source} {destination}\n”
               edge_list_file.write(out_string)  
               edges.append({source, destination })
         
           else: continue
   
       edge_list_file.close
       return list_of_edges, list_of_nodes_all

In the next sections, we’ll use the adjacency list to load our graph into NetworkX. One
thing to note about the differences between loading a graph using the adjacency list
versus the edge list is that edge lists can’t account for single, unlinked nodes. It turns
out that quite a few of the candidates at Whole Staffing haven’t recommended any-
one, and don’t have edges associated with them. These nodes would be invisible to an
edge list representation of the data.

8.3.3 Data exploration and visualization

Next, we want to load our network data into a graph processing framework. We chose
NetworkX, but there are many other choices available, depending on your task and
language preferences. We chose NetworkX because we have a small graph, and we
also want to do some light EDA and visualization.

 With our newly created adjacency list, we can create a NetworkX graph object by
calling the read_edgelist or read_adjlist methods. Next, we can load in the attri-
butes industry and job type. In this example, these attributes are loaded in as a dic-
tionary, where the node IDs serve as keys.

 With our graph loaded, we can explore and inspect our data to ensure that it aligns
with our assumptions. First, the count of nodes and edges should match our member
count, and the number of edges created in our edge list, respectively, as shown in the
following listing. 

social_graph = nx.read_adjlist('adjacency_list_candidates.txt')
nx.set_node_attributes(social_graph, attribute_dict)
print(social_graph.number_of_nodes(), social_graph.number_of_edges())
>> 1933 12239

Listing 8.3 Create an edge list from the relationship dictionary

Each member dictionary value is a 
list of relationships. For every key, 
we iterate through every value.

Because this graph is 
undirected, we don’t 
want to create duplicate 
edges. For example, 
because {F,G} is the 
same as {G,F}, we only 
need one of these. This 
line checks if a node pair 
exists already. We use a 
set object because the 
node order doesn’t 
matter.Writes the line to the text

file. This line will consist
of the node pair.
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We want to check how many connected components our graph has:

len(list((c for c in nx.connected_components(social_graph))))
>>> 219

The connected_components method generates the connected components of a graph;
a visualization is shown in figure 8.12 and generated using NetworkX. There are
hundreds of components, but when we inspect this data, we find that there is one
large component of 1,698 nodes, and the rest are composed of less than 4 nodes. Most
of the disconnected components are singleton nodes (the candidates that never refer
anyone). For more information about components of a graph, we give definitions and
details in appendix A.

We’re interested in this large connected component and will work with that going for-
ward. The subgraph method can help us to isolate this large component.

 Finally, we use NetworkX to visualize our graph. For this, we’ll use a standard rec-
ipe for analyzing graphs which can also be found in the NetworkX documentation.

 Let’s go through the different steps (the full code sample for each step is also in the
repository, labeled “Function that visualizes the social graph and shows degree statistics”):

1 Create the graph object. Generate a distinct graph object, selecting the largest con-
nected component from the given graph. In cases where there’s only one con-
nected component, this step might be unnecessary but ensures the selection of
the major component.

Figure 8.12 The full graph, with its large connected component in the middle, 
surrounded by many smaller components. For our example, we’ll use only the 
nodes in the large connected component.
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connected_component = nx.connected_components(social_graph
Gcc = social_graph.subgraph(sorted(connected ), 
                            key=len, 
                            reverse=True)[0]
                            ) 

2 Determine the layout. Decide the positioning of nodes and edges for visualization.
Choose an appropriate layout algorithm; for example, the Spring Layout mod-
els the edges as springs and nodes as repelling masses:

pos = nx.spring_layout(Gcc, seed=10396953) 

3 Draw nodes and edges. Use the chosen layout to draw nodes on the visualization.
Adjust visual parameters such as node size to enhance the clarity of the figure.
Based on the selected layout, draw the edges. Modify appearance settings such
as transparency to achieve the desired visual effect.

nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
ax0.set_title("Connected component of Social Graph")
ax0.set_axis_off()

4 Generate and plot node degrees. Employ the degree method on the graph object to
create an iterable of nodes with their respective degrees, and sort them from
highest to lowest. Visualize the sorted list of node degrees on a plot to analyze
the distribution and prominence of various nodes. Use NumPy’s unique method
with the return_counts parameter to plot a histogram showing the degrees
of nodes and their counts, providing insights into the graph’s structure and
complexity: 

degree_sequence = sorted([d for n, d in social_graph.degree()], 
reverse=True)

ax1 = fig.add_subplot(axgrid[3:, :2])
ax1.plot(degree_sequence, "b-", marker="o")
ax1.set_title("Degree Rank Plot")
ax1.set_ylabel("Degree")
ax1.set_xlabel("Rank")

ax2 = fig.add_subplot(axgrid[3:, 2:])
ax2.bar(*np.unique(degree_sequence, return_counts=True))
ax2.set_title("Degree histogram")
ax2.set_xlabel("Degree")
ax2.set_ylabel("# of Nodes")

These plots are shown in figure 8.13.
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Lastly, we can visualize an adjacency matrix of our graph, shown in figure 8.14, using
the following command:

plt.imshow(nx.to_numpy_matrix(social_graph), aspect='equal',cmap='twilight')
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Figure 8.13 Visualization and statistics of the social graph and its large connected component. Network 
visualization using NetworkX default settings (top). A rank plot of node degree of the entire graph (bottom left). 
We see that about three-fourths of nodes have less than 20 adjacent nodes. A histogram of degree (bottom right).
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As with the numerical adjacency matrix, for our undirected graph, this visual adja-
cency matrix has symmetry down the diagonal. All undirected graphs will have sym-
metric adjacency matrices. For directed graphs, this can happen but isn’t guaranteed. 

8.3.4 Preprocessing and loading data into PyG

For this book, preprocessing consists of putting our data, including its properties,
labels, or other metadata, in a format suitable for downstream machine learning
models. Feature engineering can also be a step in this process. For feature engineer-
ing, we’ll often use graph algorithms to calculate the properties of nodes, edges, or
subgraphs. 

 An example for node features is betweenness centrality. If our schema allows, we
can calculate and attach such properties to the node entities of our data. To perform
this, we take the output of the ETL step, say an edge list, and import this into a graph
processing framework to calculate betweenness centrality for each node. Once this
quantity is obtained, we can store it using a dictionary with the node ID as keys, then
use this as a node feature later on.

 
 
 

Figure 8.14 A visualized adjacency matrix of our social graph. Vertical and 
horizontal values refer to respective nodes.
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Now that we have our data, we want to make it ready for use in our selected GNN
framework. In this book, we use PyG, due to its robust suite of tools and flexibility in
handling complex graph data. However, most standard GNN packages have mecha-
nisms to import custom data into their frameworks. For this section, we’ll focus on
three modules within PyG:

 Data module (torch_geometric.data)—Allows inspection, manipulation, and
creation of data objects that are used by the PyG environment.

 Utils module (torch_geometric.utils)—Many useful methods. Helpful in this
section are methods that allow the quick import and export of graph data.

 Datasets module (torch_geometric.datasets)—Preloaded datasets, includ-
ing benchmark datasets, and datasets from influential papers in the field.

Let’s begin with the Datasets module. This module contains datasets that have already
been preprocessed and can readily be used by PyG’s methods. When starting with
PyG, having these datasets allows for easy experimentation without worrying about
creating a data pipeline. Similarly, by studying the codebase underlying these datasets,
we can also learn how to create our own custom datasets.

 At the end of the previous section, we converted our raw data into a standard for-
mat and loaded our new graphs into a graph-processing framework. Now, we want to
load our data into the PyG environment. Preprocessing in PyG has a few objectives:

 Creating data objects with multiple attributes from the level of nodes and edges
to the subgraph and graph level

 Combining different data sources into one object or set of related objects
 Converting data into objects that can be processed using GPUs
 Allowing splitting of training/testing/validation data
 Enabling batching of data for training

These objectives are fulfilled by a hierarchy of classes within the Data module:

 Data class—Creates graph objects. These objects can have optional built-in and
custom-made attributes.

Betweenness centrality
Betweenness centrality is a critical measure of node importance that quantifies the
tendency of a node to lie in the shortest paths from source to destination nodes.
Given a graph with n nodes, you could determine the shortest path between every
unique pair of nodes in this graph. We could take this set of shortest paths and look
for the presence of a particular node. If the node appears in all or most of these
paths, it has a high betweenness centrality and would be considered to be highly
influential. Conversely, if the node appears a few times (or only once) in the set of
shortest paths, it will have a low betweenness centrality, and a low influence.
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 Dataset and InMemoryDataset classes—Creates a repeatable data preprocessing
pipeline. You can start from raw data files and add custom filters and transfor-
mations to achieve your preprocessed data objects. Dataset objects are larger
than memory, while InMemoryDataset objects fit in memory.

 Dataloader class—Batches data objects for model training.

This is shown in figure 8.15, including how different data and dataset classes connect
to the dataloader.

There are two paths to preprocess data, one uses a dataset class and the other goes
without it. The advantage of using the dataset class is that it allows us to save the gen-
erated datasets and also preserve filtering and transformation details. Dataset objects
are flexible and can be modified to output variations of a dataset. On the other hand,
if your custom dataset is simple or generated on the fly, and you have no use for saving
the data or process long term, bypassing dataset objects may serve you well. So, in
summary, we have the following different data-related classes:

 Datasets objects—Preprocessed datasets for benchmarking or testing an algo-
rithm or architecture (not to be confused with Dataset—no “s” at the end—
objects).

 Data objects into iterator—Graph objects that are generated on the fly or for whom
there is no need to save.

 Dataset object—For graph objects that should be preserved, including the
data pipeline, filtering and transformations, input raw data files, and output

Submit to

Dataloader

Import

Files/

Objects

Create Data

Object(s)

Place Data

Objects in

Iterator

Import Files

Create Data

Object(s)

Create Dataset

Object

Raw Data

Files/Objects

Figure 8.15 Steps to preprocess data in PyG. From raw files, there are essentially two 
paths to prep data for ingestion by a PyG algorithm. The first path, shown here, directly 
creates an iterator of data instances, which is used by the dataloader. The second path 
mimics the first but performs this process within the dataloader class.
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processed data files. Not to be confused with Datasets (with “s” at the end)
objects. 

With those basics, let’s preprocess our social graph data. We’ll cover the following
cases:

 Convert into a data instance using NetworkX. For quick conversion from NetworkX
to PyG, ideal for ad hoc processing or when using NetworkX’s functionalities.

 Convert into a data instance using input files. Offers control over the data import
process, which is ideal for raw data and custom preprocessing requirements.

 Convert to dataset instance. For systematic, scalable, and reproducible data pre-
processing and management, especially for complex or reusable datasets.

 Convert data objects for use in dataloader without the dataset class. For scenarios
where simplicity and speed are prioritized over systematic data management
and preprocessing, or for on-the-fly and synthetic data.

First, we’ll import the needed modules from PyG in the following listing.

import torch
from torch_geometric.data import Data
from torch_geometric.data import InMemoryDataset
from torch_geometric import utils

CASE A: CREATE PYG DATA OBJECT USING THE NETWORKX OBJECT

In the previous sections, we’ve explored a graph expressed as a NetworkX graph object.
PyG’s util module has a method that can directly create a PyG data object from a
NetworkX graph object:

data = utils.from_networkx(social_graph)

The from_networkx method preserves nodes, edges, and their attributes, but it should
be checked to ensure the translation from one module to another went smoothly.

