
Android Environment
Emulator

Victor Matos
Cleveland State University

Notes are based on:

http://developer.android.com/index.html

http://developer.android.com/guide/developing/tools/emulator.html

1

Part 2-b

2

Android Emulator

• The Android SDK includes a mobile device emulator -- a virtual mobile
device that runs on your computer.

• The emulator lets you prototype, develop, and test Android applications
without using a physical device.

• The Android emulator mimics all of the hardware and software features of
a typical mobile device, except that it can not receive or place actual
phone calls.

• It provides a variety of navigation and control keys, which you can "press"
using your mouse or keyboard to generate events for your application.

• It also provides a screen in which your application is displayed, together
with any other Android applications running.

2

3

Android Emulator v1.5 Skin

3

Hang up

Back

Volume

Power

Status Bar – Notification Line

Home

Call

Menu

Tab
Launch

Pad

4

Android Emulator v1.6 Skin

4

Hang up

Back

Volume
Status Bar – Notification Line

Home

Call

Menu

Tab
Launch

Pad

Power

5

Android Emulator v1.6 Skin

5

Hang up

Back

Volume
Status Bar – Notification Line

Home

Call

Menu

Tab
Launch

Pad

Power

6

Android Emulator

6

Keyboard OS function

Escape Back button

Home Home button

F2, PageUp Menu (Soft-Left) button

Shift-F2, PageDown Start (Soft-Right) button

F3 Call/Dial button

F4 Hangup / EndCall button

F5 Search button

F7 Power button

Ctrl-F3, Ctrl-KEYPAD_5 Camera button

Ctrl-F5, KEYPAD_PLUS Volume up button

Ctrl-F6, KEYPAD_MINUS Volume down button

KEYPAD_5 DPad center

KEYPAD_4 DPad left

KEYPAD_6 DPad right

KEYPAD_8 DPad up

KEYPAD_2 DPad down

F8 toggle cell network on/off

F9 toggle code profiling (when -trace option set)

Alt-ENTER toggle FullScreen mode

Ctrl-T toggle trackball mode

Ctrl-F11, KEYPAD_7 switch to previous layout

Ctrl-F12, KEYPAD_9 switch to next layout

Controlling the Android Emulator
through keyboard keys

Keypad keys only work when
NumLock is deactivated.

7

Android Emulator

7

Features - Emulating First Generation Android Phones

The Android emulator supports many hardware features likely to be found on mobile
devices (such as the HTC-G1), including:

1. An ARMv5 CPU and the corresponding memory-management unit (MMU)
2. A 16-bit LCD display (mimicking 360 x 480 pixels)
3. One or more keyboards (a Qwerty-based keyboard and associated

Dpad/Phone buttons)
4. A sound chip with output and input capabilities
5. Flash memory partitions (emulated through disk image files on the

development machine)
6. A GSM modem, including a simulated SIM Card

8

Android Emulator

8

Nexus One (newer Google developer phone)

Some phones in the
market already

surpass these specs
(Fall 2010)

9

Android Emulator

9

Working with Emulator Disk Images
The emulator uses mountable disk images (ANDROID SYSTEM IMAGE) stored on your
development machine to simulate flash (or similar) partitions on an actual device.

For example, it uses disk images containing
(1) an emulator-specific kernel,
(2) the Android system,
(3) a ram-disk image, and
(4) writeable images for user data and

simulated SD card.

By default, the Emulator always looks for the
disk images in the private storage area of the
AVD in use (c:\android-sdk-windows\platform\ …) .

1010

Android Emulator

10

Working with Emulator Disk Images

If no platform images exist there
when the Emulator is launched,
it creates the images in the
AVD directory based on
default versions stored in the SDK.

Note:
The default storage location for AVDs is in

~/.android/avd on OS X and Linux,
C:\Documents and Settings\<user>\.android\avd\... on Windows XP, and
C:\Users\<user>\.android\ on Windows Vista.