CASE B: CREATE PYG DATA OBJECT USING RAW FILES

For greater control over data import into PyG, we can start with raw files or files from
any stage of the ETL process. In our social graph case, we can begin with the edge list
file created earlier.

 Now, let’s review an example where we use code to process and convert our social
graph from an edge list text file into a format suitable for training a GNN model in
PyG. We prepare node features, labels, edges, and training/testing sets for use in the
PyG environment.

PART 1: IMPORT AND PREPARE GRAPH DATA

This part includes reading an edge list from a file to create a NetworkX graph, extract-
ing the list of nodes, creating mappings from node names to indices, and vice versa:

Listing 8.4 Required imports, covering data object creation
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social_graph = nx.read_edgelist('edge_list2.txt')  
        
list_of_nodes = list(set(list(social_graph)))  
indices_of_nodes = [list_of_nodes.index(x)\
 for x in list_of_nodes]   
 
node_to_index = dict(zip(list_of_nodes, indices_of_nodes))  
index_to_node = dict(zip(indices_of_nodes, list_of_nodes))

PART 2: PROCESS EDGES AND NODE FEATURES

This part focuses on converting the edges and node attributes into a format that can
be easily used with PyTorch for machine learning tasks:

list_edges = nx.convert.to_edgelist(social_graph)  
list_edges = list(list_edges)
named_edge_list_0 = [x[0] for x in list_edges]  
named_edge_list_1 = [x[1] for x in list_edges]
 
indexed_edge_list_0 = [node_to_index[x]\
 for x in named_edge_list_0]  
indexed_edge_list_1 = [node_to_index[x] for x in named_edge_list_1]
        
x = torch.FloatTensor([[1] for x in\ 
range(len(list_of_nodes))]) 
y = torch.FloatTensor([1]*974 + [0]*973)  
y = y.long() 

PART 3: PREPARE DATA FOR TRAINING AND TESTING

In this part, the dataset is prepared for training and testing by creating masks for data
splitting and combining all the processed data into a single PyTorch data object:

edge_index = torch.tensor([indexed_edge_list_0,\
 indexed_edge_list_1])   
        

An edge list is read from a
text file and used to create

a NetworkX graph. All unique nodes in 
the graph are then 
extracted and listed.

Indices for each 
node are also 
generated.

Two dictionaries are created to allow easy conversion between
node names and their respective indices, facilitating the

handling and manipulation of graph data.

A NetworkX
edge list object

is created.

It’s then transformed 
into two separate lists 
representing the source 
and destination nodes of 
each edge.

These lists are then 
indexed using the 
previously created 
node-to-index 
mapping.

The node features and labels 
are prepared using PyTorch 
tensor objects, assuming a 
simple scenario where all nodes 
have the same single feature. 

The node features and labels are prepared
using PyTorch tensor objects, assuming a

simple scenario where all nodes have
the same single feature.

The edge indices created in 
part 2 are converted into a 
PyTorch tensor. 
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train_mask = torch.zeros(len(list_of_nodes),\
 dtype=torch.uint8)  
train_mask[:int(0.8 * len(list_of_nodes))] = 1 #train only on the 80% nodes
test_mask = torch.zeros(len(list_of_nodes),\
 dtype=torch.uint8) #test on 20 % nodes 
test_mask[- int(0.2 * len(list_of_nodes)):] = 1
train_mask = train_mask.bool()
test_mask = test_mask.bool()
        
data = Data(x=x, y=y, edge_index=edge_index,\
 train_mask=train_mask, test_mask=test_mask)   

We’ve created a data object from an edgelist file. Such an object can be inspected
with PyG commands, though the set of commands is limited compared to a graph pro-
cessing library. Such a data object can also be further prepared so that it can be
accessed by a dataloader, which we’ll cover next. 

CASE C: CREATE PYG DATASET OBJECT USING CUSTOM CLASS AND INPUT FILES

If the previous listing is suitable for our purposes, and we want to use it repeatedly, a
preferable option is to create a permanent class that we can include for our pipeline.
This is what the dataset class does. 

 Let’s next create a dataset object, shown in listing 8.5. In this example, we name
our dataset MyOwnDataset and have it inherit from InMemoryDataset because our
social graph is small enough to sit in memory. As discussed earlier, for larger graphs,
data can be accessed from disk by having the dataset object inherit from Dataset
instead of InMemoryDataset.

 This first part of the code initiates the custom dataset class, inheriting properties
from the InMemoryDataset class. The constructor initializes the dataset, loads pro-
cessed data, and defines the properties for raw and processed filenames. The raw files
are kept empty as this example doesn’t require them, and the processed data is
fetched from a specified path.

class MyOwnDataset(InMemoryDataset):
    def __init__(self, root, \
    transform=None, pre_transform=None):\   
        super(MyOwnDataset, self).__init__(root,
    @property transform, pre_transform)
        self.data, self.slices = torch.load(self.processed_paths[0])

    def raw_file_names(self): 
        return []
    @property

Listing 8.5 Class to create a dataset object (part 1)

Masks for training and testing
datasets are created by splitting

the nodes into two separate
groups, ensuring that specific

portions of the data are used for
training and testing.

All the processed components, including node features, labels, edge
indices, and data masks, are then combined into a single PyTorch Data

object, preparing the data for subsequent machine learning tasks.

Initializes the dataset class. This cla
inherits from the InMemoryDataset
class. This init method creates data
and slices objects to be updated in 
the process method.

An optional method that specifies the location of the raw
files required for processing. For our more rudimentary 
example, we don’t make use of this but have included it 
for completeness. In later chapters, we’ll make use of 
this as our dataset becomes a bit more complex.
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    def processed_file_names(self):  
        return ['../test.dataset']

This segment of the code is for data downloading and processing. It reads an edge list
from a text file and converts it into a NetworkX graph. The nodes and edges of the
graph are then indexed and converted into tensors suitable for machine learning
tasks. The method downloaded is kept as a placeholder in case there’s a need to
download raw data in the future.

    def download(self):  
        # Download to `self.raw_dir`.
        pass

    def process(self):  
        # Read data into `Data` list.
        data_list = []
        
        eg = nx.read_edgelist('edge_list2.txt') 
        
        list_of_nodes = list(set(list(eg)))
        indices_of_nodes = [list_of_nodes.index(x) for x in list_of_nodes]

        node_to_index = dict(zip(list_of_nodes, indices_of_nodes))
        index_to_node = dict(zip(indices_of_nodes, list_of_nodes))
        
        list_edges = nx.convert.to_edgelist(eg)
        list_edges = list(list_edges)
        named_edge_list_0 = [x[0] for x in list_edges]
        named_edge_list_1 = [x[1] for x in list_edges]

        indexed_edge_list_0 = [node_to_index[x] for x in named_edge_list_0]
        indexed_edge_list_1 = [node_to_index[x] for x in named_edge_list_1]

This final part of the code is focused on preparing and saving the data for machine
learning models. It creates feature and label tensors, prepares the edge index, and
generates training and testing masks to split the dataset. The data is then collated and
saved in the processed path for easy retrieval during model training.

        x = torch.FloatTensor([[1] for x in range(len(list_of_nodes))])#
  [[] for x in xrange(n)]
        y = torch.FloatTensor([1]*974 + [0]*973)
        y = y.long()
        
        edge_index = torch.tensor([indexed_edge_list_0, indexed_edge_list_1])
        
        train_mask = torch.zeros(len(list_of_nodes), dtype=torch.uint8)
        train_mask[:int(0.8 * len(list_of_nodes))]\
 = 1 #train only on the 80% nodes

Listing 8.6 Class to create a dataset object (part 2)

Listing 8.7 Class to create a dataset object (part 3)

This method saves our 
generated dataset to disk. 

Allows raw data to be 
downloaded to a local disk.

The process method contains 
the preprocessing steps to create 
our data object, and then makes 
additional steps to partition our 
data for loading.
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        test_mask = torch.zeros(len(list_of_nodes), \
dtype=torch.uint8) #test on 20 % nodes 
        test_mask[- int(0.2 * len(list_of_nodes)):] = 1

        train_mask = train_mask.bool()
        test_mask = test_mask.bool()
        
        data_example = Data(x=x, y=y, edge_index=edge_index, \
train_mask=train_mask, test_mask=test_mask)

        data_list.append(data_example)          
        
        data, slices = self.collate(data_list)  
        torch.save((data, slices),\
 self.processed_paths[0])   

CASE D: CREATE PYG DATA OBJECTS FOR USE IN DATALOADER WITHOUT USE OF A DATASET OBJECT

Lastly, we explain how to bypass dataset object creation and have the dataloader
work directly with your data object, as illustrated in figure 8.15. In the PyG documen-
tation, there is a section that outlines how to do this.

 Just as in regular PyTorch, you don’t have to use datasets, for example, when you
want to create synthetic data on the fly without saving them explicitly to disk. In this
case, simply pass a regular Python list holding torch_geometric.data.Data objects
and pass them to torch_geometric.data.DataLoader:

from torch_geometric.data import Data, DataLoader

data_list = [Data(...), ..., Data(...)]
loader = DataLoader(data_list, batch_size=32)

In this chapter, we’ve covered the steps that go from project outline, through to con-
verting raw data into a format ready for GNNs. As we conclude this section, it’s
worth noting that every dataset is different. The procedures outlined in this discussion
provide a structural framework that serves as a starting point, not a one-size-fits-all
solution. In the final section, we turn to the subject of sourcing data to support
data projects.

8.4 Where to find graph data
To not start from scratch in developing a graph data model and schema for your prob-
lem, there are several sources of published models and schemas. They include indus-
try standard data models, published datasets, published semantic models (including

In this first simple use of a dataset 
class, we use a small dataset. In 
practice, we’ll process much larger 
datasets and wouldn’t do this all at 
once. We’d create examples of our 
data, then append them to a list. For 
our purposes (training on this data), 
pulling from a list object would be 
slow, so we take this iterable, and use
collate to combine the data examples
into one data object. The collate 
method also creates a dictionary 
named slices that is used to pull 
single samples from this data object.

Saves our
preprocessed

data to disk
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knowledge graphs), and academic papers. A set of example sources is provided in
table 8.2. 

Sourcing graph data
Details of different sources for graph-based data that can be used for GNN projects.

 From nongraph data—In this chapter, we assumed that the data lies in non-
graph sources and must be transformed into a graph format using ETL and
preprocessing. Having a schema can help guide such a transformation and
keep it ready for further analysis. 

 Existing graph datasets—The number of freely available graph datasets is
growing. Two GNN libraries we use in this book, Deep Graph Library (DGL) and
PyG, come with a number of benchmark datasets installed. Many such data-
sets are from influential academic papers. However, such datasets are small
scale, which limits reproducibility of results, and whose performance don’t
necessarily scale for large datasets.
A source of data that seeks to mitigate the problems of earlier benchmark
datasets in this space is Open Graph Benchmark (OGB). This initiative pro-
vides access to a variety of real-world datasets, of varying scales. OGB also
publishes performance benchmarks by learning task. Table 8.2 lists a few
repositories of graph datasets.