11

C:\Documents and
Settings\Administrator\.android\avd\AVD22GoogleAPI8.a
vd>a
Available Android targets:
id: 1 or "android-3"

Name: Android 1.5
Type: Platform
API level: 3
Revision: 4
Skins: HVGA (default), HVGA-L, HVGA-P, QVGA-L,

QVGA-P
id: 2 or "Google Inc.:Google APIs:3"

Name: Google APIs
Type: Add-On
Vendor: Google Inc.
Revision: 3
Description: Android + Google APIs
Based on Android 1.5 (API level 3)
Libraries:
* com.google.android.maps (maps.jar)

API for Google Maps
Skins: QVGA-P, HVGA-L, HVGA (default), QVGA-L,

HVGA-P
id: 3 or "android-4"

Name: Android 1.6
Type: Platform
API level: 4
Revision: 3
Skins: HVGA (default), QVGA, WVGA800, WVGA854

id: 4 or "Google Inc.:Google APIs:4"
Name: Google APIs
Type: Add-On
Vendor: Google Inc.
Revision: 2
Description: Android + Google APIs
Based on Android 1.6 (API level 4)
Libraries:
* com.google.android.maps (maps.jar)

API for Google Maps
Skins: WVGA854, HVGA (default), WVGA800, QVGA

id: 5 or "android-7"
Name: Android 2.1-update1
Type: Platform
API level: 7
Revision: 2
Skins: HVGA (default), QVGA, WQVGA400, WQVGA432,

WVGA800, WVGA854
id: 6 or "Google Inc.:Google APIs:7"

Name: Google APIs
Type: Add-On
Vendor: Google Inc.
Revision: 1
Description: Android + Google APIs
Based on Android 2.1-update1 (API level 7)
Libraries:
* com.google.android.maps (maps.jar)

API for Google Maps
Skins: WVGA854, WQVGA400, HVGA (default),

WQVGA432, WVGA800, QVGA
id: 7 or "android-8"

Name: Android 2.2
Type: Platform
API level: 8
Revision: 2
Skins: HVGA (default), QVGA, WQVGA400, WQVGA432,

WVGA800, WVGA854
id: 8 or "Google Inc.:Google APIs:8"

Name: Google APIs
Type: Add-On
Vendor: Google Inc.
Revision: 2
Description: Android + Google APIs
Based on Android 2.2 (API level 8)
Libraries:
* com.google.android.maps (maps.jar)

API for Google Maps
Skins: WVGA854, WQVGA400, HVGA (default),

WQVGA432, WVGA800, QVGA

11

Android Emulator

11

Creating an AVD using the
android tool

Listing targets
To generate a list of system
image targets, use this
command:

android list targets

12

Android Emulator

12

Starting – Stopping the Emulator

To start an instance of the emulator from the command line, change to the tools/
folder of the SDK. Enter emulator command like this:

emulator -avd <avd_name>

This initializes the emulator and loads an AVD configuration .
After a few seconds you will see the emulator window appear on your screen.

If you are working in Eclipse, the ADT plugin for Eclipse installs your application and
starts the emulator automatically, when you run or debug the application.

To stop an emulator instance, just close the emulator's window.

To list all available AVDs enter DOS command
android list avd

13

Android Emulator

13

AVD - Android Virtual Devices

Android Virtual Devices (AVDs) are configurations of emulator options that let you
better model an actual device.

Each AVD is made up of:
• A hardware profile. You can set options to define the hardware features of the virtual

device. For example, you can define whether the device has a camera, whether it uses a
physical QWERTY keyboard or a dialing pad, how much memory it has, and so on.

• A mapping to a system image. You can define what version of the Android platform will
run on the virtual device. You can choose a version of the standard Android platform or
the system image packaged with an SDK add-on.

• Other options. You can specify the emulator skin you want to use with the AVD, which
lets you control the screen dimensions, appearance, and so on. You can also specify the
emulated SD card to use with the AVD.

• A dedicated storage area on your development machine, in which is stored the device's
user data (installed applications, settings, and so on) and emulated SD card.

14

Android Emulator

14

AVD - Android Virtual Devices

You can create as many AVDs as you need, based on the types of
devices you want to model and the Android platforms and external
libraries you want to run your application on.

15

Android Emulator

15

Creating an AVD using the Eclipse-ADT Tool
From Eclipse, follow the sequence: Main menu (AVD Manager)
> Virtual Devices > New >

Provide a Name,
choose an Android target,
create a new SD card with about 2Gb,
choose a screen type,
add hardware devices…

Click on: Create AVD
(wait, it takes several minutes
to format the new SD card)

16

Android Emulator

16

Creating an AVD using the android tool
When creating an AVD, you simply specify the -c option, like this:

android create avd -n <avd_name> -t <targetID> -c <size>[K|M]

The –t (target) argument sets up a mapping between the AVD and the system
image that you want to use whenever the AVD is invoked. Later, when
applications use the AVD, they'll be running on the system that you specify in
the -t argument.