 From generation—Many graph processing frameworks and graph databases
allow the generation of random graphs using a number of algorithms. Though
random, depending on the generating algorithm, the resulting graph will have
characteristics that are predictable.

Table 8.2 Graph datasets and semantic models

Source Type Problem Domains URL

Open Graph 
Benchmark (OGB)

Graph datasets and 
benchmarks

Social networks, drug 
discovery

https://ogb.stanford.edu/

GraphChallenge 
Datasets

Graph datasets Network science, 
biology

https://graphchallenge
.mit.edu/data-sets

Network 
Repository

Graph datasets Network science, 
bioinformatics, machine 
learning, data mining, 
physics, and social 
science

http://networkrepository
.com/

SNAP Datasets Graph datasets Social networks, net-
work science, road net-
works, commercial 
networks, finance

http://snap.stanford.edu/
data/

Schema.org Semantic data model Internet web pages https://schema.org/

Wikidata Semantic data model Wikipedia pages www.wikidata.org/

https://ogb.stanford.edu/
https://graphchallenge.mit.edu/data-sets
https://graphchallenge.mit.edu/data-sets
http://networkrepository.com/
http://networkrepository.com/
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
https://schema.org/
http://www.wikidata.org/
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Public graph datasets also exist in several places. Published datasets have accessible
data, with summary statistics. Often, however, they lack explicit schemas, conceptual
or otherwise. To derive the dataset’s entities, relations, rules, and constraints, query-
ing the data becomes necessary.

 For semantic models based on property, RDF, and other data models, there are
some general datasets, and others are targeted to particular industries and verticals.
Such references seldom use graph-centric terms (e.g., node, vertex, and edge) but will
use terms related to semantics and ontologies (e.g., entity, relationship, links). Unlike
the graph datasets, the semantic models offer data frameworks, not the data itself.

 Reference papers and published schemas can provide ideas and templates that can
help in developing your schema. There are a few use cases targeted toward industry
verticals that both represent a situation using graphs and use graph algorithms, includ-
ing GNNs, to solve a relevant problem. Transaction fraud in financial institutions,
molecular fingerprinting in chemical engineering, and page rank in social networks
are a few examples. Perusing such existing work can provide a boost to development
efforts. On the other hand, often such published work is done for academic, not indus-
try goals. A network that is developed to prove an academic point or make empirical
observations may not have qualities amenable to an enterprise system that must be
maintained and be used on dirty and dynamic data.

Summary
 Planning for a graph learning project involves more steps than in traditional

machine learning projects. The objectives and requirements will influence the
design of the system, data models, and GNN architecture. The project includes
creating robust graph data models, understanding and transforming raw data,
and ensuring that the models effectively represent the complex relationships
within the recruitment landscape.

 One important step is creating the data model and schema for your data. These
processes are essential to avoid technical debt. This involves designing the ele-
ments, relationships, and constraints; running queries; analyzing results; mak-
ing adjustments; and validating against criteria to ensure the model’s readiness
for complex queries and machine learning applications. A graph data model
will be refined through iterative testing and refactoring to ensure it effectively
supports the analysis of complex relationships within the recruitment data.

Financial Industry 
Business Ontology

Semantic data model Finance https://github.com/
edmcouncil/fibo

Bioportal List of medical seman-
tic models

Medical https://bioportal.bioontology
.org/ontologies/

Table 8.2 Graph datasets and semantic models (continued)

Source Type Problem Domains URL

https://github.com/edmcouncil/fibo
https://github.com/edmcouncil/fibo
https://bioportal.bioontology.org/ontologies/
https://bioportal.bioontology.org/ontologies/
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 There are many encoding and serialization options for keeping data in memory
or in raw files, including language and system-agnostic formats such as JSON,
CSV, and XML. Language-specific formats, such as Python’s Pickle, and system-
driven formats from specific software and libraries such as SNAP, NetworkX,
and Gephi, are also mentioned. For big data, Avro and matrix-based formats
(sparse column matrix, sparse row matrix, and matrix market format) are high-
lighted as efficient options for handling large datasets.

 A data pipeline can start with raw data that undergoes exploratory analysis and
preprocessing to be usable by GNN libraries such as PyG. The raw data is trans-
formed into standard formats such as edge lists or adjacency matrices, ensuring
consistency and usability for different problems.

 Graph processing frameworks such as NetworkX are used for light exploratory
data analysis (EDA) and visualization. Graph objects, such as adjacency and
edge lists, are loaded into NetworkX. The visual representation and statistical
analysis, such as the number of nodes, edges, and connected components, are
derived to understand the graph’s structure and complexity.

 The PyG library is used for preprocessing, involving the conversion of data into
formats that can be easily manipulated and trained with. Data objects are created
with multiple attributes at various levels, enabling GPU processing and facilitating
the splitting of training, testing, and validation data. The choice between using
dataset objects or bypassing them depends on the need for saving data and the
complexity of the dataset.

 There are numerous repositories of ready-to-use graph datasets and semantic
models covering various domains, such as social networks and drug discovery.
However, while these datasets are useful for learning and benchmarking, they
are often small-scale and may not be directly applicable for large, real-world
problems.

 While public graph datasets and semantic models provide a starting point, they
often lack explicit schemas requiring additional work to derive entities, rela-
tions, and constraints. Additionally, while academic papers offer templates for
developing schemas, they are typically designed for academic purposes and may
not be directly transferable to real-world, industry-specific applications with
dynamic and dirty data.



appendix A
Discovering graphs

In this appendix, we explore the theory and implementations of graphs that are
most pertinent to using the GNNs covered in the rest of the book. The goal is to
help those of you who are less familiar with graphs learn enough to follow the book
(if you’re familiar with graphs, you can skip this appendix). We establish basic defi-
nitions, concepts, and nomenclature, and then survey how the theory is realized in
real systems. This foundation is not only necessary to follow the material in this
book but also for building the insights that make architecting custom systems and
troubleshooting errors easier. 

 Additionally, in a rapidly evolving field, the ability to quickly absorb new aca-
demic and technical literature is crucial for staying up to date with the state of the
art. We also provide the basic background to pick up the essence of relevant pub-
lished papers. In this appendix, we’ll use a running example of a social networking
dataset to demonstrate the concepts. This is a dataset of more than 1,900 profes-
sionals and their industry relationships. Figure A.1 visualizes this graph (generated
using Graphistry).
321
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A.1 Graph fundamentals
Let’s start with some definitions, and then we’ll see how the concepts work.

Key terms
Graph—A data type consisting of nodes and edges. 

Node—Also called a vertex or point, a node is an endpoint in a graph. They are con-
nected by edges.

Edge—Also called a link or relationship, an edge connects nodes. They can be directed
or undirected.

Figure A.1 A stylized visualization of the example social network, consisting of industry professionals and 
their relationships. The nodes (dots) are the professionals, and the edges (lines) denote a relationship 
between people. In this visualization, created using Graphistry, the left image shows an edge diverge out 
of the frame (bottom right). The right image is the entire graph, showing the cut-off edges and nodes. 

Directed edge

Undirected edge

Self-loops

Two parallel edges

Loops and three types of edges
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These concepts give us the tools to create the simplest graphs. With a simple graph
created from these concepts, we could derive network properties explained in the fol-
lowing section. 

 While real-world graphs are complex, simple graphs can often effectively represent
them for various purposes. For example, though our social graph data contains node
features (covered in section A.1.2), to create the visualization in figure A.1, we only
used node and edge information.

A.1.1 Graph properties

In the following subsections, we discuss some of the more important properties of
graphs. Many of the software programs and databases in the graph ecosystem
(described in section A.3) should have the capability to compute some or all of these
properties.

SIZE/ORDER

We’re often interested in the overall number of nodes and edges in a graph. Formal
names for these properties are size (the number of edges) and order (the number of
nodes). In our social graph, the number of nodes is 1,933, and the number of edges is
12,239.

DEGREE DISTRIBUTION

A degree distribution is simply the distribution of the degrees of all the nodes in a
graph. This can be shown as a histogram, as in figure A.2.

 The degree of a node is the number of adjacent nodes in an undirected graph. For
directed graphs, there are two types of degrees a node can have: an in-degree for edges
directed to the node and an out-degree for edges directed outward from the node. Self-
loops often are given a count of 2 when calculating degree. If edges are given weights,
a weighted degree can also account for these weights.

Directed edge—A directed edge, usually represented by an arrow, denotes a one-way
relationship or flow from one node to another.

Undirected edge—An undirected edge has no direction. In such an edge, a relation-
ship or flow can go in either direction.

Adjacent—The property that two nodes are directly connected via an edge. Such
nodes are said to be joined.

Self-loop—An edge that connects a node to itself. Such edges can be directed or
undirected.

Parallel edges—Multiple edges that connect the same two nodes. 

Weights—One important attribute of an edge is weight, which is a numerical value
assigned to an edge. Such an attribute can describe the intensity of the connection, or
some other real-world value, such as length (if a graph modeled cities on a road map). 
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Related to the concept of a degree is that of a node’s neighborhood. For a given node,
its adjacent nodes are also called its neighbors. The set of all its neighbors is called its
neighborhood. The number of vertices in a node’s neighborhood is equal to that node’s
degree.

CONNECTEDNESS

A graph is a set of nodes and edges. In general, however, there is no condition that
says for an undirected graph, every node can be reached by any other node within the
same network. It can happen that within the same graph, sets of nodes are utterly sep-
arated from one another; that is, no edge links them. 

 An undirected graph where any node can reach any other node is called a con-
nected graph. It may seem obvious that all graphs must be connected, but this is often
not the case. Graphs that have discontinuities (where a node or set of nodes are
unlinked to the rest of the graph) are disconnected graphs. Another way to think about
this is that in a connected graph, there is a path or walk whereby every node can reach
every other node in the graph. For a disconnected graph, each disconnected piece is
called a component. For a directed graph, where it’s not always possible to reach any
node from any other node, a strongly connected graph is one where every node can reach
every other node.

 As an example, the human population can be considered a disconnected social
graph if we consider every individual human as a node and our communication chan-
nels as edges. While most of the population can be said to be connected by modern
communication channels, there are hermits who chose to live off the grid and isolated
hunter-gatherer tribes that reject contact with the rest of the world. In other use cases,
there are often discontinuities in the network and its data.

 Examining our social graph, we see it’s disconnected with a large component that
contains most of the nodes. Figures A.3 and A.4 show the entire graph, and the large
connected component. If we focus on the large connected component, we find that
the number of nodes is 1,698 and the number of edges is 12,222.
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GRAPH TRAVERSALS

In a graph, we can imagine traveling from a given node a to a second node b. Such a
trip may require passing only one edge or passing several edges and nodes. Such a trip
is called a traversal, or a walk, among other names. A traversal from one node to
another is sometimes called a hop. Traversing a series of nodes is said to be done in n
hops. A walk can be open or closed. Open walks have an ending node that is different
from the starting node. A closed walk starts and ends with the same node. 

 A path is a walk where no node is encountered more than once. A cycle is a closed
path (with the exception of the starting node, which is also the ending node, no
node is encountered twice). A trail is a walk where no edge is encountered more
than once, and a circuit is a closed trail. Examples of these different types of paths
are given in figure A.5. Note how the number of steps (or hops) changes between
different types of paths.

 Imagine that for a given pair of nodes, we could find walks and paths between
them. Of the paths we could navigate, there will be the shortest one (or maybe more
than one path will tie for shortest). The length of this path is called the distance or
shortest path length. 

Figure A.3 Our entire social graph, 
which is disconnected. (NetworkX was 
used to generate this figure.) We observe 
a large connected component at the 
center, surrounded by disconnected 
nodes and small components consisting 
of two to three nodes. 

Figure A.4 The connected component of 
the social graph. (NetworkX was used to 
generate this figure.) Compare this to 
figure A.1, which is the same graph 
visualized using Graphistry. Differences in 
the parameters used in the algorithms, as 
well as visual features, account for the 
distinctiveness of the two figures.
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If we zoom out and examine the entire graph and its node pairs, we can list all the
shortest path lengths. One of these distances will be the longest (or more than one
may tie for longest). The largest distance is the diameter of the graph. The diameter is
often used to characterize and compare graphs. 

Walk: Traversal along any set of nodes and edges
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Path: Traversal with no repeated nodes
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Cycle: A closed path
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Trail: Traversal with no repeated edges
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Circuit: A closed trail
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Figure A.5 Five types of paths
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 If we take our list of distances and average them, we’ll generate the average path
length of the graph. Average path length is another important measure for graphs.
Both average path length and diameter give an indication of the density of the graph.
Higher values for these metrics imply more connections, which in turn allow a greater
variety of paths, both longer and shorter. 

 For our social graph, the diameter of our largest component is 10. The diameter is
undefined for the entire graph, as it’s unconnected. 

SUBGRAPHS

Consider a graph of nodes and edges. A subgraph is a subset of these nodes and edges.
Subgraphs are of importance when these neighborhoods in the graph have properties
that are distinct from other locations in the graph. Subgraphs occur in connected and
disconnected graphs. A component of a disconnected graph is a subgraph.

CLUSTERING COEFFICIENT

A node may have a high degree, but how well connected is its neighborhood? We can
imagine an apartment building where everyone knows the landlord, but no one
knows their neighbors (what a sad place!). The landlord would have a clustering coef-
ficient of 0. At the other extreme, we could have an apartment where the landlord
knows all the tenants, and every tenant knows every other tenant. Then, the landlord
would have a clustering coefficient of 1 (such a situation, where all the nodes in a net-
work are connected to every other node is called a complete graph or fully connected
graph). Of course, there will be intermediate cases where only some of the tenants
know one another, and these situations will have coefficients between 0 and 1.

The dimension of a graph 
In machine learning and engineering in general, dimension is used in several ways.
This term can be confusing as a result. 

Even within the topic of graphs, the term is used in a few ways in articles and aca-
demic literature. However, the term is often not explicitly defined or clarified. Thus,
in the following list, we attempt to deconstruct the meaning of this term:

 Size/shape of datasets—In this case, dimension refers to the number of fea-
tures in a dataset. Low-dimensional datasets are implied to be small enough
to visualize (i.e., two or three features) or small enough to be computation-
ally viable.

 Mathematical definitions—In math, the dimension of a graph has more strict
definitions. In linear algebra, graphs can be represented in vector spaces,
and the dimension is an attribute of these vector spaces [1]. 

 Geometric definition—There is also a geometric definition of a graph’s dimen-
sion. This definition relates a graph’s dimension to the least number of
Euclidean dimensions that will allow a graph’s edges to be of unit size 1 [1]. 
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A.1.2 Characteristics of nodes and edges

In the most basic type of graph, we have a collection of nodes and edges, without parallel
edges or self-loops. For this basic graph, we have a geometric structure only. While even
this basic graph structure is useful, often more complexity is desired to properly model a
situation for real-world problems and use cases. For example, we can do the following:

1 Reduce the geometric restrictions discussed earlier. Explicitly, these restrictions
are as follows:
– Each edge is incident to two nodes, one on each end of the edge.
– Between two nodes, only one edge can exist.
– No self-loops are used.
With these restrictions relaxed, we’re able to model more situations at the cost
of more complex graphs.

2 Add properties to our graph elements (nodes, edges, the graph itself). A property
or feature is data tied to a specific element. Depending on the context, terms
such as labels, attributes, and decorators are used in place of properties.

In this section and the next, we’ll discuss the characteristics and variants of nodes,
edges, and entire graphs. 

NODE PROPERTIES

In the following list, we outline some of the different properties that nodes might con-
tain. These become features in many data science or GNN tasks:

 Names, IDs, and unique identifiers—A name or an ID is a unique identifier. Many
graph systems will either assign an identifier such as an index to a node, or allow the
user to specify an ID. In our social graph, each node has a unique alphanumeric ID.

 Labels—Within a graph, nodes may fall within certain classes or groups. For
example, a graph modeling a social network may group people by their country
of residence (USA, PRC, Nigeria) or their level of activity within the network
(frequent user, occasional user). In this way, in contrast to the unique identifi-
ers explained earlier, we’d expect several nodes to share the same label.

 Properties/attributes/features—Properties that aren’t IDs or labels are usually
called attributes or features. While such properties don’t have to be unique to a
node, they don’t describe a node class either. Properties can be based on struc-
tural or nonstructural qualities. 

 Structural/topological properties—Intrinsic characteristics of a node are related to
the node’s topological properties and the geometrical structure of the graph in
proximity to the node. Two examples are listed here: 
– A node’s degree, which, as we learned, is the number of incident edges it has.
– A node’s centrality, which is a measure of how important a node is relative to

the nodes in its neighborhood.
By employing graph analytical methods (described in section A.4) characteris-
tics of nodes, relative to their local environment, can be identified. These can
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be incorporated into certain GNN problems as features. Node embeddings
such as those generated by transductive methods (chapter 2) are another exam-
ple of a property based on the graph’s local structure.

 Nonstructural properties—These are often based on real-world attributes. Taking
the example of our social graph, we have two categorical properties: a person’s
job category (e.g., scientist, marketer, administrator) and the type of company
they work for (e.g., medical, transportation, consulting). These examples are
categorical attributes. It’s possible to have numerical attributes, such as years of
experience or average number of direct reports in all current and past roles.

 Edge properties—Properties for edges mirror those for nodes. The most often used
and important edge property is that of the edge weight, described earlier. 

EDGE VARIATIONS

Unlike nodes, there are a few geometric variants of edges that can be used to make a
graph model more descriptive.

 Parallel edges—Meaning more than one edge between two nodes u and v.
 Directionality—Edges can have no direction or one direction. Because nodes u

and v can have parallel edges connecting them, it’s possible to have two edges
with opposite directionality or multiple edges with some combination of direc-
tions or undirectionality.

 Bidirectionality—The case where between two nodes, both directions are repre-
sented in the respective edges. In practice, this term is used in a few ways:
– To describe nondirected edges, or simple edges.
– To describe two edges that have opposite directions (shown in figure A.6).

– To describe an edge that has a direction at each end. This usage, while popu-
lar in the literature, is fairly rare in practical systems at the time of writing.

 Self-loops—Discussed previously, a self-loop, or loop, is the case where both ends
of an edge connect to the same node. Where would one encounter a self-loop

Figure A.6 From top to bottom, between 
two nodes, an example of an undirected 
edge, a directed edge from left to right, a 
directed edge from right to left, and two 
directed edges traversing both directions 
(bidirectionality)
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in the real world? For our social graph, let’s keep all the nodes, and consider a
case where an edge would be an email sent from one professional to another.
Sometimes, people send emails to themselves (for reminders). For such a sce-
nario, an email to oneself could be modeled as a self-loop.

A.1.3 Categories of graphs

Different categories of graphs depend on the node and edge characteristics we’ve just
described. Following are the graph categories:

 Simple graph—A graph whose edges can’t be parallel edges or self-loops. Simple
graphs can be connected or disconnected, as well as directed.

 Weighted graph—A graph that uses weights. Our social graph has no weights;
another way to express having no weights is to set all weights to 1 or 0. 

 Multigraphs—A graph that is permitted to have multiple edges between any two
nodes and multiple self-loops for any one node. A simple graph could be a spe-
cial case of a multigraph if we’re working within a problem where we could add
more edges and self-loops to it.

 Di-graphs—Another term for a directed graph.
 K-partite graphs—In many graphs, we may have a situation where we have two or

more groups of nodes, where edges are only allowed between groups and not
between nodes of the same group. “Partite” refers to the partitions of node
groups, and “k” refers to the number of those partitions. 

 Monopartite graph—A graph in which there is only one group of nodes and one
group of edges. A monopartite social graph could consist of only “Texan” nodes
connected with “work colleague” edges. For example, in a social graph, nodes
can belong to “New Yorkers” or “Texans” groups, and relationships can belong
to “friend” or “work colleague” groups.

 Bipartite (or bi-graph) graph—A graph that has two node partitions within a graph.
Nodes of one group can only connect to nodes of a second type and not to nodes
within their own group. In our social graph example, nodes can belong to “New
Yorkers” or “Texans” groups, and relationships can belong to “friend” or “work
colleague” groups. In this graph, no New Yorkers would be adjacent to other New
Yorkers, and the same for Texans. This is shown in figure A.7. 

Figure A.7 A bipartite graph. 
There are two types of nodes 
(upper and lower row of 
circles). In a bipartite graph, 
nodes can’t be connected to 
nodes of the same type (those 
in the same row). This is also 
an example of a heterogeneous 
graph.
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For more than three partitions, the requirement that adjacent nodes can’t be
the same type still holds. In practice, k can be a large number.

 Trees—A tree is a well-studied data structure in machine learning and is a spe-
cial case of a graph. It’s a connected graph without cycles. Another way to
describe a graph without cycles is acyclic. In the data science and deep learning
worlds, a well-known example is the directed acyclic graph (DAG), used in
designing and governing data workflows.

 Hypergraphs—Up to now, our graphs have consisted of edges that connect to
two nodes or one node (a self-loop). For a hypergraph, an edge can be incident
to more than two nodes. These data structures have a range of applications,
including ones that involve the use of GNNs. This is shown in figure A.8. 

 Heterogeneous graphs—A heterogeneous graph has multiple node and edge
types, while a multirelational graph has multiple edge types.
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Figure A.8 One undirected hypergraph, illustrated in two ways. On the left, we have a graph whose edges are 
represented by shaded areas and marked by letters, and whose vertices are dots, marked by numbers. On the right, 
we have a graph whose edge lines (marked by letters) connect up to three nodes (circles marked by numbers). 
Node 8 has no edge. Node 7 has a self-loop.
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A.2 Graph representations
Now that we have a conceptual idea of what graphs are, we move on to how to work
with them. First, we focus on data structures most relevant to building graph algo-
rithms and storing graph data. We’ll see that some of these structures, particularly the
adjacency matrix, play a prominent role in the GNN algorithms we study in the bulk
of this book.

 Next, we’ll examine a few graph data models. These are important in designing
and managing how databases and other data systems deal with network data. Lastly,
we’ll briefly take a look at how graph data is exposed to analysts and engineers via
APIs and query languages.