To specify the system image to use, you refer to its target ID — an integer — as
assigned by the android tool. The target ID is not derived from the system
image name, version, or API Level, or other attribute, so you need to have the
android tool list the available system images and the target ID of each, as
described in the next section. You should do this before you run the android
create avd command.

17

Android Emulator

17

Example: Creating an AVD using the android tool

After listing all targets (see previous image) we have decided to make a
profile based on target id:4 to support SDK1.6 with Google API Mapping
libraries. It should also include a 1Gig SD card. We enter the command

android create avd -n myAVD4SD1G -t 4 -c 1024M

18

Android Emulator

18

Example: Creating an AVD using the android tool

Verifying what AVDs are available in the system:

19

Android Emulator

19

SD Card Emulation
• You can create a disk image and then load it to the emulator at startup, to

simulate the presence of a user's SD card in the device.
• The emulator supports emulated SDHC cards, so you can create an SD card image

of any size up to 128 gigabytes.
• You can browse, send files to, and copy/remove files from a simulated SD card

either with adb or the emulator.

Creating an SD card image using mksdcard
Use the mksdcard tool, included in the SDK, to create a FAT32 disk images.

mksdcard <size> <file>

For example:

mksdcard 1024M c:/temp/mysdcard.iso

20

Android Emulator

20

Android Emulator – How to use the SDCARD device
The general syntax to create an SD card is

mksdcard [-l label] <size> <file>

• The tool mksdcard is part of the Android SDK. The SD label is optional.
• The device’s size is expressed as an integer number followed by either K

(kilobytes) or M (megabytes).

Example: Create a 1GB SDcard device using the following command
mksdcard 1024M c:\mysdcard.img

Run the emulator with the command
emulator -sdcard c:\mysdcard.img

or alternatively
emulator -avd myAvdFile

21

Android Emulator

21

Moving Data, Music and Pictures to the Sdcard

1. Use the program ddms to push files into the SDcard (the emulator must be
running with the SD card attached to it).

2. Click on: Device > File Explorer, this will open a new window and there you will
select the SDcard.

3. Now you move data to the sdcard. Your options are

• Open a Windows Explore panel to drag & drop files/folders on the card, or

• Press on the button "Push File onto Device"
(see upper left icons: push, pull, delete).

(DDMS stands for Dalvik Debug Monitor Services. The program is located in the /tools folder of the SDK. Also available
in Eclipse perspective – Top upper right icons)

22

Android Emulator

22

Moving Data, Music and Pictures to the SDcard

23

Android Emulator

23

Moving Data, Music and Pictures to the SDcard

4. Return to the emulator. This time you will see the selected (music) files in the
SDcard

24

Android Emulator

24

Moving Data, Music and Pictures to the SDcard

5. Pictures appear by clicking the Application Pad and invoking the Gallery
application

25

Android Emulator

25

Android – Login into the OS shell
You can log into the OS Linux version of Android executing in the emulator and issue
selected commands.

1. Run the Android
emulator

2. Run adb application
as follows:
c:> adb shell

(adb is the Android
Debug Bridge app. It is
Located in the /tools
folder of the SDK)

26

Android Emulator

26

Android – Login into the OS shell
If more than one emulator is running (or your phone is
physically connected to the computer using the
USB cable) you need to identify the target.

Follow the steps:

1. Get a list of all active emulators

adb devices
List of devices attached
emulator-5554 device
emulator-5556 device
HT845GZ45737 device

2. Run adb application as follows:

adb -s emulator-5554 shell

(adb is the Android Debug Bridge app. It is Located in the /tools folder of the SDK)

27

Android Emulator

27

NOTE1: Emulators & Hardware Devices
You may test your applications in either a software emulator or a hardware device.

All you need to do is connect your phone to the computer via USB cable.

On a command shell type the command: “adb devices“ you should see
something like “HT845GZ45737 device” indicating the presence of
your hardware device.

Gaining Root Access to Your Hardware device
A developer’s phone such as the G1 comes with root access enabled and is fully
opened.

Run the terminal application (adb shell) and see if you have the # prompt; if not try

the command su. It should give you the root prompt, if you have a permission denied
error then you do not have root access.