A.2.1 Basic graph data structures

There are a few important ways to represent graphs that can be ported to a computa-
tional environment:

 Adjacency matrix—A node-to-node matrix.
 Incidence matrix—An edge-to-node matrix.
 Edge lists—A list of edges by their nodes.
 Adjacency lists—Lists of each node’s adjacent nodes.
 Degree matrix—Node-to-node matrix of degree values.
 Laplacian matrix—The degree matrix minus the adjacency matrix (D-A). This is

useful in spectral theory.

These are by no means the only ways to represent a graph, but from a survey of the lit-
erature, software, storage formats, and libraries, these are the most prevalent. In prac-
tice, a graph may not be permanently stored as one of these structures, but to execute
a needed operation, a graph or subgraph may be transformed from one representa-
tion to another.

 What representations are used depends on many factors that should be weighed in
planning. These factors include the following:

 Size of graph—How many vertices and edges does the graph contain, and how
much are these expected to scale? 

 Density of graph—Is the graph sparse or dense? We’ll touch on these terms in the
next subsection.

 Complexity of the graph’s structure—Is the graph closer to a simple graph, or one
that uses one or more of the variations discussed previously?

 Algorithms to be used—For a given algorithm, a given data structure may perform
relatively weakly or strongly compared to others. In the following subsections,
for each structure, we’ll touch on two simple algorithms to compare.

 Costs to do CRUD (create, read, updated, delete) operations—How will you modify your
graph (including creating, reading, updating, or deleting nodes, edges, and their
attributes) over the course of your operations and how frequently will you do so? 
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In many data projects, transformation from one data structure to another is common
to accommodate particular operations. So, it’s normal to employ two or more of the
previously mentioned data structures in a project. In this case, understanding the
compute effort to execute the transformation is key. For the most popular structures,
graph libraries allow methods that allow seamless transformations, but given the con-
siderations listed previously, executing these transformations could take unexpected
time or cost.

 For the following discussion, we’ll talk about how these data structures are used to
store topological information about graphs. The only attributes we’ll consider are
node IDs and edge weights. To illustrate these concepts, let’s use the weighted graph,
consisting of five nodes, as shown in figure A.9. Circles indicate nodes with their IDs;
rectangles are the edge weights.

Let’s now dive into those six popular ways of representing graphs so they can be used
computationally.

ADJACENCY MATRIX

For a graph with n nodes, an adjacency matrix represents the graph as an N × N
matrix format, where each row or column describes the edge between two nodes.
For our example graph, shown previously in figure A.9, we have five columns and
five rows. These rows and columns are labeled for each node. Cells of the matrix
denote adjacency. 

 Adjacency matrices can be used for simple directed and undirected graphs. They
can also be used for graphs with self-loops. In an unweighted graph, each cell is
either 0 (no adjacency) or 1 (adjacency). For a weighted graph, the values in the
cells are the edge weights. For unweighted parallel edges, the values of the cells are
the number of edges.

 For our example, a weighted, undirected graph, the corresponding adjacency
matrix is shown in table A.1. Because our graph is undirected, the adjacency matrix is
symmetric. For directed graphs, symmetry is possible but not guaranteed. 

 
 
 

2
3

1

4

0

3

3

11
5

Figure A.9 An example graph with 
different weighted edges and labeled 
nodes from 0 to 4
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By inspecting this matrix, we can get a quick visual understanding of the characteris-
tics of the matrix. We can see, for example, how many degrees node 1 has and get a
general idea of the distribution of the degrees. We also see that there are more empty
spaces (cells with a 0 value) than edges. This ease of using the matrix to draw quick
insights for small graphs is one advantage of adjacency matrices. Even for large
graphs, plotting the adjacency matrix can indicate certain subgraph structures.

 Adjacency matrices, and matrix representations in general, allow you to analyze
graphs by using linear algebra. One relevant example is spectral graph theory (which
underlies a few GNN algorithms).

 Adjacency matrices are straightforward to implement in Python. The matrix in our
example can be created using a list of lists, or a NumPy array:

>>import numpy as np
>>arr = np.array([[0, 0, 0, 3, 3],
                    [0, 0, 0, 1, 1],
                    [0, 0, 0, 3, 0], 
                    [3, 1, 3, 0, 0],
                    [5, 1, 0, 0, 0]])

With our adjacency matrix as a NumPy array, let’s explore another property of our
graph. From our visual inspection of our matrix, we noticed many more zero values
than nonzero values. This makes it a sparse matrix. Sparse matrices, that is, matrices
with a large proportion of zero values, can take up unnecessary storage or memory
space and increase calculation times. Dense matrices, contrarily, contain a large propor-
tion of nonzero matrices. The following determines the sparsity of our matrix:

>>sparsity = 1.0 - ( np.count_nonzero(arr) / arr.size )
>>print(sparsity)
>> 0.6

So, our matrix has a sparsity of 0.6, meaning 60% of the values in this matrix are zeros. 
 
 
 

Table A.1 An adjacency matrix for the graph in figure A.9

0 1 2 3 4

0 0 0 0 3 5

1 0 0 0 1 1

2 0 0 0 3 0

3 3 1 3 0 0

4 5 1 0 0 0
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Now, think of a graph that has not five, but millions or billions of nodes. Such graphs
exist in the real world, and quite often the sparsity can be orders of magnitudes less
than 0.6. For undirected simple graphs, the adjacency matrix is symmetric, so only
half the storage is needed. Most of the memory or storage containing the adjacency
matrix would be devoted to zero values. Thus, the high sparsity of this data structure
leads to memory inefficiencies.

 In terms of complexity, for a simple graph, the space complexity would be O(n2),
for undirected simple graphs. For an undirected graph, due to the symmetry, the
space complexity would be O(n(n–1)/2).

 For time complexity, this of course depends on the task or the algorithm. Let’s
look at two rudimentary tasks that we’ll also address for adjacency list and edge lists:

 Checking the existence of an edge between a particular pair of nodes
 Finding the neighbors of a node

For the first task, we simply check the row and column corresponding to those nodes.
This would take O(1) time. For the second, we need to check every item in that
node’s row; this would take O(deg(n)) time, where deg(n) is the degree of the node.

 To summarize, the advantages of adjacency matrices are that they can quickly check
connections between nodes and are easy to visually interpret. The downsides are that
they are less space-efficient for sparse matrices. The computational tradeoffs depend on
your algorithm. They shine in cases where we have small and dense graphs.

Sparsity using node degree
Another way to think about sparsity is in terms of node degree. Let’s derive the spar-
sity value just shown from the perspective of the node degree. 

For a simple, undirected graph of n nodes, each node can make at most n-1 connec-
tions, and thus have a maximum degree of n-1. The maximum number of edges can
be calculated using combinatorics: because each edge represents a pair of nodes,
for a set of n nodes, the maximum number of edges is “n choose 2”, that is, (n C 2)
or n(n – 1)/2. However, for our small matrix, we have a directed graph, which is clear
because the adjacency matrix isn’t symmetric. This means that both directions count
separately and need to times by 2. Hence, for our small matrix, the maximum number
of possible edges is 5(5 – 1) = 20. The density of a graph is defined as the actual
number of edges, e, over all possible edges, and sparsity can then be defined as
1 – density. In our example, this leads to a quantity that disagrees with what was
calculated using the matrix alone, namely (1 – 10/20) = 0.5, which is not equal to
0.6 in the preceding code snippet. This is because we haven’t considered self-loops,
which is standard practice for graph theory. If we included self-loops, we would have
five additional possible edges (or 5^2), resulting in (1 – 10/25), or 0.6, matching the
value in the earlier code. This highlights that care needs to be taken when reporting
on the sparsity of a graph. 
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INCIDENCE MATRIX

While the adjacency matrix has a row and column for every node, an incidence matrix
represents every edge as a column and every node as a row. Using the same graph
shown earlier in figure A.9, we can construct an incidence matrix, which we show in
table A.2.

An incidence matrix can represent wider variations of graph types than an adjacency
matrix. Multigraphs and hypergraphs are straightforward to express with this data
structure.

 How does the incidence matrix perform with respect to space and time? To store
the data of a simple graph, the incidence matrix has a space complexity of O(|E| *
|V|), where |V| is the number of nodes (V for vertices), and |E| is the number of
edges. Thus, it’s superior to the adjacency matrix for graphs with fewer edges than
nodes, including sparse matrices. 

 To get an idea of time complexity, we turn to our two simple tasks: checking for an
edge, and finding a node’s neighbors. To check the existence of an edge, an inci-
dence matrix has a time complexity of O(|E| * |V|), far slower than the adjacency
matrix, which does this in constant time. To find the neighbors of a node, an inci-
dence matrix also takes O(|E| * |V|). 

 Overall, incidence matrices have space advantages when used with sparse matrices.
For time performance, they have slow performance on the simple tasks we covered.
The overall advantage of using incidence matrices is for unambiguously representing
complex graphs, such as multigraphs and hypergraphs. 

ADJACENCY LISTS

In an adjacency list, the aim is to show which vertices each node is adjacent to. So, for n
nodes, we have n lists of neighbors corresponding to each node. Depending on what
data structures are used for the lists, properties may also be included in the summary.
For our example, a simple adjacency list is shown in figure A.10.

 
 

Table A.2 Incidence matrix for the example graph in figure A.9

0 1 2 3 4

0 0 3 5 0 0

1 0 0 0 1 1

2 3 0 0 0 0

3 3 3 0 1 0

4 0 0 5 0 1
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Such an adjacency list can be accomplished in python using a dictionary with each
node as the keys, and lists of the adjacent nodes as values:

{ 0 : [ 3, 4],
1 : [3, 4],
2 : [3],
3 : [0, 1, 2],
4 : [0, 1] }

We can improve on the dictionary values to allow for the inclusion of the weights of
the neighbors:

{ 0 : [ (3, 3), (4, 5)],
1 : [(3, 1), (4, 1)],
2 : [(3, 3)],
3 : [(0, 3), (1, 1), (2, 3)],
4 : [(0, 5) , (1, 1)] }

For undirected graphs, the set of nodes doesn’t have to be ordered. Because the adja-
cency list doesn’t devote space to node pairs that aren’t neighbors, we see that adja-
cency lists lack the sparsity problems of adjacency matrices. So, to store this data
structure, we have a space complexity of O(n + v), where n is the number of nodes,
and v is the number of edges.

 Going back to the two computational tasks, checking the existence of an edge
(task 1) would take O(deg(node)) time, where deg(node) is the degree of either
node. For this, we simply check every item in that node’s list, where for the worst case,
we’d have to check them all. For task 2, finding a node’s neighbors would also take
O(deg(node)) time, because we have to inspect every item in that node’s list whose
length is the node’s degree.

 Let’s summarize the tradeoffs of an adjacency list. The advantages are that they are
relatively efficient in terms of storage because only edge relationships are stored. This
means a sparse matrix would take up less space stored as an adjacency list than as an
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Figure A.10 Our example graph and 
its adjacency list
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adjacency matrix. Computationally, the tradeoffs depend on the algorithm you’re
running and the type of graph you’re using as input data. 

EDGE LISTS

Compared to the preceding two representations, edge lists are relatively simple. They
consist of a set of doubles (two nodes) or triples (two nodes and an edge weight).
These identify a unique edge thusly:  

 Node, node (edge weight), for an undirected graph
 Source node, destination node (edge weight), for a directed graph

Edge lists can represent single, unconnected nodes. For our example graph, the edge
list would be the following:

{ 0, 3, 3 }
{ 0, 4, 5 }
{ 1, 3, 1 }
{ 1, 4, 1 }
{ 2, 3, 3 }

In Python, we can create this as a set of tuples:

>> edge_list = {( 0, 3, 3 ), ( 0, 4, 5 ), \
( 1, 3, 1 ), ( 1, 4, 1 ), ( 2, 3, 3 ) }

On performance, for storage, the space complexity of an edge list is O(e), where e is
the number of edges. Regarding our two tasks shown previously, to establish the exis-
tence of a particular edge will have a time complexity of O(e), assuming an unordered
edge list. To discover all the neighbors of a node, O(e) is the space complexity. In each
case, we have to go through the edges in the list one by one to check for the edge or
the node’s neighbor. So, from a compute performance point of view, edge lists have a
disadvantage compared to the other two data structures, especially for executing more
complex algorithms. 

 However, another advantage of edge lists is that they are more compact than adja-
cency lists or adjacency matrices. Additionally, they are simple to both create and
interpret. For example, we could store an edge list as a text file where each line only
consists of two identifiers separated by a space. For many systems and databases, edge
lists in CSV or text files are the default option to serialize data. 

The Laplacian matrix
One data representation of a graph that is highly valuable in analyzing graphs is the
Laplacian matrix, as mentioned earlier. This matrix is key to the development of graph
spectral theory, which is in turn critical to the development of spectral-based GNN
methods. 
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A.2.2 Relational databases

We’re steadily marching from theory to implementation. In the previous section, we
reviewed common data structures used to represent graphs and their tradeoffs.
Graphs can be implemented in these structures from scratch in your preferred pro-
gramming language and are also implemented in popular graph processing libraries. 

 With the listed data structures, we have a variety of ways to implement the struc-
tural information in graphs. But graphs and their elements often come with useful
attributes and metadata. 

 A relational database is an organized way to represent the structural information,
attributes, and metadata of a graph. Very much related to this is the notion of a
schema, which is a framework that explicitly defines the elements that make up a graph

To produce the Laplacian matrix, we subtract the adjacency matrix from the degree
matrix (D – A). The degree matrix is a node-to-node matrix whose values are the degree
of a particular node. The degree matrix for our example graph is given in the first table
and the Laplacian matrix follows. 

In practice, Laplacian matrices aren’t used for storage or as a basis for graph oper-
ations like the other data structures covered in this section. Their advantages lie in
spectral analysis. We discuss spectral graph analysis in chapter 3.

Degree matrix for our example graph

0 1 2 3 4

0 2 0 0 0 0

1 0 2 0 0 0

2 0 0 1 0 0

3 0 0 0 3 0

4 0 0 0 0 2

Laplacian matrix for our example graph

0 1 2 3 4

0 2 0 0 –3 –5

1 0 2 0 –1 –1

2 0 0 1 –3 0

3 –3 –1 –3 3 0

4 –5 –1 0 0 2
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(i.e., varieties of nodes and edges, attributes, etc.), and explicitly defines how these
elements work together. 

 Data models and schemas are critical parts of the scaffolding used to design graph
systems such as graph databases and graph processing systems, and they often build
on the data structures reviewed in the previous section. We’ll review three such mod-
els and provide examples of real systems where they are used. 

MINIMALIST GRAPH DATA MODEL

The simplest relational database uses only nodes, edges, and weights. It can be used
on directed or undirected graphs. If weights are used, they can be retrieved using a
lookup table. 

 Pregel, Google’s graph processing framework, which other popular frameworks
are based on (including Apache Giraph used by Facebook, and Apache Spark GraphX),
relies on such a directed graph. There, both edges and nodes have an identifier and a
single numerical value, which can be interpreted as a weight or attribute. 

RDF GRAPH DATA MODEL

Resource Description Framework (RDF; aka Triple Stores) models follow a subject-
predicate-object pattern, where nodes are subjects and objects, and edges are predi-
cates. Nodes and edges have one main attribute, which can be a unique resource iden-
tifier (URI) or a literal. URIs, in essence, identify the type of node or edge being
described. Examples of literals can be specific timestamps or dates. Predicates repre-
sent relationships. Such triples (subject-predicate-object) represent what are called
facts in this context. Usually, facts are directed and flow in the direction from subject
to object.

 Popular graph databases that use the RDF model include Amazon’s Neptune (Nep-
tune also allows the use of labeled property graphs [LPGs]), Virtuoso, and Stardog.

PROPERTY GRAPH DATA MODEL

In property graphs (aka LPGs), allowances are made to confer various metadata to
nodes and edges. Such metadata include the following:

 Identifiers—Distinguish individual nodes and edges.
 Labels—Describe classes (or subsets) of nodes or edges. 
 Attributes or properties—Describe individual nodes or edges.

Nodes have an ID and a set of key/value pairs that can be used to supply additional
attributes (also called properties). Similarly, edges have an ID and a set of key/value
pairs for attributes. 

 You can think of the property graph as the minimalist graph extended by adding
labels and removing the restrictions on the types and number of attributes. Figure A.11
provides a look at a property graph and its equivalent RDF graph. Popular graph data-
bases that use models based on the property graph include Neo4j, Azure Cosmos, and
TigerGraph.
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NONGRAPH DATA MODEL

There are a variety of databases and systems that use neither RDF nor LPG. These
databases and systems store or express nodes, edges, and attributes within other stor-
age frameworks, such as document stores, key value stores, and even within a rela-
tional database framework.

KNOWLEDGE GRAPHS

Although the term is used widely in academic, commercial, and practitioner circles,
there is no unifying definition of a knowledge graph. Most relevant to GNNs, we
define a knowledge graph as a representation of knowledge discretized into facts, as
defined earlier. In other words, a knowledge graph is a multigraph set onto a specific
subject-relationship-object schema.

 Knowledge graphs may be represented with RDF schemas, but there are other data
models and graph models that can accommodate knowledge graphs. GNN methods
are used to embed the data in the nodes and edges, establish the quality of facts, and
discover new entities and relations. An example of a knowledge graph is shown in fig-
ure A.12. 
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Figure A.11 Example of a property graph and its equivalent RDF graph
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NODE AND EDGE TYPES

In graphs that have a schema, including knowledge graphs, the edges and nodes can
be assigned a type. Types are part of a defined schema, and as such, govern how data
elements interact with each other. They also often have a descriptive aspect. To distin-
guish types from properties, consider that while types help define the rules of how data
elements work together and how they are interpreted by the data system, properties
are descriptive only. 

 To illustrate types, we can use a road map analogy, where towns are nodes, and pas-
sages between them are edges. Our edges may include highways, footpaths, canals, or
bike paths. Each one is a type. Due to geography, towns can be surrounded by swamps,
sit atop mountain peaks, or have other obstacles and impediments to one versus
another passage. For towns separated by a desert, passage is only possible by a highway.
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Figure A.12 An example of a knowledge graph representing an academic research network within a university’s 
physics department. The graph illustrates both hierarchical relationships, such as professors and students being 
members of the department, and behavioral relationships, such as professors supervising students and authoring 
papers. Entities such as Prof, Student, Paper, and Topic are connected through semantically meaningful 
relationships (e.g., Supervises, Wrote, and Inspires). Entities also have detailed features (e.g., Name, 
Department, and Type) to provide further context. The semantic connections and features enable advanced 
querying and analysis of complex academic interactions. 
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For other towns, passages can be by multiple passage types. In building this analogy,
we see that our town nodes also have types defined by their proximate geography:
swamp town, desert town, island town, valley town.

A.2.3 How graphs are exposed

We’ve talked about relational data structures and relational databases to understand
how graphs are constructed and stored. In real life, however, most of us won’t build
graphs from scratch or from the bottom up. When constructing and analyzing graphs,
there will be a layer of abstraction between us and the primitive data. In what ways,
then, is a graph exposed to the data scientist or engineer? Next, we’ll briefly explain
the following two ways and then discuss the graph ecosystem:

 APIs—Using graph libraries or data processing systems
 Query languages—Querying graph databases via specialized query languages

APIS: GRAPH OBJECTS IN GRAPH SYSTEMS

When using a graph library or processing software, usually we want the graph we work
with to have certain properties and to be able to execute operations on the graph.
From this lens, it’s helpful to think of graphs as software objects that can be operated
on by software functions. 

 In Python, an effective way to implement these is to have a graph class, with some
operations implemented as methods of the graph class or as standalone functions.
Nodes and edges can be attributes of the graph class, or they can have their own node
and edge classes. Properties of graphs implemented in this way can be attributes of
the respective classes.

 An example of this is NetworkX, a Python-based graph processing library. NetworkX
implements a graph class. Nodes can be any hashable object; examples of node
objects are integers, strings, files, and even functions. Edges are tuple objects of their
respective nodes. Both nodes and edges can have properties implemented as Python
dictionaries. Following are two short lists of typical methods and attributes of graph
classes found in libraries and processing systems.

Basic methods of graph objects
In the following list, we outline some of the methods that can be applied to graph
objects:

 Graph_Creation—A constructor that creates a new graph object
 Add_Node, Add_Edge—Adds nodes or edges, and their attributes and labels,

if any
 Get_Node, Get_Edge—Retrieves stored nodes or edges, with specified attri-

butes and labels
 Update_Node, Updage_Edge, Update_Graph—Updates properties and attri-

butes of nodes, edges, and graph objects
 Delete_Node, Delete_Edge—Deletes a specified node or edge
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GRAPH QUERY LANGUAGES 
When working with a graph in a graph database, a query language is used. For most
relational databases, some variant of SQL is used as the standard language. In the
graph database space, there is no standard query language. Following are the lan-
guages that currently stand out:

 Gremlin—A language that can be written declaratively or imperatively, which is
designed for database or processing system queries. Developed by the Apache
TinkerPop project, Gremlin is used in several databases (Titan, OrientDB) and
processing systems (Giraph, Hadoop, Spark). 

 Cypher—A declarative language for property graph–based database queries.
Developed by Neo4j, Cypher is used by Neo4j and several other databases.

 SPARQL—A declarative query language for RDF-based database queries. SPARQL
is used by Amazon Neptune, AllegroGraph, and others.

A.3 Graph systems
We’ve covered the basic building blocks that allow us to implement graphs in a pro-
gramming language. In practice, you’ll seldom create a graph from scratch because
you’ll load data into memory or a database using a library or API. The field of graph
libraries, databases, and commercial software is broad and growing rapidly. A good
way to determine what to use is to start with your use case and requirements, and then
choose your development and deployment architecture from there. This section will
briefly give an overview of this landscape to help you. The taxonomy we develop here
is by no means absolute but should serve as a useful guideline.