28

Android Emulator

28

NOTE2: Moving an app from (Rooted) Hardware to Emulator
If you want to transfer an app installed in your developer’s phone to the emulator,
follow the next steps:

1. Run command shell: > adb devices (find out the id of your hardware, say
HT845GZ45737)

2. Pull the file from the device to your computer’s file system. Enter the command
adb -s HT845GZ45737 pull data/app/theInstalled.apk c:/theInstalled.apk

3. Disconnect your Android phone

4. Run an instance of the Emulator

5. Now install the app on the emulator using the command
adb -s emulator-5554 install c:\theInstalledApp.apk

You should see a message indicating the size of the installed package, and Success.

29

Android Emulator

29

Android – Login into the OS shell

3. Android accepts a number of Linux shell commands including the useful set below

ls show directory (alphabetical order)

mkdir make a directory

rmdir remove directory

rm -r to delete folders with files

rm remove files

mv moving and renaming files

cat displaying short files

cd change current directory

pwd find out what directory you are in

df shows available disk space

chmod changes permissions on a file

date display date

exit terminate session

30

Android Emulator

30

Android – Login into the OS shell

4. There is no copy (cp) command in Android, but you could use the cat instead.
For instance:

cat data/app/theInstalledApp.apk > cache/theInstalledApp.apk

31

Android Emulator

31

Using the Emulator with “inserted” SD card from Eclipse

Additional Emulator Command Line Options:
-sdcard c:\Android_Emulator_Data\mysdcard.img -datadir c:\Android_Emulator_Data

From Eclipse’s menu create
new launch configuration:

Run >
Run Configurations >
New icon

On the Target panel
1. Select existing Android

Virtual device (AVD)
2. Enter additional

Command Line Options
(see caption)

3. Apply > Run

32

Android Emulator

32

Sending Text Messages to the Emulator

1. Start the emulator.
2. Open a new shell and type :

c:> adb devices
so you know the emulator’s numeric port id (usually 5554, 5556, and so
on)

3. Connect to the console using telnet command like:
c:> telnet localhost 5554

4. After receiving the telnet prompt you can send a text message with the
command (no quotes needed for the message)
sms send <Sender’s phone number> <text message>

33

Android Emulator

33

Example:
Sending Text Messages
to the Emulator

34

Android Emulator

34

Making a Voice Call to the Emulator

1. Start the emulator.
2. Open a new shell and type :

adb devices
to know the emulator’s numeric port id (usually 5554, 5556, and so on)

3. Connect to the console using telnet command like:
telnet localhost 5554 (this is the ‘number’ to be called)

4. After receiving the telnet prompt you can place a call (voice) with the
command
gsm call <caller’s phone number>

35

Android Emulator

35

Example: Making a Phone
Call to the Emulator

36

Android Emulator
Using Eclipse’s DDMS facility

36

Emulator Control
With these controls, you can simulate special device states and activities. Features
include:
1. Telephony Status - change the state of the phone's Voice and Data plans (home,

roaming, searching, etc.), and simulate different kinds of network Speed and
Latency (GPRS, EDGE, UTMS, etc.).

2. Telephony Actions - perform simulated phone calls and SMS messages to the
emulator.

3. Location Controls - send mock location data to the emulator so that you can
perform location-aware operations like GPS mapping. To use the Location
Controls, launch your application in the Android emulator and open DDMS. Click
the Emulator Controls tab and scroll down to Location Controls. From here, you
can:
• Manually send individual longitude/latitude coordinates to the device. Click

Manual, select the coordinate format, fill in the fields and click Send.
• Use a GPX file describing a route for playback to the device.

37

Android Emulator

37

Using Eclipse to test Emulator’s Telephony Actions

38

Android Emulator

38

Questions ?

39

Android Emulator

39

Appendix 1 – Connecting your Hardware Device to the Computer
1. Use a mini-USB cable to link the device and your computer
2. Expand the Notification bar
3. Mount the device

You could now use the Eclipse-ADT-File Explorer panel to pull/push files to the
device.

40

Android Emulator

40

Appendix 1 – Emulator to Emulator Communication
1. Run two instances of the emulator (typical IDs are: 5554, 5556, …)
2. Dial (or send SMS) from one of them (say 5554) to the other (5556)
3. Press the Green/Red call buttons to accept/terminate the call
4. Try sending SMS (use numbers 5554 and 5556)