 At the time of writing, commercial and open source tools for graph analysis,
machine learning modeling, visualization, and storage are expanding relatively rap-
idly. With a lot of overlap between tools and functions, as well as many hybrid tools
that don’t neatly fit into any category, there is no clean delineation of segments. Given

Basic attributes of graph objects
In the following list, we outline some of the attributes for graph objects: 

 Number_of_Nodes, Number_of_Edges—A constructor that creates a new
graph object

 Node_Neighbors—Retrieves the adjacent nodes or incident edges of a node
 Node_List, Edge_List—Adds nodes or edges and their attributes and labels,

if any
 Connected_Graph—Retrieves stored nodes or edges, with specified attributes

and labels
 Graph_State—Retrieves global attributes, labels, and properties of the graph
 Directed_Graph—Deletes a specified node or edge
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this, we just highlight basic methods and focus on the most popular tools in the fol-
lowing segments:

 Graph databases
 Graph compute engines (or graph frameworks)
 Visualization libraries
 GNN libraries

A.3.1 Graph databases

Graph databases are the graph analogues of traditional relational databases from a
functional standpoint. Such databases were devised to handle transactions focused on
Online Transaction Processing (OLTP). They allow CRUD transactions and also tend
to follow ACID (atomicity, consistency, isolation, and durability) principles regarding
the integrity of the data. Graph databases of this type differ from relational databases
in that they store data using graph data models and schemas. At the time of writing,
the most popular graph databases are Neo4j, Microsoft Cosmos DB, OrientDB, and
ArangoDB. Except for Neo4j, these databases support multiple models, including prop-
erty graphs. Neo4j supports property graphs only. The most popular databases that
support RDF models are Virtuoso and Amazon Neptune.

 In addition to property graphs and RDF databases, other types of nongraph data-
bases are used to store graph data. Document stores, relational databases, and key-
value stores are examples. To use such nongraph databases with graph data models,
you must carefully define how the existing schema maps to the graph elements and
their attributes.

A.3.2 Graph compute engines (or graph frameworks)

Graph compute engines are designed to make queries using batches of data. Such
queries can output aggregate statistics or output graph-specific items, such as cluster
identification and find shortest paths. These data systems tend to follow the Online
Application Processing (OLAP) model. It’s not unusual for such systems to work
closely with a graph database, which serves the input data batches needed for the ana-
lytic queries. Examples of such systems include Apache Spark’s GraphX, Giraph, and
Stanford Network Analysis Platform (SNAP).

A.3.3 Visualization libraries

Graph visualization tools share characteristics with graph compute engines, as they
are geared toward analytics versus transactional queries and computations. How-
ever, such tools are designed to create aesthetic and useful images of the networks
under analysis. In the best visualization tools, these images are interactive and dynamic.
Outputs of visualization systems can be optimized for presentation on the web, or in
printed format with high definition. Examples of such tools are Gephi, Cytoscape,
and Tulip.
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A.3.4 GNN libraries

The last segment of graph tools is the central subject of this book. Here, we’re group-
ing software tools that create graph embeddings with tools that train the models using
graph data. At the time of writing, there are many solutions available. Graph represen-
tation tools range from dedicated, standalone libraries (PyTorch BigGraph [PBG]) to
graph systems that have embedding as a feature (Neo4j as a database and SNAP as a
compute framework).

 GNN libraries come as standalone libraries, and as libraries that use TensorFlow or
PyTorch as a backend. In this text, the focus will be on PyTorch Geometric (PyG).
Other popular libraries include Deep Graph Library (DGL; a standalone library) and
Spektral, which uses Kera and TensorFlow as a backend. The best libraries implement
not only a range of deep learning layers but also the available benchmark datasets.

A.4 Graph algorithms
As the field of graphs has been around for a while, the number of different graph
algorithms is vast. Understanding well-used graph algorithms can provide valuable
context with which to think about the algorithms used in neural networks. Graph algo-
rithms can also serve as sources of node, edge, or graph features for GNNs. Finally, as
with all machine learning methods, sometimes a statistical model isn’t the best solution.
Understanding the analytical landscape can help when deciding whether or not to use a
GNN solution.

 In this section, we review two types of graph algorithms, search algorithms and short-
est path. We provide a general description, explaining why they are important. For an
in-depth treatment on this topic, review the references for this appendix at the end of
the book, particularly [1–3].

A.4.1 Traversal and search algorithms

In section A.1.1, we discussed the concept of a walk and a path. In these fundamental
concepts, we get from one node in a graph to another by traversing a set of nodes and
edges between them. 

 For large graphs with many nonunique walks and paths between node pairs, how
do we decide which path to take? Similarly, for graphs we haven’t explored and don’t
have a map of, what is the best way to create that map? Wrapped into these questions
is the problem of what direction to take when traversing a graph at a particular node.
For a node of degree 1, this answer is trivial; for a node with degree 100, the answer is
less so. 

 Traversal algorithms offer systematic ways to walk a graph. For such algorithms, we
start at a node, and following a set of rules, we decide on the next node to hop to.
Often, as we conduct the walk, we keep track of nodes and edges that have been
encountered. For certain algorithms, if we outline the path taken, we can end up with
a tree structure. Three well known strategies for traversal are given here:
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 Breadth first—A breadth-first traversal prefers to explore all of the immediate
neighbors of a node before going further away. This is also known as breadth-
first search (BFS).

 Depth first—With depth-first search (DFS), rather than explore every immediate
neighbor first, we follow each new node without regard to its relationship to the
current node. This is done in such a way that every node is encountered at least
once, and every edge is encountered exactly once. 

There are versions of DFS and BFS for directed graphs as well.

 Random—In random traversals, in contrast to BFS and DFS, where traversal is
governed by a set of rules, traversal to the next node is done randomly. For a
starting node of degree 4 in a random traversal with a uniform distribution,
each neighboring node would have a 25% chance of being chosen. Such
methods are used in algorithms such as DeepWalk and Node2Vec (covered in
chapter 2). 

A.4.2 Shortest path

An enduring problem highly related to graphs is that of the shortest path. Interest in
solving this problem has existed for decades (a great survey paper of shortest path
methods was published as far back as 1969 [4]), with several distinct algorithms exist-
ing. Modern applications of shortest path methods are used in navigation applica-
tions, such as finding the fastest route to a destination. Variations of such algorithms
include the following:

 Shortest path between
– Two nodes
– Two nodes on a path that includes specified nodes
– All nodes
– One node to all others

 Ranked shortest paths (i.e., second shortest path, third shortest, etc.)

Such algorithms can also take into account weights in graphs. In these cases, shortest
path algorithms are also called least-cost algorithms.

 A highly lauded algorithm for least-cost determination is Dijkstra’s algorithm.
Given a node, it finds the shortest path to every other node or to a specified node. As
this algorithm progresses, it traverses the graph while keeping track of the distance
and connecting nodes (to the start node) of each node it encounters. It prioritizes the
nodes encountered by their shortest (or least-cost) path to the start node. As the algo-
rithm traverses, it prioritizes low-cost paths.
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A.5 How to read GNN literature
GNNs are a rapidly proliferating topic. New methods and techniques have been pro-
posed in a short span of time. Though this book focuses on practical and commercial
applications of graphs, much of the state of the art in this field is disclosed in academic
journals and conferences. Knowing how to effectively study publications from these
sources is essential to keep up to speed with the field and to encounter valuable ideas
that can be implemented in code.

 In this short section, we list some commonly used notations to describe graphs in
technical publications as well as a few tips on reading academic literature for the prac-
titioner. These tips are especially for those interested in using the methodology in a
paper but are working under time constraints:

 To efficiently extract value from a paper, be selective on which sections of the
publication to focus on. It’s important to clearly understand the problem state-
ment and the solution to translate this into code. This might sound obvious, but
many papers include sections that, for a practitioner, can be distracting at best.
Mathematical proofs and long historical notes are good examples.

 A positive trend is the increasing inclusion of code and data in research papers
to enhance reproducibility. However, replicating results may still be challenging
due to factors like model-specific optimizations or hardware constraints. If you
encounter difficulties, reaching out to the authors can often provide valuable
clarification.

 Look closely at indicators of the application scope of the problem and solution.
An exciting development may not be applicable to your problem, and it may
not be immediately obvious. Similarly, don’t take all claims for state-of-the-art
results at face value. The academic world is extremely competitive and claimed
state-of-the-art results may not hold, especially if a paper isn’t yet peer-reviewed. 

A.5.1 Common graph notations

In mathematical notation, a graph is described as a set of nodes and edges:

G = (V, E ) (A.1)

where V and E are collections or sets of vertices (nodes) and edges, respectively. When
we want to express the count of elements in these collections, we use |V| and |E|. In
the following list, we outline some of the typical nomenclature for the mathematics
of graphs:

 For directed graphs, an accented G (G
→
) is sometimes, but not always used.

 Individual nodes and edges are denoted by lowercase letters, v and e, respectively. 
 When referring to a pair of adjacent nodes, we use u and v. Thus, an edge can

also be expressed as {u, v}, or uv.
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 When dealing with weighted graphs, a weight for a particular edge is expressed
as w(e). In terms of an edge’s nodes, we can include the weight as {u, v, w }.

 To express the features of a graph or its elements, we use the notation x or x
when the features are expressed as a vector or matrix, respectively.

 For graph representations, because many such representations are matrices,
bold letters are used to express them: A for the adjacency matrix, L for the
Laplacian matrix, and so on.



appendix B
Installing and configuring

PyTorch Geometric

B.1 Installing PyTorch Geometric
PyTorch Geometric (PyG) is a library built on top of PyTorch for working with
graph neural networks (GNNs). The newest pytorch geometric versions can be
installed with: pip install torch_geometric. Only PyTorch is needed as a dependency.
To install PyG with its extensions, you need to ensure that you have the correct ver-
sions of Compute Unified Device Architecture (CUDA), PyTorch, and PyG installed
and compatible with each other.

B.1.1 On Windows/Linux

If you’re on a Windows or Linux system, follow these steps:

 Install PyTorch. First, install the appropriate version of PyTorch for your sys-
tem. You can find the instructions on the official PyTorch website (https://
pytorch.org/get-started/locally/). Make sure to select the correct CUDA ver-
sion if you have an NVIDIA GPU.

 Find the PyTorch CUDA version. After installing PyTorch, check its version and
the CUDA version it was built with by running the following from Python: 

import torch
print(torch.__version__)
print(torch.version.cuda)
350
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This can also be run from the command line as follows:

!python -c "import torch; print(torch.__version__)"
!python -c "import torch; print(torch.version.cuda)"

The outputs from this code will be used in the next step.

 Install PyG dependencies. Install the PyG dependencies (torch-scatter, torch-
sparse, torch-cluster, torch-spline-conv) from the PyG repository, specify-
ing the correct CUDA version:

pip install torch-scatter torch-sparse torch-cluster torch-spline-conv -f
https://data.pyg.org/whl/torch-${PYTORCH}+${CUDA}.html

In this code, replace ${PYTORCH} with your PyTorch version (e.g., 1.13.1) and
${CUDA} with the CUDA version from the previous step (e.g., cu117).

 Install PyG. Finally, install the PyG library itself:

pip install torch-geometric

B.1.2 On MacOS

Since Macs don’t come with Nvidia GPUs, you can install the cpu version of PyG by fol-
lowing the same steps as in the previous section, but using cpu instead of a CUDA ver-
sion when installing the dependencies.

B.1.3 Compatibility issues

For installing the extensions, it’s crucial to match the versions of CUDA, PyTorch, and
PyG to avoid compatibility issues. Using mismatched versions can lead to errors
during installation or runtime. Always refer to the official documentation for the lat-
est installation instructions and version compatibility information. When writing this
book, we encountered a few frustrating errors that were solved only by installing the
correct combination of CUDA, PyTorch, and PyG. 

 One particular insight we gained from dealing with tools designed to work with
PyG, such as Open Graph Benchmark (OGB) and DistributedDataParallel (DDP), is
that they may only work with specific versions of PyTorch. In chapter 7, the distributed
computing example would only work with PyTorch v2.0.1 and CUDA v11.8. 
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An overview of how GNNs work

?

GNNs build embeddings based

on local (neighborhood) features.

This step is known as message

passing.

Embeddings are then linked to

predicted graph features during

training time.

2. GNN Model

?

1. Input Graph
(with unknown node feature)

3. Output Graph
(with predicted node feature)

GNNs follow the basic concept of other deep learning models, but where we perform a round of message 
passing for each layer of the network. We start by passing our input graph data to the first layer of the 
GNN. The GNN layer is a neural network which transforms the graph features such as nodes or edges into 
nonlinear embeddings. The process of converting graph data into graph embeddings is done using 
message passing, where we collect features, aggregate these features, and then transform them using 
a nonlinear operator, such as a sigmoid or softmax. These embeddings are then tuned to specific 
unknown properties using training data and backpropagation. After the GNN is trained, we can then 
predict unknown parts of a graph such as unseen nodes features.



Broadwater ●  Stillman ●  Foreword by  Matthias Fey

G
raphs are a natural way to model the relationships and 
hierarchies of real-world data. Graph neural networks 
(GNNs) optimize deep learning for highly-connected 

data such as in recommendation engines and social networks, 
along with specialized applications like molecular modeling 
for drug discovery.

Graph Neural Networks in Action teaches you how to analyze and 
make predictions on data structured as graphs. You’ll work 
with graph convolutional networks, attention networks, and 
auto-encoders to take on tasks like node classifi cation, link 
prediction, working with temporal data, and object classifi ca-
tion. Along the way, you’ll learn the best methods for training 
and deploying GNNs at scale—all clearly illustrated with well-
annotated Python code!

What’s Inside
●  Train and deploy a graph neural network
●  Generate node embeddings
●  Use GNNs for very large datasets
●  Build a graph data pipeline

For Python programmers familiar with machine learning and 
the basics of deep learning.

Keita Broadwater, PhD, MBA is a seasoned machine learn-
ing engineer. Namid Stillman, PhD is a research scientist and 
machine learning engineer with more than 20 peer-reviewed 
publications.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

Graph Neural Networks IN ACTION

PYTHON/DATA

M A N N I N G

“Despite their giant success 
in research, real-world GNN 
adoption remains limited. 

Th is book empowers 
practitioners to overcome 

  that gap.” 
—Matthias Fey, Creator of PyTorch 

Geometric and Kumo.AI

“Your roadmap to 
cutting-edge graph-based 

  learning.” 
—Maxime Dehaut

Luxembourg Stock Exchange

“A hands-on guide that 
bridges academic concepts 

and real-world applications. 
  I recommend it.”—Victor Dibia

Microsoft Research

ISBN-13: 978-1-61729-905-6

See first page


	Graph Neural Networks in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1 First steps
	1 Discovering graph neural networks
	1.1 Goals of this book
	1.1.1 Catching up on graph fundamentals

	1.2 Graph-based learning
	1.2.1 What are graphs?
	1.2.2 Different types of graphs
	1.2.3 Graph-based learning
	1.2.4 What is a GNN?
	1.2.5 Differences between tabular and graph data

	1.3 GNN applications: Case studies
	1.3.1 Recommendation engines
	1.3.2 Drug discovery and molecular science
	1.3.3 Mechanical reasoning

	1.4 When to use a GNN?
	1.4.1 Implicit relationships and interdependencies
	1.4.2 High dimensionality and sparsity
	1.4.3 Complex, nonlocal interactions

	1.5 Understanding how GNNs operate
	1.5.1 Mental model for training a GNN
	1.5.2 Unique mechanisms of a GNN model
	1.5.3 Message passing

	Summary

	2 Graph embeddings
	2.1 Creating embeddings with Node2Vec
	2.1.1 Loading data, setting parameters, and creating embeddings
	2.1.2 Demystifying embeddings
	2.1.3 Transforming and visualizing the embeddings
	2.1.4 Beyond visualization: Applications and considerations of N2V embeddings

	2.2 Creating embeddings with a GNN
	2.2.1 Constructing the embeddings
	2.2.2 GNN vs. N2V embeddings

	2.3 Using node embeddings
	2.3.1 Data preprocessing
	2.3.2 Random forest classification
	2.3.3 Embeddings in an end-to-end model

	2.4 Under the Hood
	2.4.1 Representations and embeddings
	2.4.2 Transductive and inductive methods
	2.4.3 N2V: Random walks across graphs
	2.4.4 Message passing as deep learning

	Summary


	Part 2 Graph neural networks
	3 Graph convolutional networks and GraphSAGE
	3.1 Predicting consumer product categories
	3.1.1 Loading and processing the data
	3.1.2 Creating our model classes
	3.1.3 Model training
	3.1.4 Model performance analysis
	3.1.5 Our first product bundle

	3.2 Aggregation methods
	3.2.1 Neighborhood aggregation
	3.2.2 Advanced aggregation tools
	3.2.3 Practical considerations in applying aggregation

	3.3 Further optimizations and refinements
	3.3.1 Dropout
	3.3.2 Model depth
	3.3.3 Improving the baseline model’s performance
	3.3.4 Revisiting the Marcelina product bundle

	3.4 Under the hood
	3.4.1 Convolution methods
	3.4.2 Message passing
	3.4.3 GCN aggregation function
	3.4.4 GCN in PyTorch Geometric
	3.4.5 Spectral vs. spatial convolution
	3.4.6 GraphSAGE aggregation function
	3.4.7 GraphSAGE in PyTorch Geometric

	3.5 Amazon Products dataset
	Summary

	4 Graph attention networks
	4.1 Detecting spam and fraudulent reviews
	4.2 Exploring the review spam dataset
	4.2.1 Explaining the node features
	4.2.2 Exploratory data analysis
	4.2.3 Exploring the graph structure
	4.2.4 Exploring the node features

	4.3 Training baseline models
	4.3.1 Non-GNN baselines
	4.3.2 GCN baseline

	4.4 Training GAT models
	4.4.1 Neighborhood loader and GAT models
	4.4.2 Addressing class imbalance in model performance
	4.4.3 Deciding between GAT and XGBoost

	4.5 Under the hood
	4.5.1 Explaining attention and GAT models
	4.5.2 Over-smoothing
	4.5.3 Overview of key GAT equations

	Summary

	5 Graph autoencoders
	5.1 Generative models: Learning how to generate
	5.1.1 Generative and discriminative models
	5.1.2 Synthetic data

	5.2 Graph autoencoders for link prediction
	5.2.1 Review of the Amazon Products dataset from chapter 3
	5.2.2 Defining a graph autoencoder
	5.2.3 Training a graph autoencoder to perform link prediction

	5.3 Variational graph autoencoders
	5.3.1 Building a variational graph autoencoder
	5.3.2 When to use a variational graph autoencoder

	5.4 Generating graphs using GNNs
	5.4.1 Molecular graphs
	5.4.2 Identifying new drug candidates
	5.4.3 VGAEs for generating graphs
	5.4.4 Generating molecules using a GNN

	5.5 Under the hood
	5.5.1 Understanding link prediction tasks
	5.5.2 The inner product decoder

	Summary


	Part 3 Advanced topics
	6 Dynamic graphs: Spatiotemporal GNNs
	6.1 Temporal models: Relations through time
	6.2 Problem definition: Pose estimation
	6.2.1 Setting up the problem
	6.2.2 Building models with memory

	6.3 Dynamic graph neural networks
	6.3.1 Graph attention network for dynamic graphs

	6.4 Neural relational inference
	6.4.1 Encoding pose data
	6.4.2 Decoding pose data using a GRU
	6.4.3 Training the NRI model

	6.5 Under the hood
	6.5.1 Recurrent neural networks
	6.5.2 Temporal adjacency matrices
	6.5.3 Combining autoencoders with RNNs
	6.5.4 Gumbel-Softmax

	Summary

	7 Learning and inference at scale
	7.1 Examples in this chapter
	7.1.1 Amazon Products dataset
	7.1.2 GeoGrid

	7.2 Framing problems of scale
	7.2.1 Root causes
	7.2.2 Symptoms
	7.2.3 Crucial metrics

	7.3 Techniques for tackling problems of scale
	7.3.1 Seven techniques
	7.3.2 General Steps

	7.4 Choice of hardware configuration
	7.4.1 Types of hardware choices
	7.4.2 Choice of processor and memory size

	7.5 Choice of data representation
	7.6 Choice of GNN algorithm
	7.6.1 Time and space complexity

	7.7 Batching using a sampling method
	7.7.1 Two concepts: Mini-batching and sampling
	7.7.2 A glance at notable PyG samplers

	7.8 Parallel and distributed processing
	7.8.1 Using distributed data parallel
	7.8.2 Code example for DDP

	7.9 Training with remote storage
	7.9.1 Example

	7.10 Graph coarsening
	7.10.1 Example

	Summary

	8 Considerations for GNN projects
	8.1 Data preparation and project planning
	8.1.1 Project definition
	8.1.2 Project objectives and scope

	8.2 Designing graph models
	8.2.1 Get familiar with the domain and use case
	8.2.2 Constructing the graph dataset and schemas
	8.2.3 Creating instance models
	8.2.4 Testing and refactoring

	8.3 Data pipeline example
	8.3.1 Raw data
	8.3.2 The ETL step
	8.3.3 Data exploration and visualization
	8.3.4 Preprocessing and loading data into PyG

	8.4 Where to find graph data
	Summary


	appendix A—Discovering graphs
	A.1 Graph fundamentals
	A.1.1 Graph properties
	A.1.2 Characteristics of nodes and edges
	A.1.3 Categories of graphs

	A.2 Graph representations
	A.2.1 Basic graph data structures
	A.2.2 Relational databases
	A.2.3 How graphs are exposed

	A.3 Graph systems
	A.3.1 Graph databases
	A.3.2 Graph compute engines (or graph frameworks)
	A.3.3 Visualization libraries
	A.3.4 GNN libraries

	A.4 Graph algorithms
	A.4.1 Traversal and search algorithms
	A.4.2 Shortest path

	A.5 How to read GNN literature
	A.5.1 Common graph notations


	appendix B—Installing and configuring PyTorch Geometric
	B.1 Installing PyTorch Geometric
	B.1.1 On Windows/Linux
	B.1.2 On MacOS
	B.1.3 Compatibility issues


	further reading
	Chapter 1
	Chapter 2
	Chapter 4
	Chapter 5
	Chapter 7
	Chapter 8
	Appendix A

	references
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Appendix A

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Adobe Gray - 20% Dot Gain)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice




