

jQuery Mobile First Look

Discover the endless possibilities offered by jQuery
Mobile for rapid mobile web development

Giulio Bai

BIRMINGHAM - MUMBAI

D
o

jQuery Mobile First Look

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 1170611

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849515-90-0

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Giulio Bai

Reviewers
Raymond Camden

Matthew Makai

Silas Jesufemi Olatayo

Federico M. Rinaldi

Development Editor
Meeta Rajani

Technical Editors
Gauri Iyer

Manasi Poonthottam

Copy Editor
Leonard D'silva

Project Coordinator
Michelle Quadros

Proofreader
Aaron Nash

Indexer
Tejal Daruwale

Graphics
Nilesh R. Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Giulio Bai is a law student living in Italy who spends most of his time toying
with stuff which doesn't have anything to do with law.

Even after trying to keep the list of his past achievements as short as possible,
the number of projects he joined in (and invariably sunk short thereafter) makes
it hard to narrow down his interests to programming and carousels alone.

It should be made clear that any claim of responsibility for those unfortunate
ventures is wholeheartedly rejected – they never had the necessary potential to
make it anyway.

This incredibly interesting and valuable bunch of paper sheets (or
bits, if you're reading an e-book) has been made available to you
– my fellow readers – thanks to the jQuery community, who have
decided to start developing something new I could write about.
Cheers to them!

About the Reviewers

Raymond Camden is a software architect for FirstComp focusing on ColdFusion
and RIA development. A long time ColdFusion user, Raymond has worked
on numerous ColdFusion books including the ColdFusion Web Application
Construction Kit and has contributed to the Fusion Authority Quarterly Update,
and the ColdFusion Developers Journal. He also presents at conferences and
contributes to online webzines. He founded many community web sites including
jQueryBloggers.com, CFLib.org, ColdFusionPortal.org, and is the author of open
source applications, including the popular BlogCFC (www.blogcfc.com) blogging
application. Raymond is an Adobe Community Professional. He is the happily
married proud father of three kids and is somewhat of a Star Wars nut. Raymond
can be reached at his blog (www.coldfusionjedi.com) or via e-mail at ray@
camdenfamily.com.

Matthew Makai is a technology consultant specializing in data exploration,
analysis, and visualization with Excella Consulting in Arlington, Virginia. He is
particularly interested in enhancing personal and business decisions with mobile
web applications and data visualization. Matthew earned his Computer Science B.S.
at James Madison University, his Computer Science M.S. at Virginia Tech, and his
Management of Information Technology M.S. at the University of Virginia.

Matthew writes about big data trends and solutions to technical problems with
Hadoop, Google Web Toolkit, JQuery Mobile, and NoSQL-related technologies at
http://mmakai.com/.

www.PacktPub.com
Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of
books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: What is jQuery Mobile? 7

How jQuery Mobile was born 8
jQuery mobile and other libraries 9

jQTouch 9
Who is it for? 9
How does it look? 10
What should I remember? 11

Sencha Touch 11
Who is it for? 11
How does it look? 12
What should I remember? 12

iUI 13
Who is it for? 13
How does it look? 14
What should I remember? 14

iWebKit 14
Who is it for? 15
How does it look? 15
What should I remember? 15

Comparison 16
Type of package comparison 16
Why choose jQuery Mobile? 19

How to get jQuery mobile 20
jQuery Mobile in action 21
Getting involved 23
Summary 24

Table of Contents

[ii]

Chapter 2: Organizing Content: Pages and Dialogs 25
Understanding page structure 25
How multi-page templates work 29
How to link internal and external pages 34
Navigation and page transitioning in AJAX 35
Dialogs: creation, deletion, and behavior 38
Theming pages and dialogs 39
Summary 47

Chapter 3: Configuring and Extending jQuery Mobile 49
Customizing default settings 51
Handling events 54

Touch events 55
Scroll events 56
Page-related events 57

Working with methods and utilities 60
Using the theme framework 62
Summary 66

Chapter 4: Reading, Writing, Communicating: Content 67
How content is displayed 68

Default HTML markup styling 68
Using columns and grids 72

How to create a simple grid with buttons 74
Creating grids with more than two columns 76

A note on collapsible blocks 78
Nested collapsible blocks 81
Collapsible sets 82

Theming content 84
Summary 86

Chapter 5: Navigation Made Easier: Toolbars 87
How do toolbars actually work? 88
Different types of bars 89

Header bars 89
Creating a header 89
Customizing buttons 90

Footer bars 94
Creating a footer 95
Adding buttons and other elements 96

Navbars 99
Creating a navbar 99
Customizing navbars 100

On positioning 105

Table of Contents

[iii]

Fixed positioning 105
Fullscreen positioning 105
Persistent footer 106

Theming toolbars 107
Summary 109

Chapter 6: Mobile Clicking: Buttons 111
What do buttons look and feel like in jQuery mobile? 112
Buttons markup and icons 115

Creating link buttons 115
Creating form buttons 116
Adding icons 117

Displaying buttons 121
Inline buttons 121
Grouped buttons 124

Theming buttons 126
Summary 127

Chapter 7: Transmitting Information: Forms 129
Form basics 130

Form structure and initialization 130
Input elements 131

Text inputs 132
Text fields 132
Password fields 133
Text areas 134

Search inputs 135
Flip switches, radio buttons, and checkboxes 136

Flip toggle switches 137
Radio buttons 138
Checkboxes 141

Sliders and select menus 144
Sliders 144
Select menus 145

Theming forms 149
Summary 150

Chapter 8: Organizing Information: List Views 151
Basics and conventions for list views 152

Nested lists 154
Numbered lists 156
Read-only lists 157
Split button lists 159

Table of Contents

[iv]

Spicing up your lists 162
Count bubbles 162
List dividers 164
Images 165
Formatting content 167
Implementing a search filter bar 172

Summary 173
Appendix A: API Calls and Properties 175

List of properties and methods 175
$.mobile options 175
$.mobile methods 176
$.mobile.path methods 177
$.mobile.path properties 178
$.mobile.urlHistory methods 178
$.mobile.urlHistory properties 178
$.support tests 178
Button plugin 179
Check and radio boxes plugin 179
Collapsible plugin 180
Dialog plugin 180
List view plugin 180
Navbar plugin 181
Page plugin 181
Select plugin 181
Slider plugin 182
Text input plugin 182

Appendix B: Resources and Troubleshooting 187
Online and offline resources 187

Official jQuery and jQuery Mobile documentation 187
jQuery 1.4 reference guide 187
jQuery mobile gallery 188

Development tools 188
FireBug (Firefox) 188
Internet Explorer 8 developer tools 188
Safari web inspector 188
Dragonfly (Opera) 189
Chrome web inspector 189

Table of Contents

[v]

Troubleshooting 189
Mobile equivalent of $(document).ready 189
Target object 189
Creating custom themes and swatches 190

Index 191

D
o

Preface
The jQuery Mobile framework is jQuery’s latest rabbit out of the hat project. The
jQuery Mobile framework is open source and is supported by all the big players:
iOS, Android, Bada, BlackBerry, Nokia, Adobe, and so, covering all the names
behind the project. It is a truly cross platform framework and porting applications
made in jQuery mobile will be a snap with this new technology in your hands.
Get to grips with everything you need to know to sprint through developing high
end web applications for mobiles.

jQuery Mobile First Look will show you the features of the jQuery Mobile
framework, what they do, and how they can be used. It covers the installation
thoroughly on all the machines, as it is found with any new technology that the
most difficult part is getting people to correctly install the product.

From installation to specifications and from designing to deployment this book
covers all the factors that you need to know before starting your own mobile web
application development. Starting with an introduction to jQuery Mobile, the book
will give you an overview of the key features of the framework and how they can be
used to implement a mobile web application. Development tips and troubleshooting
add to the standard information contained in these pages. The topics covered include
everything the jQuery Mobile developer needs to know in order to create a full-feature
web application for mobile devices. Ranging from a comparison of jQuery mobile
with other popular frameworks and its installation on various Operating Systems to
theming pages, website layout, and content formatting, the book presents information
about buttons, toolbars, dialogs, forms, and list views, as well as suggesting best
practices and workarounds to accomplish things in an alternative way.

jQuery Mobile First Look will help you learn one of the most promising JavaScript
mobile frameworks and grasp how widgets and elements work and what you can do
to customize and enhance their behavior.

Preface

[2]

A by-example guide that will let you explore all the features of jQuery Mobile and
get you ready for all the mobile web development you will do.

What this book covers
Chapter 1, What is jQuery Mobile?: We will give some background information about
the jQuery Mobile framework but, most important of all, will discuss the differences
between the various mobile frameworks out there and explain why jQuery Mobile
outperforms its competitor. Installation and other miscellaneous information are
also included.

Chapter 2, Organizing Content: Pages and Dialogs: We'll see how pages are structured in
jQuery Mobile and how can we link between them or create multi-page templates. In
a very similar fashion, dialogs will also be discussed.

Chapter 3, Configuring and Extending jQuery Mobile: As the name suggests, we'll learn
how to configure the default settings, handle events (taping, swiping, animations,
and so on), and take advantage of jQuery Mobile's built-in methods and utilities to
further interact with the elements on our web page.

Chapter 4, Reading, Writing, Communicating: Content: This chapter addresses the issue
of content, explaining how it will be displayed by default and what we can do to
change the way it looks. Usage of elements such as grids (to organize information)
and collapsible blocks (for hiding and showing paragraphs) will be revealed.

Chapter 5, Navigation Made Easier: Toolbars: The importance of toolbars in jQuery
Mobile needs to be pointed out; and in this chapter we'll understand how to use
toolbars to provide additional options and control to the user, and how to position,
theme, and enhance them in every possible way.

Chapter 6, Mobile Clicking: Buttons: Buttons and their key role in mobile development:
how they can be grouped, displayed customized for a better user experience in a
mobile enviroinment.

Chapter 7, Transmitting Information: Forms: This chapter deals with creating forms
and submitting data via AJAX using jQuery Mobile. We'll also have a look at how
to implement sliders, toggle switches, search inputs into our fieldset elements.

Chapter 8, Organizing Information. List Views: We don't want to miss out on list views,
which play a huge role in jQuery Mobile when it comes to organizing and laying out
our content. This chapter presents the basics of list elements and guides you through
the realization of a music player interface.

Appendix A, API Calls and Properties: This appendix presents a list of the API calls and
properties to interact with jQuery Mobile internals.

Preface

[3]

Appendix B, Resources and Troubleshooting: This appendix presents a list of useful
resources, development tools, and troubleshooting in order to better understand
how jQuery (Mobile) and JavaScript work together.

What you need for this book
In order to get the best out of this book, you only need a web browser and a copy
of jQuery Mobile – we'll discuss how to actually grab one in Chapter 1 , What is jQuery
Mobile?.

It's also suggested to use Firefox as a web browser in conjunction with the firebug
extension; alternatively, any other browser with their respective developer plugin
is on par (see Appendix B, Resources and Troubleshooting to learn how to install and
enable such plugins).

Who this book is for
This is a First Look book that allows existing jQuery users to get a look at the features
of jQuery mobile. It is targeted at jQuery users who want to enter the exciting world
of mobile web development. All you need is the basics of jQuery and an interest to
get involved with mobile development and you can use this book as a launch-pad for
your future ventures in mobile web development with jQuery Mobile framework.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We then wrap all of it into a container
which has a data-role="fieldcontain" attribute".

A block of code is set as follows:

 [<title>jQuery Mobile Page Structure Test</title>
 <link rel="stylesheet" href="jquery.mobile-latest.min.css"" />
 <script src="jquery-latest.min.js"></script>
 <script src="jquery.mobile-latest.min.js"></script>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<script src="jquery.js"></script>

Preface

[4]

<script src="custom-scripting.js"></script>
<script src="jquery-mobile.js"></script>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
Cancel button should be included this time, as there is no Close button in the
top-left corner".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

What is jQuery Mobile?
The first time I heard (well, read) about jQuery Mobile, I was lying on a beach. I
lazily reached out to my Palm Smartphone – being careful not to spill a drop of the
juicy drink I was sipping onto my beloved device – and connected to the Internet to
check the latest news.

The fact that jQuery was undergoing a process of consistent improvement in order
to make it work smoothly will surely trigger your curiosity as it triggered mine. In
this chapter, we're going to approach the jQuery Mobile framework for the very first
time, and understand how the whole thing works and can be implemented in our
own web applications.

Using jQuery Mobile, we will be able to develop mobile solutions that work
smoothly on the majority of mobile OS: the new-born library already supports
Android, Blackberry OS6, Fennec (by Mozilla), HP WebOS (Palm handhelds), iOS
(thus iPhone, iPod Touch, iPad), and Opera Mobile. Additionally, the roadmap
includes, amongst others, MeeGo, Windows Mobile, and Symbian as platforms
which are going to be supported in the near future.

In this chapter, we shall understand:

•	 How jQuery Mobile was born
•	 jQuery Mobile and other libraries
•	 Why choose jQuery Mobile?
•	 How to get jQuery Mobile
•	 jQuery Mobile in action
•	 Getting involved

What is jQuery Mobile?

[8]

How jQuery Mobile was born
 jQuery Mobile was first announced as an independent project on August 11, 2010,
and described on the jQuery blog as the work that we've been doing to bring jQuery
to mobile devices. Not only is the core jQuery library being improved to work across
all of the major mobile platforms, but we're also working to release a complete,
unified, mobile UI framework.

The jQuery Project developers worked hard (and are still working hard) on
making jQuery Core work well against the major web browsers, and bug fixes
and improvements are released periodically in order to make sure that standards
are kept high.

The jQuery Mobile project has caught on to the promising augment of mobile sites
and interest in the mobile technology, and is now trying to extend its reach of jQuery
to help build applications capable of running along with the so-called "desktop"
Web.

Chapter 1

[9]

jQuery mobile and other libraries
Before getting involved and learning about jQuery Mobile, a legitimate question
to ask would concern the comparison with other more or less established and used
JavaScript libraries, which claim to have the same goals.

For example, how good is jQuery Mobile compared to any of the following?

•	 jQTouch
•	 Sencha Touch
•	 iUI
•	 iWebKit

Let's find out!

jQTouch
While jQuery Mobile is a relatively recent entry in the mobile world, jQTouch dates
back to 2009, when David Kaneda created an open source jQuery plugin for mobile
development on the iPhone.

Due to its close relationship (and dependency) with jQuery, the plugin files
themselves are quite heavy.

Although aware of the problem, jQTouch developers decided not to remove the
dependency from the jQuery core.

Some people have said they'd like to see the jQuery dependency removed from
jQTouch to decrease the download size. The reasoning is that jQuery has a lot of
code dedicated to legacy desktop browsers (that is, older, discontinued versions),
and is therefore dead-weight on mobile devices.

Who is it for?
The jQTouch development team has decided to keep the project strictly focused on
WebKit-enabled devices (that is, iPhone, iPod Touch, Palm WebOS, and Android),
all of which have a relatively small screen. It provides native animations, automatic
navigation, and a customizable theming system for WebKit browsers.

According to their blog, we understand that, even though jQTouch runs fine on
larger-screen devices, it's not its intended use, and therefore the UI will not take
advantage of the additional space.

D
o

What is jQuery Mobile?

[10]

Applications developed with jQTouch will certainly run fine on iPads and other
tablet devices, but we aren't going to automatically convert to a more tablet-friendly
UI that takes advantage of the additional real estate.

Because of the type of plugin and its overall structure, jQTouch is a package geared
primarily towards web designers and novice web-application developers. jQTouch
developers themselves recommend more expert software programmers to use their
other standalone project Sencha Touch.

How does it look?
A sample image that shows jQTouch's look and feel is shown in the following
screenshot representing the user interface of the clock demo. It can be found at
the jQTouch website (http://jqtouch.com).

As it's easily noticeable, jQTouch shows some kind of consistency with other UI
that resemble a native-like iPhone application.

Chapter 1

[11]

What should I remember?
A few key things to remember about jQTouch are:

•	 It is easy to set up.
•	 Native WebKit animations. But only WebKit (no support for other platforms.)
•	 Theming system.
•	 Small screen devices only.

Sencha Touch
Shortly after the release of his jQTouch, David Kaneda decided to release a
completely different package, with more or less the same goals, but not dependent
on jQuery anymore.

Sencha Touch was born, and it is still seen as an alternative to jQTouch when
speaking of tablets and other devices of the same kind. The interesting thing about
this is the complete separation of the two projects; one (jQTouch) is a plugin for
jQuery, and depends on the popular library, while the other (Sencha Touch) is a
framework and provides a number of functionalities the former could not develop
(that is, API).

Being developed as a standalone framework, Sencha Touch is also more lightweight
than its sister project, JQTouch, which needs the whole jQuery framework to work
correctly.

Who is it for?
Even being an alternative for jQTouch, Sencha Touch targets the same set of devices,
but adds support for tablets:

If you are in need of a JavaScript library that magically updates your UI for
everything from small screens, to tablets, to desktops, check out Sencha Touch.

Sencha Touch offers a pure JavaScript API for building powerful applications which,
ideally, are developed by software and mobile developers looking forward to create
a product with advanced layouts, functionality, and interfaces.

What is jQuery Mobile?

[12]

How does it look?
Sencha Touch looks simple, but refined. Its graphical user interface is very similar to
the native UI of the devices on which the library runs, in order to create a feeling of
consistency with the original interface.

This is how the buttons appear:

What should I remember?
Sencha Touch stands out because of the following:

•	 Lighter than most other frameworks
•	 Unfortunately, still looks good on WebKit devices only

Chapter 1

[13]

•	 Works great on tablets
•	 JavaScript API

iUI
First and foremost, let's get this one right; iUI is not a JavaScript library. Not in the
traditional way, at least.

The iUI project (as we know it today) is actually the outcome of a simple hack by Joe
Hewitt to create iPhone applications, called iphonenav; we can modify its behavior
and default configuration by changing the markup. No JavaScript scripting is
generally needed.

Going directly to the introductory post by the author himself, iUI is explained as
follows:

Its goal is simply to turn ordinary standards-based HTML into a polished, usable
interface that meets the high standards set by Apple's own native iPhone apps. As
much as possible, iUI maps common HTML idioms to iPhone interface conventions.
For example, the and tags are used to create hierarchical side-scrolling
navigation. Ordinary <a> links load with a sliding animation while keeping you on
the original page instead of loading an entirely new one. A simple set of CSS classes
can be used to designate things like modal dialogs, preference panels, and on/off
switches.

iUI is now maintained in Google Code, and aims at making mobile developers feel
like HTML is the native UI language for the iPhone, as there is no need to write any
JavaScript code to see the magic happen.

Who is it for?
Even by reading iUI's own motto ("User Interface for WebApp development on
iPhone-class devices"), we can get pretty much what the whole deal is about.

This framework will only support iPhone, iPod Touch, and possibly iPad. That's
about it.

What is jQuery Mobile?

[14]

How does it look?
After having written some code, here is how a typical iUI-based application looks:

What should I remember?
A few things are worth remembering about iUI:

•	 Extends standard HTML.
•	 Overrides links and forms with AJAX.
•	 No JavaScript knowledge required. Not necessarily a pro, as it comes handy

in most cases.
•	 No theming (yet).
•	 Limited functionality.

iWebKit
The description of the framework we can find tells us almost anything we need to
know about the package.

iWebKit is a file package designed to help you create your own iPhone, iPod Touch,
and iPad compatible website or webapp. The kit is accessible to anyone, even people
without any HTML knowledge, and is simple to understand, thanks to the included
tutorials. In a couple of minutes, you will have created a full and professional
looking website. iWebKit is a great tool because it is very easy to use, extremely fast,
compatible, and extendable.

Chapter 1

[15]

Who is it for?
iWebKit is aimed those non-developers who need to create a professional looking
website or a interesting mobile web application from scratch.

The framework officially supports the iPhone family of devices, thus including iPod
Touch and iPad, or any other platform running a WebKit-based browser.

How does it look?
Sample web applications submitted by iWebKit users are shown in the following
screenshot:

What should I remember?
Some easy things to remember:

•	 Simple and minimalistic
•	 Mature (version 4)

What is jQuery Mobile?

[16]

•	 Provides support for WebKit only
•	 Easy-to-use

Comparison
After a quick overview of four (jQTouch, Sencha Touch, iUI, and iWebKit) packages
with a goal similar to jQuery Mobile's, we can finally make a real comparison and
understand which tool suits our needs better.

Even though some of the above-mentioned frameworks have already been available
for quite a long time and jQuery Mobile is a new-born solution, the latter looks like
the one which will get the biggest share of the market, also thanks to the (financial)
support gathered from its sponsors. And these are somewhat big sponsors: Mozilla,
Nokia, Blackberry, Palm, and so on.

It's true, however, that jQuery Mobile is still in its early stages, with their first stable
release only dating back to the beginning of November 2010 . The project has a great
backing, though; a good share of the jQuery community is more than interested in
the future developments of the project and is following closely the bug fixing and
maintenance activities required in order to offer a valuable product which can stand
the test of time.

Type of package comparison
Let's start off by saying that, in terms of weight, Sencha Touch is out of the game
already. Due to its nature (a standalone package), it cannot compete with any other
product, being over 120kb, considering the weight and poor optimization of JQuery
for mobile devices; John Resig and the development team were motivated to create a
mobile version that spots the issues with jQTouch.

The excellent performances and reduced file size of jQuery Mobile is mainly due to
the joint efforts of the jQuery developers to create a mobile version of the popular
JavaScript library, already lightweight and extremely customizable and expandable.

As for appearance, the only way iUI can be modified is by editing the CSS code
(even though the latest version can be customized with themes). The other three
frameworks taken into account have a more or less advanced theming system that
can be, in most cases, compared to jQuery Mobile's though the integration and
overall consistency of the latter is just a better comparison of supported devices

Needless to say, jQuery Mobile is a long way ahead of the others.

Chapter 1

[17]

However, it should be noted that some of the libraries presented in the previous
section have been developed with the sole purpose of enabling iPhone developers
to build powerful web application for iPhone-like devices. This is the case with iUI,
for example, whose website clearly states that the project aims to make iUI a sort of
default UI language for iPhone-class devices.

On the other hand, jQuery Mobile has a table (Mobile Graded Browser Support,
located at http://jquerymobile.com/gbs/) which lists a series of mobile platforms
and mobile browsers.

To each combination is assigned a grade (A, B, or C), which is "a combination of the
browser quality combined with the browser's relevance in the larger mobile market":

What is jQuery Mobile?

[18]

jQuery Mobile is working to support all A grade browsers. This means that we
will be actively testing against those browsers and ensuring that they work as best
as they possibly can. The browsers will receive the full jQuery Mobile CSS and
JavaScript (although the ultimate layout may be a gracefully degraded version of the
full capabilities, depending upon the browser).

Grades can be broken down in this manner:

•	 A – High Quality: A browser that's capable of, at minimum, utilizing media
queries (a requirement for jQuery Mobile). These browsers will be actively
tested against, but may not receive the full capabilities of jQuery Mobile.

Chapter 1

[19]

•	 B – Medium Quality: A capable browser that doesn't have enough market
share to warrant day-to-day testing. Bug fixes will still be applied to help
these browsers.

•	 C – Low Quality: A browser that is not capable of utilizing media queries.
They won't be provided any jQuery Mobile scripting or CSS (falling back to
plain HTML and simple CSS).

Why choose jQuery Mobile?
Developers are now able to create applications that will run on a number of different
platforms, not only those considered top-notch (that is, iOS and Android). jQuery
Mobile is built around the principle of progressive enhancement, meaning any
jQuery Mobile application will work in many browsers, even those that don't
support JavaScript (that is, Windows Mobile), thanks to graceful degradation
techniques.

This task is accomplished thanks to graceful degradation, so the browsers that do
not support the set of features provided by jQuery Mobiles.

Accessibility and simplicity also play a key role in the development of both the
jQuery Mobile library and applications built with its aid, the framework being
completely mark-up driven (it requires no JavaScript configuration) and ARIA
accessible. This is to say, basically, that jQuery Mobile is easy to get started with
and makes it possible to navigate the pages using a keyboard – when working on a
desktop computer.

Importantly, not to be forgotten is the small file size, specifically considered for
mobile usage: as of the end of 2010, the Alpha version of jQuery Mobile weighs
around 12KB and makes little use of images, preferring icons and heavy usage of
CSS (6KB).

The modularity of the library also allows for a comprehensive theming system, very
effective, for which a Themeroller tool is scheduled for the final 1.0 release.

In the end, it all comes down to our requirements and needs.

If we were to prefer a minimalist approach and we only needed to provide support
for a handful of mobile platforms (iPhone), we'd likely be happy using any of the
frameworks mentioned earlier.

But if – and this is the case – we care for cross-platform compatibility, ease-of-use,
and some sort of consistency for a top-notch browsing experience, we're more likely
to choose jQuery Mobile as our tool of choice in any mobile application we're going
to develop.

D
o

What is jQuery Mobile?

[20]

How to get jQuery mobile
There should be no problems at all obtaining a copy of jQuery Mobile, but anyway,
here is a quick walkthrough to get all the mobile development enthusiasts out there
started.

The fastest, easiest way to include jQuery Mobile into your website is by
downloading one of the CDN-hosted versions that the jQuery Mobile project
provides, which include images as well.

You can choose from two types of packages to download: one is uncompressed and
for debugging purposes only (very large size); the other one is the minified and
gzipped set of files which are ready to deploy.

jQuery Mobile 1.0 Alpha 2 requires jQuery 1.4.4, which can be download
from http://docs.jquery.com/Downloading_jQuery.

CDN-hosted JavaScript can be obtained from:

•	 jquery-mobile-1.0a2.js (Uncompressed, 102KB, useful for debugging)
http://code.jquery.com/mobile/1.0a2/jquery.mobile-1.0a2.js.

•	 jquery-mobile-1.0a2.min.js (Minified and gzipped, 13KB, ready to
deploy) http://code.jquery.com/mobile/1.0a2/jquery.mobile-1.0a2.
min.js.

CDN-hosted CSS can be downloaded from:

•	 jquery-mobile-1.0a2.css (Uncompressed, 49KB, useful for debugging)
http://code.jquery.com/mobile/1.0a2/jquery.mobile-1.0a2.css.

•	 jquery-mobile-1.0a2.min.css (Minified and gzipped, 6KB, ready to
deploy) http://code.jquery.com/mobile/1.0a2/jquery.mobile-1.0a2.
min.css.

A Zip file is also available for those willing to host the files themselves. The Zip file
contains both versions of the JavaScript library (uncompressed and minified), all the
required images, and CSS instructions, and can be downloaded from the following
URL:

•	 jquery-mobile-1.0a2.zip (Zip file: JavaScript, CSS, and images)
http://code.jquery.com/mobile/1.0a2/jquery.mobile-1.0a2.zip.

If you have chosen to make use of the CDN-hosted versions, the following couple of
lines of code can be used to link to the libraries and the CSS stylesheet needed to set
up jQuery Mobile:

Chapter 1

[21]

<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0a2/
jquery.mobile-1.0a2.min.css" />
<script src="http://code.jquery.com/jquery-1.4.4.min.js"></script>
<script src="http://code.jquery.com/mobile/1.0a2/jquery.mobile-1.0a2.
min.js"></script>

You can use the preceding code to link to your self-hosted libraries or
code snippets by changing the src address.

jQuery Mobile in action
The whole jQuery Mobile documentation is built using jQuery Mobile itself, as you
can see at http://jquerymobile.com/demos/1.0a3/.

Reading through the documentation pages should give you a clear understanding of
how jQuery Mobile works and looks out of the box. There are, of course, ways to make
it look different, change the color scheme and everything else, but its feel won't change.

What is jQuery Mobile?

[22]

Now, scroll to the very bottom of the page. Can you see the jQuery API browser link
under the Demos section?

Well, this is a slightly more advanced example of jQuery Mobile in action, and it
might be worth spending a little time toying with it.

For example, you may already have noticed that all the pages belonging to the
jQuery API browser share some details. The most obvious one is the top bar,
which reports the page title and a back button.

Also, all pages are presented as a list of links and have a Switch theme button at
the bottom:

Chapter 1

[23]

These are some of the elements we will be able to incorporate into our web pages
and which will be shown in the very same way in all mobile browsers.

Getting involved
The great thing about open source software is that anyone can take it, play with it for
a while, and redistribute it.

However, our objective here is far from copying the whole jQuery library, change
a couple of lines, and pass it off as our own – but rather, we have the opportunity
to contribute to the jQuery Mobile source and help improve the functioning of our
beloved JavaScript file.

Unfortunately, we still are to mess around with the first alpha release, and bugs will
be with us for a while, no matter which platform we choose. But this gives us the
chance to help out and get involved in the active development of jQuery Mobile!

For example, a very simple yet helpful task is to file bugs in the jQuery Mobile Bug
Tracker (https://github.com/jquery/jquery-mobile/issues). As of now, there
are over 200 issues reported and looking for someone to take care of them.

In fact, if you think you are competent enough at fixing bugs, adding some extra
functionalities, or even just correcting non-working code, you can provide patches
in the jQuery Mobile Source Repository through GitHub (https://github.com/
jquery/jquery-mobile/) or discuss the code on the jQuery Mobile Development
Forum (http://forum.jquery.com/developing-jquery-mobile).

What is jQuery Mobile?

[24]

A live code test is available at http://jquerymobile.com/test/, pulling directly
from the latest commit in the source repository.

Summary
In this chapter, we have had a first taste of what jQuery Mobile is like.

Its features are great, indeed, even compared to some of the libraries that are
available and under active development for quite some time now: cross-browser
compatibility on mobile devices, small size, theming system, and increased
simplicity are only a few of the enhancements the jQuery Mobile team made to the
standard jQuery library in order to create a fully-functional mobile library.

The next chapter will deal with getting started with jQuery Mobile and finally we
will see how to create our first few pages for everybody to see.

Organizing Content: Pages
and Dialogs

This chapter will deal with creating and organizing pages and dialogs, which are
used to display our content using the tools jQuery Mobile has to offer.

The jQuery Mobile framework has a particular way of handling pages – and displays
them – so it's best to learn how to properly set them up and then fill them with
content (that is, buttons, forms, links, and so on).

The basic page structure is, actually, very simple: as jQuery Mobile is focused on
ease-of-use, very little code is required in order to get a fully-working basic page
online.

Specifically, we're going to cover:

•	 Understanding page structure
•	 How multi-page templates work
•	 How to link internal and external pages
•	 Navigation and page transition in AJAX
•	 Dialogs: creation, deletion, and behavior
•	 Theming pages and dialogs

Understanding page structure
The jQuery Mobile page structure is based on the HTML5 standard, and is optimized
to make use of most of its tags, attributes, and elements out of the box.

At this point, one may ask what the problem is if we can follow HTML5 directives
and code the page like we have always done until now.

Organizing Content: Pages and Dialogs

[26]

The reason we must take a close look at how jQuery Mobile processes the pages
and their standard layout is because the frameworks needs and recognizes some
elements depending on some attributes we have to specify.

So, there are a couple of things to bear in mind:

1. Any jQuery Mobile page must start with an HTML5 doctype, so we can get
the best out of the framework.
<!DOCTYPE html>

2. Tags such as <html>, <head>, <title>, and <body> still serve their goal, and
must be included in the code.

3. In the <head>, references to the jQuery Mobile stylesheet, jQuery, and jQuery
Mobile are required.

Your link to jQuery and jQuery Mobile can point to either a CDN-hosted
version or a locally stored version of the library.

4. Most importantly, any valid HTML markup can be used. Don't forget!

Tags such as HEAD, BODY, DOCTYPE, and so on are not necessary in page
fragments loaded programmatically by the jQuery framework, while they
are required for validation purposes in other instances.

jQuery Mobile makes use of the custom data attributes (http://dev.w3.org/
html5/spec/elements.html#custom-data-attribute) that let us add any
attribute we like to an element.

This is to say, each element we introduce into our pages must have a data-role
attribute specified, which helps jQuery Mobile identify the element(s) in which to
find the content/markup.

We will then have a div whose data-role is set to page, which will work as our
page. Inside the "page", we may add three optional containers: header, content,
and footer.

Although the inner divs (header, content, and footer)
are not required in order to create a "page", you may want to
include at least the "content" as the div in which all the page
content is contained.

Chapter 2

[27]

So, how do we create a page?

As we've already stated previously, jQuery Mobile needs the HTML5 doctype and
links to jQuery and jQuery Mobile. And don't forget the jQuery Mobile stylesheet!

We can link to CDN-hosted versions of both libraries to make things
work smoother and easier – we don't have the hassle of downloading/
uploading anything. However, if we are concerned with our application
not working offline (or on an airplane without internet connection), we
may want to download both jQuery libraries.
As links to CDN-hosted versions will be constantly changing to be
updated to the latest version, we will link to a locally hosted version of
the libraries.
Make sure you use the latest version available in your applications!

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Mobile Page Structure Test</title>

 <link rel="stylesheet" href="jquery.mobile-latest.min.css"" />

 <script src="jquery-latest.min.js"></script>
 <script src="jquery.mobile-latest.min.js"></script>
 </head>

 <body>
 </body>
</html>

We can then add the page div to the <body>. Each page can be identified by an ID
property, which is often set to home if we're building the home page:

<div data-role="page" id="home">
 <div data-role="header">
 </div>

 <div data-role="content">
 </div>

 <div data-role="footer">
 </div>
</div>

The last step is to add some content to the page, and see how the page looks on a
mobile device:

Organizing Content: Pages and Dialogs

[28]

<div data-role="page" id="home">
 <div data-role="header">
 <h1>Home page</h1>
 </div>

 <div data-role="content">
 <p>Hello Mobile World!</p>
 </div>

 <div data-role="footer">
 <h4>I'm the footer</h4>
 </div>
</div>

This is the complete code for the HTML page:

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Mobile Page Structure Test</title>

 <link rel="stylesheet" href="jquery.mobile-latest.min.css" />

 <script src="jquery-latest.min.js"></script>
 <script src="jquery.mobile-latest.min.js"></script>

 </head>

 <body>
 <div data-role="page" id="home">
 <div data-role="header">
 <h1>Home page</h1>
 </div>

 <div data-role="content">
 <p>Hello Mobile World!</p>
 </div>

 <div data-role="footer">
 <h4>I'm the footer</h4>
 </div>
 </div>
 </body>
</html>

Chapter 2

[29]

And here is the page as it shows from our markup:

You can add a data-position="fixed" attribute to the header or
footer in order to make sure they always stay, respectively, at the top
or bottom of the screen.

How multi-page templates work
In addition to the simple, and more straightforward, single page layout we have just
had a look at, jQuery Mobile allows for an easy-to-implement multi-page template
which basically lets us create pages within pages.

To better understand how this multi-page thing is supposed to work, we must
understand that a jQuery Mobile calls "page" a portion of code that represents a page.

In each HTML file, we can then include more than one "page", resulting in the
browser fetching only one page and offering a smoother experience to the user.

D
o

Organizing Content: Pages and Dialogs

[30]

The "page" which will show by default is the first one (that is, the one that comes
first in the code).

Our "pages" are identified by their id attribute, which we can set to the outermost
div of each "page", which also needs the data-role attribute to be set to page.

For example, we can try to create a jQuery Mobile site which has three pages
(home page, about page, and contact page) all contained in a single HTML file called
index.html.

The standard layout for a single page is not modified, so we just copy over our basic
page structure from the previous example:

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Mobile Page Structure Test</title>

 <link rel="stylesheet" href="jquery.mobile-latest.min.css" />

 <script src="jquery-latest.min.js"></script>
 <script src="jquery.mobile-latest.min.js"></script>

 </head>

 <body>
 <div data-role="page" id="home">
 <div data-role="header">
 <h1>Home page</h1>
 </div>

 <div data-role="content">
 <p>Hello Mobile World!</p>
 </div>

 <div data-role="footer">
 <h4>I'm the footer</h4>
 </div>
 </div>
 </body>
</html>

Next, we add the other two pages using the same technique we create the home page
with. Simply, a div with a data-role attribute of page will tell jQuery Mobile to
process the element as a page.

Make sure to put the markup for the other two "pages" after the home "page", so the
latter will be visible by default:

Chapter 2

[31]

<div data-role="page" id="about">
 <div data-role="header">
 <h1>About us</h1>
 </div>

 <div data-role="content">
 <p>Lorem ipsum dolor.</p>
 </div>

 <div data-role="footer">
 <p>I'm the footer</p>
 </div>
</div>

<div data-role="page" id="contact">
 <div data-role="header">
 <h1>Contact</h1>
 </div>

 <div data-role="content">
 <p>Drop us an email!</p>
 </div>

 <div data-role="footer">
 <h4>I'm the footer</h4>
 </div>
</div>

Finally, here is the complete code:

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Mobile Page Structure Test</title>

 <link rel="stylesheet" href="jquery.mobile-latest.min.css" />

 <script src="jquery-latest.min.js"></script>
 <script src="jquery.mobile-latest.min.js"></script>

 </head>

 <body>
 <div data-role="page" id="home">
 <div data-role="header">
 <h1>Home page</h1>
 </div>

 <div data-role="content">
 <p>Hello Mobile World!</p>
 </div>

Organizing Content: Pages and Dialogs

[32]

 <div data-role="footer">
 <p>I'm the footer</p>
 </div>
 </div>

 <div data-role="page" id="about">
 <div data-role="header">
 <h1>About us</h1>
 </div>

 <div data-role="content">
 <p>Lorem ipsum dolor</p>
 </div>

 <div data-role="footer">
 <p>I'm the footer</p>
 </div>
 </div>

 <div data-role="page" id="contact">
 <div data-role="header">
 <h1>Contact</h1>
 </div>

 <div data-role="content">
 <p>Drop us an email!</p>
 </div>

 <div data-role="footer">
 <h4>I'm the footer</h4>
 </div>
 </div>
 </body>
</html>

But how can we access the newly created pages?

Well, to access the home "page", we only need to load the page: it will show by
default.
As for the other two "pages", we can either link to them from any page in our
application (read the next section about linking) or just add #about or #contact to
the URL in order to view, respectively the about or contact "pages".

For example, we can link to the contact page by using the following code:

Click here to go to the contact page

Chapter 2

[33]

The point of having several pages in the same HTML file is that, for small
sites, the latency between the client server and the overhead from the
HTTP protocol slows down the site more than the marginal increase in
bandwidth used by including the extra pages in a single file.

Keep in mind this is one of the reasons we need to supply an id attribute to the
"pages" we create.

Organizing Content: Pages and Dialogs

[34]

You may have noticed a back button has appeared. By clicking the back
button, jQuery Mobile brings you back to the previous page.

How to link internal and external pages
First of all, we must understand how we can differentiate between internal and
external pages.

Internal pages are those pages whose domain is the same as the currently displayed
pages.

Obviously, external pages are pages whose domain is anything but the one we're
currently browsing or that have rel="external" or target attributes.

For example, let's say we are visiting the page http://example.com/mobile.html
and we have the following elements:

Chapter 2

[35]

Link markup Link type
 Internal
 Internal
 External
<a href="http://example.com/home.html" target="_
blank"> External

 External

The reason that jQuery Mobile makes this kind of separation lies in the way
the framework handles the two types of link.

Whenever the library has to deal with internal links, they are "automatically
turned into Ajax requests and displayed with an animated page transition by
the framework".

Of course, the same cannot happen for external links, and thus they cause a
complete page refresh.

We have already discussed the possibility of linking to pages
within the same HTML file by using the ID to which they are
referenced as an anchor. This works for multi-page layouts only,
beware!

Navigation and page transitioning in
AJAX
We have already discussed the particular way in which jQuery Mobile "follows"
links: rather than forcing the browser to open a new page, the framework makes
use of AJAX to load the (internal) page into the existing page's DOM.

In this way, the AJAX requests not only makes the user experience smooth but also
results in quicker responses to the requests: every time we want to load an internal
page (that is, a portion of a page), we use AJAX to asynchronously request that
particular piece of information instead of reloading the whole page from the server,
thus resulting in a more pleasant user experience.

But since we are basically always on the same page, we may wonder how can we
move back and forward in the history stack and reference to other pages?

Organizing Content: Pages and Dialogs

[36]

The answer to this question is, however, quite complicated. However, before we
start reasoning on the effective way jQuery Mobile handles change page requests; we
must make clear that we can still bookmark any page on our website. How? Using
URL hashes, jQuery Mobile ensures each page has its own, unique URL.

Any time a link (to an internal page) is clicked, jQuery Mobile does three things:

1. Prevents the default click behavior.
2. Requests the URL via AJAX.
3. Changes location.hash to the new page's relative URL.

The framework uses the $.mobile.changePage function (see section in Chapter 3,
Working with methods and utilities or the jQuery Mobile documentation) to change
from one page to a new page, be it internal (uses AJAX) or external (does not load
into existing DOM).

The $.mobile.changePage function handles all the logic and processes required
to deal with page changes and, as such, is also responsible for applying transition
effects once the requested page has finished loading into the existing DOM.

Page transitions can be specified case by case, adding the data-transition
attribute to the link. Valid values for the transition are the following:

Value Effect
slide Slide right to left, or left to right if going back.
slideup Slide from bottom to top, or top to bottom if going back.
slidedown Slide from top to bottom, or bottom to top if going back.
pop Expand, or contract if going back.
fade Fade in, or fade out if going back.
flip Flip in, or flip out if going back.

The default page transition (slide) applies in any case no other transition has been
specified, and can be modified through the $.mobile.defaultTransition option.

You can force a backwards transition by adding a data-back="true"
attribute to the link.

Surprisingly, page transitions are all driven by CSS rules, and the $.mobile.
changePage function just applies and removes CSS classes to the two "pages" that
are involved in the page transition.

Chapter 2

[37]

For example, consider a slideup transition, with two pages involved: the exiting page
and the entering page.

The exiting page would be given the classes slideup and out, whereas the entering
page would be given the classes ui-page-active, slideup, and in. Also, the ui-
page-active class, which identifies the currently active page, would be removed
from the exiting page. Once the animation is complete, the classes out and in would
be removed from, respectively, the exiting and the entering pages.

To sum it up, the following points pretty much reflect what goes on, internally, every
time a link is clicked:

1. Check if links to an either internal or external page.
2. If an internal link with no rel="external" or target attributes specified is

detected, make an AJAX request for the URL; just change page otherwise (no
more processing).

3. Set location.hash to the new page's relative URL to allow bookmarking
and referencing.

4. Apply transition effect: remove the ui-page-active class from the exiting
page and add it to the entering page; add transition class, and out and in
classes to, respectively, exiting and entering pages.

Organizing Content: Pages and Dialogs

[38]

Dialogs: creation, deletion, and behavior
As simple as it sounds, a dialog is nothing but a standard page styled differently: the
jQuery Mobile documentation points out that "the framework adds styles to add rounded
corners, margins around the page and a dark background to make the dialog appear to be
suspended above the page".

To create a dialog, we just have to specify the data-rel="dialog" attribute in the
link, pretty much like the following example:

Dialog!

As dialogs are standard pages, the default slide transition (or whatever you changed
it to) will be used, unless we do not specify otherwise:

<a href="dialog.html" data-rel="dialog" data-
transition="pop">Dialog!

Usually, the pop transition is used as the standard dialog transition due to the
animation, which looks like a new window is, well, popping up.

Links that create dialogs use the $.mobile.changePage function to
open a page without updating the hash, which is useful for keeping
dialogs out of history tracking.

Chapter 2

[39]

Furthermore, there are two ways to close a dialog, depending on what we are trying
to achieve.

If we need to programmatically close a dialog via JavaScript, we can use jQuery to
select the dialog to be closed, and then call the close method:

$('.ui-dialog').dialog ('close');

If, on the other hand, we are just worried about how to return to the previous page,
we can either rely on the Close button on the top-left corner of the dialog (visible by
default) or add a cancel/back/close button that links to the previous page.

Theming pages and dialogs
We have already had a quick glance at jQuery Mobile's theming mechanism, but
purposely kept the explanation at a general level.

We're now focusing on how to specifically modify the look and feel of our pages and
dialogs, making use of the jQuery Mobile theme framework, which allows for a great
level of customization of our web application.

Actually, as pages are composed of many other elements (buttons, forms, sliders,
forms, and so on), this still is a generalization, as single widgets will be discussed
in greater detail once we learn how to use and include them in our application.

D
o

Organizing Content: Pages and Dialogs

[40]

The default theme makes use of colors from various swatches, and we have already
seen it in action in the previous chapters. This is what our web application looks like
if no modifications to the theme have been done:

We can then change some of the swatches, even for individual items.

The data-theme attribute can be applied to the header of footer, or even to the
whole "page". For example, we may want to change the header so it has a yellow
background (Swatch E).

It's important to note the themes cascade, because if you apply
a theme to the content element, it will also apply to all elements
within that div element.

1. The header consists of the following code, and we have to replace it with
another line of code that modifies the default color scheme:
<div data-role="header">
 <h1>Default Header</h1>
</div>

Chapter 2

[41]

2. We change the swatch by adding the data-theme attribute to the
header container:

<div data-role="header" data-theme="e">
 <h1>Swatch E Header</h1>
</div>

Organizing Content: Pages and Dialogs

[42]

3. The same applies to any other element we wish to style differently, although
it is recommended not to style directly the content container, as it would
result in different background colors in the same page.
Instead, we can add the data-theme attribute to the page container, so that
the whole page has a consistent look (Swatch A follows):

<div data-role="page" id="home" data-theme="a">
 <!-- header, content, footer to be put here -->
</div>

Other Swatches can be applied to the page so that it looks similar to one of the
following color schemes.

A Swatch B themed page has blue as its primary color:

Chapter 2

[43]

Swatch C is off-white:

Organizing Content: Pages and Dialogs

[44]

Swatch D resembles the Swatch C look, but has gray undertones to make the header
and footer stand out more:

Finally, Swatch E is yellow-based:

Chapter 2

[45]

As for dialogs, as they are in no way different from standard pages, if not for some
further styling automatically applied by the framework, the way in which we change
the theme is exactly the same.

However, there is one thing we may want to do to enhance or increase the number of
possibilities we have with dialogs.

If we plan on using a dialog to give the user a selection of actions to choose from, we
could remove the header portion of the dialog so it displays in a way better-suited to
look like a control sheet:

<div data-role="page">
 <div data-role="content" data-theme="a">
 <h3>Share Photos</h3>

 Email
 Upload to
flickr
 Share on
Facebook
 Tweet
photoz

Organizing Content: Pages and Dialogs

[46]

 <a href="action.html" data-role="button" data-rel="back" data-
theme="a">Cancel
 </div>
</div>

The following dialog, from the jQuery Mobile documentation pages, presents the
user with multiple buttons asking for a way to share photos. The Cancel button
should be included this time, as there is no Close button in the top-left corner, as
we removed the header:

Chapter 2

[47]

Summary
In this chapter, we have learned how to properly create and modify pages using
jQuery Mobile. The subtle difference that differentiates real pages from "pages" (or
"views") that are contained into a single HTML file gives us two options from which
we can choose from when we're about to develop our web applications.

However, we have to carefully take into account the pros and cons of every method,
since using a single page and creating dozens of "views" would result in poor
usability issues, to say the least.

Theming plays a central role in jQuery Mobile, and a lot of options are available to
further customize our web applications.

For example, we will see, in the next chapter, how to effectively change the default
configuration of jQuery Mobile, and how we can handle events and make use of the
built-in methods and functions to better control how our web applications behave.

Configuring and Extending
jQuery Mobile

In the previous chapter, we had a quick look at the new jQuery Mobile framework in
terms of aesthetics, improvements, and how well it performs against other libraries
of the same type.

We are now slowly moving towards the point at which we start putting into practice
what we've learned until now, and experiment with what we have at hand.

jQuery Mobile is a very flexible framework and, even though its cross-compatibility
efforts may sound like some sort of limitation, you will be amazed by the number of
different things you can do with jQuery Mobile.

But before we take off and start creating a simple mobile page, we must make sure
a couple of things are clear in our minds.

In this chapter, we'll be dealing with:

•	 Customizing default settings
•	 Handling events
•	 Working with methods and utilities
•	 Using the theme framework

D
o

Configuring and Extending jQuery Mobile

[50]

Chapter 3

[51]

Customizing default settings
The first problem you may run into is jQuery Mobile configuration.

For example, you may not like its default CSS transition, or just need a different
class to be attached to an active button, and so on.

jQuery Mobile, unlike the other jQuery projects (jQuery and jQuery UI),
automatically applies some markup enhancements on loading. This means,
obviously, that there are some settings, by default, that, while working fine for
most, may not match your needs or desire.

Luckily, the default configuration jQuery Mobile comes with can be easily
configured to suit your likings:

•	 jQuery Mobile triggers the mobileinit event on the document object
immediately upon execution, so you can bind to it and override any
default configuration:
$(document).bind ("mobileinit", function () {

Configuring and Extending jQuery Mobile

[52]

 // here we can override the default configuration
});

•	 We can now change the default settings for some options modifying the
corresponding $.mobile object using either jQuery's $.extend method
or by specifying them individually.
The $.mobile object is intended to store various configurable properties:
$(document).bind ("mobileinit", function () {
 $.extend ($.mobile, {
 option1: value1,
 option2: value2
 });

 $.mobile.option3 = value3;
});

To understand how the $.extend function works, please read the jQuery
API documentation at http://api.jquery.com/jQuery.extend/.
To sum it up, though, it "merge[s] the contents of two or more objects
together into the first object" and returns the resulting object.

•	 But obviously, we need to know what settings we are allowed to modify
via the $.mobile object.

•	 We can find a list of these options on the jQuery Mobile website, which is
reported here with a little explanation.

•	 activeBtnClass
string; default: "ui-btn-active"
The class used for the "active" button state, from CSS framework.

•	 activePageClass
 string; default: "ui-page-active"
 The class used for the "active" page state, from CSS framework.

•	 ajaxFormsEnabled
 boolean; default: true
 jQuery Mobile will automatically handle form submissions through Ajax,
when possible.

•	 ajaxLinksEnabled
boolean; default: true

 jQuery Mobile will automatically handle link clicks through Ajax, when
possible.

Chapter 3

[53]

•	 defaultTransition
 string; default: 'slide'
 Set the default transition for page changes that use Ajax. Set to 'none' for no
transitions by default.

•	 gradeA
 function that returns a boolean; default: a function returning the value of
$.support.mediaquery
 Any support conditions that must be met in order to proceed.

•	 hashListeningEnabled
 boolean; default: true
 Automatically handle location.hash changes.

•	 loadingMessage
 string; default: "loading"
 Set the text that appears when a page is loading. If set to false, the message
will not appear at all.

•	 metaViewportContent
 string; default: "width=device-width, minimum-scale=1, maximum-scale=1"
 Configure the auto-generated meta viewport tag's content attribute. If false,
no meta tag will be appended to the DOM.

•	 nonHistorySelectors
 string; default: "dialog"
 Anchor links with a data-rel attribute value, or pages with a data-role value
that match these selectors will not be trackable in history (they won't update
the location.hash and won't be bookmarkable).

•	 ns
 string; default: ""
 The namespace used in data attributes. It's appended to the data- text, so it's
better if you include a trailing dash so it looks like data-mynamespace-role.

•	 pageLoadErrorMessage
 string; default: "Error Loading Page"
 Text to appear when a page fails to load.

•	 subPageUrlKey
 string; default: "ui-page"
 The URL parameter used for referencing widget-generated sub-pages
(such as those generated by nested listviews). Translates to example.html&ui-
page=subpageIdentifier. The hash segment before &ui-page= is used by the
framework for making an Ajax request to the URL where the sub-page exists.

Some of the above-mentioned properties can also be changed at runtime and for a
particular instance of the event. For example, we might want a particular page, and
only that page, to transit to the next page using a fade effect.

Configuring and Extending jQuery Mobile

[54]

This changes the behavior of that transition only, and does not affect the default
behavior of any other page we may change through this process of configuration.

Linking to jQuery Mobile
Pay close attention to the order in which you link to your JavaScript
libraries, which is of maximum importance.
Always remember to link to jQuery Core first, then to jQuery Mobile.
But also make sure that, if you wish to change the default settings using
the above-mentioned proceedings, your event handler before jQuery
Mobile is loaded, due to the mobileinit event triggered right at
execution.
The following is the recommended way to link to your JavaScript files:

<script src="jquery.js"></script>
<script src="custom-scripting.js"></script>
<script src="jquery-mobile.js"></script>

Handling events
You can still use any jQuery event you might need, but chances are you are looking
forward to providing a better user experience to mobile users.

In order to enhance the performance of mobile-browsing, jQuery Mobile adds a new
set of events which are mobile-specific and are based upon native events.

The custom set of events behaves no differently as any other jQuery event would,
and can be bound to them with either bind() or live().

Bind or live?
Both events are used for a similar purpose, which is attaching a handler
to an event for the elements which match the current selector. The only
difference is that live() attaches the handler to the elements matching
the current selector that will be created in the future.
This is to say, for example, that if we want a click event to be bound to the
already existing paragraphs only, we should use bind().
On the other hand, if we plan on adding a new paragraph, and we need
the click event handler attached to it, too, we need to use live() when
binding the event handler.

Chapter 3

[55]

Touch events
Touch events are those events triggered whenever the user touches any part of the
page. Touch events are of different kinds, and are the primary way in which the user
is supposed to interact with our web application.

These events even work on desktop computers, and you can "tap" and "swipe" with
your mouse:

•	 Tap: Triggers any time after a complete touch event (that is, the users taps
the on the element)

•	 Taphold: Triggers after the user touches the element and does not release
for one second

•	 Swipe: Triggers when a horizontal drag of at least 30px occurs within one
second

•	 Swipeleft: Triggers when the swipe event occurred in the left direction
•	 Swiperight: Triggers when the swipe event occurred in the right direction

To bind one of the above-mentioned events, we would proceed using the
following code:

$('body').bind ('tap', function () {
 alert ('Tap!');

 return false;
});

Now, every time we tap on the page, a 'Tap!' alert will show, telling us the touch
event has been correctly bound to the handler of our choice:

Configuring and Extending jQuery Mobile

[56]

return false
You may be wondering why we added a return false line to our event
handler, just like you may have seen in other snippets of code.
Well, in this case (empty page, just one event), it's pretty useless, but on a
more cluttered application, the correct usage of this short line of code is of
vital importance.
Returning false does three things, basically: preventDefault(),
stopPropagation(), stops callback execution and returns immediately.
It's better not to misuse return false and use individually, when actually
needed, the single methods.

Scroll events
Scroll events come into play whenever any type of scrolling is detected.

Due to the small size of mobile devices, pages always become quite long and there is
an actual need to scroll down or up, left or right.

Please note that the functioning of this set of events is closely related to "swipe", as
it's quite obvious that a scroll is obtained in the same way a swipe event is triggered,
but vertically.

The difference here lies in how the two sets of events are processed. jQuery Mobile
"does not have a vertical swipe event [yet] because that could interfere with
scrolling". After all, "a vertical swipe event would be used on pages with no vertical
scrolling and seems tricky to do with the wide range of devices which are now
supported" (Todd Parker).

•	 scrollstart: Triggers when a scroll begins
•	 scrollstop: Triggers when a scroll finishes

The scrollstart event behaves strangely on OS devices, due to them
freezing DOM manipulation when scroll starts. For this reason, any DOM
manipulation is queued and applied when the scroll finishes, resulting
in the scrollstop handler executing right after the scrollstart
(delayed) one.

Chapter 3

[57]

Page-related events
All other events that are in some way related to pages fall into this category.

Since jQuery Mobile allows for multi-page HTML files, we need to relyon a set of
events which are triggered when a page is show or hidden, or created.

•	 pageshow: Triggers on the page being shown, after its transition completes.
•	 pagehide: Triggers on the page being hidden, after its transition completes.
•	 pagebeforeshow: Triggers on the page being shown, before its transition

completes.
•	 pagebeforehide: XE "pagebeforehide event" Triggers on the page being

hidden, before its transition completes.

Note that whenever a page is shown or hidden, two events are
triggered on that page. This means that, when a page transition occurs,
there are actually four events triggered, depending on the page being
shown (pageshow and pagebeforeshow) or hidden (pagehide and
pagebeforehide).

A second argument in the callback function is provided in order to reference to either
the next page (if the page on which the event is triggered is being shown) or the
previous page (if the page is being hidden):

$('div').live ('pageshow',function (e, ui) {
 // ui.prevPage was just hidden
 // Object contains information about the hidden (previous) page
});

$('div').live ('pagehide',function (e, ui) {
 // ui.nextPage is showing
 // Object contains information about the current page
});

The first page shown does not have a previous page reference,
but an empty object is provided instead.

Page initialization also plays an important role in jQuery Mobile, primarily due to its
auto-initializations of plugins based on markup convention found in a given page.

Configuring and Extending jQuery Mobile

[58]

The jQuery Mobile documentation states that:

This auto-initialization is controlled by the "page" plugin, which dispatches events
before and after it executes, allowing you to manipulate a page either pre-or-post
initialization, or even provide your own initialization behavior and prevent the
auto-initializations from occurring. Note that these events will only fire once per
"page", as opposed to the show/hide events, which fire every time a page is shown
and hidden.

•	 pagecreate: Triggers on the page being initialized, after initialization
completes

•	 pagebeforecreate: Triggers on the page being initialized, before
initialization completes

By binding to pagebeforecreate and returning false, you can
prevent the page plugin from making its manipulations.

Note that for these events to be executed at page load, it is necessary we bind them
before jQuery Mobile executes, in the mobileinit handler, as follows:

$(document).bind ("mobileinit", function () {
 // Here we override the default configuration
 // ...
 // Here we load the JS code we might need
 $('div[data-role*='page']').live ('pagecreate', function (e, ui) {
 // Call page event dispatcher / shared functions
 });
});

As we will see in the next chapter, the data-role attribute set to page lets us create
multiple "pages" and wrap them into the same HTML file. We can then call the same
functions every time a page is created, or write a script to differentiate between
pages and run JavaScript code selectively (see Appendix).

If a change in the orientation of the device is detected, there is the possibility to
change the page style, so we can display the page correctly at any time:

•	 Orientationchange: Triggers when the device orientation changes by
turning it vertically or horizontally

To allow for an effective change of styling when the device orientation is modified,
the callback function provides an orientation property which equals either portrait
or landscape.

Chapter 3

[59]

This value is also added as class to the HTML elements, so that you can write the
CSS code accordingly.

For example, we might want to use the following CSS code to distinguish between
portrait and landscape orientation:

.landscape img {
// page is in landscape view, image should be wider
width: 480px; }

.portrait img {
// page is in portrait view, image should be narrower
width: 320px; }

Actually, I found out that, if we bind the orientationchange event to the window
object, we can work with the window.orientation property which behaves in the
following way:

$(window).bind ('orientationchange', function (e) {
$('body').removeClass ('portrait landscape').addClass (e.orientation ?
'landscape' : 'portrait');
});

The above code should also make sure the correct class is added to the body, so we
can apply the right styling options.

The window.orientation property returns 0 for portrait and 90 or -90 for landscape
view.

Another way to make sure the CSS code works correctly even on devices that do
not interact well with the orientation.change event is using CSS code so that it
distinguishes between page orientation itself:

@media all and (orientation: portrait) {
body { background-color: red }
}
<link rel="stylesheet" media="all and (orientation: landscape)"
href="landscape.css" />

D
o

Configuring and Extending jQuery Mobile

[60]

Working with methods and utilities
In addition to the set of properties we are able to configure as default options, jQuery
mobile lets us make use of a set of methods which are of great aid in dealing with
some common issues we may encounter during the creation of our web application.

These methods are all accessible through the $.mobile object (of which we will
learn more as we go on) and can be called at any time in our script, depending
on our needs.

The $.mobile.activePage property refers to the page
currently displayed.

•	 addResolutionBreakpoints (number|array values): Add width
breakpoints to the min/max width classes that are added to the
HTML element

•	 The values argument can be either a number or an array of numbers

jQuery Mobile has defined a set of classes that are applied to the
top-level element and updated on window load or resize.
Breakpoints (that is, the widths at which the class is added) are set
by default at the following widths: 320, 480, 768, 1024, and for each
of these, two classes can be used: min-width-XXXpx and max-
width-XXXpx, where XXX is a number belonging to the width
breakpoints.

Width breakpoints can thus be manipulated (well, just added, that is) using the
previously mentioned method, very similarly to the following example:

// A single width (number)...
$.mobile.addResolutionBreakpoints (800);

// … Or more than one at the same time (array)
$.mobile.addResolutionBreakpoints ([800, 1440]);

The following classes will then be respectively added if the window width matches
the newly created breakpoints: min-width-800px and max-width-800px, min-width-
1440px and max-width-1440px:

•	 changePage (string|object|array to, string transition, boolean back, boolean
changeHash)
Programmatically changes from one page to another.

Chapter 3

[61]

The to argument can be expressed in a variety of forms. Thanks to this feature, the
developer can decide to provide it as: a simple string, which would represent the
relative path to the page (that is, '../contact.html'); a jQuery object, representing
a "page" contained in the same file (that is, $('#contact')); an array of two page
references [from, to], from transitioning from a known page (assumed as the
currently active page $.mobile.activePage); an object to send form data, consisting
of {to: url, data: serialized form data, type: "get" or "post"}.

The back and changeHash arguments, when set true, will respectively cause
a reverse-direction transition and update the hash to the page's URL. They are
respectively false and true by default. It is important to note that changeHash is
necessary to keep history current in the browser.

Transitions can be chosen from the following (default) list, which can
be modified changing the default configuration through $.mobile.
transitions: 'slide', 'slideup', 'slidedown', 'pop', 'flip', 'fade'.

There are several ways to change a page programmatically.

The simplest one is nothing more than the following code, which leaves the default
transition (slide) and any other default configuration untouched. The page is tracked
in history (that is, the back button links back to the page from which we came):

$.mobile.changePage ('../path/to/page.html');

A slightly more advanced approach can be obtained if we try to change the default
transition effect and prevent the page from being tracked in history by setting the
changeHash argument to false:

$.mobile.changePage ('other/page.html', 'fade', false, false);

Moreover, we can send form data along, passing an object as the first argument:

var pageData = { url: formresults.php, type: 'get', data:
$('form#myform').serialize () };
$.mobile.changePage (pageData);

We can also store a reference to a page into a variable so that, once we have reached
another page, we can set use changePage to load a third page as if we came from the
page for which we stored the reference:

var previousPage = $.mobile.activePage.data ('ui.prevPage');
// now navigate away, browse the other "pages"
// but make sure you are on another "page" before the next line is
triggered,

Configuring and Extending jQuery Mobile

[62]

// which will make it look like the page we come from is previousPage.
//
// for example, you can $.mobile.changePage ($('#secondpage'),
'slideup')
$.mobile.changePage ([previousPage, anotherPreviousPage], 'pop');

pageLoading (boolean done): Shows (done set to true) or hides (default) the page
loading message, which is configurable via $.mobile.loadingMessage.

Usage is as simple as it seems:

// To show the loading message
$.mobile.pageLoading ();

// To hide the loading message
$.mobile.pageLoading (true);

silentScroll (number yPos): Scrolls to a particular Y position (default is 0)
without triggering scroll event listeners:

// Scroll to 100px
$.mobile.silentScroll (100);

Using the theme framework
Visually, jQuery mobile offers a range of themes that, by default, draw inspiration
from a variety of UI elements and mix them all together to create an original, yet
somewhat familiar, user experience.

Instead of trying to make the elements explicitly look like those from another library
or framework, or trying to reproduce the feel of a popular mobile OS, jQuery Mobile
defines a new set of looks and experiences for mobile applications.

Chapter 3

[63]

The default theme for jQuery Mobile looks very nice indeed, combining colors from
two of the five swatches already available out of the box to apply to your web pages.

The theme framework implemented in jQuery Mobile relies on CSS3 specifications
in order to reduce the page weight: rounded corners, box and text shadows, and
gradients are all obtained making use of CSS3 properties.

The visual effects we are able to design combining "normal" CSS techniques and a
bunch of these new properties can be packaged together in themes, which usually
consist in not more than one CSS file. Each theme can contain up to 26 color
swatches, each consisting of a header bar, content body, and button states, which
can be freely mixed to create unique designs.

Configuring and Extending jQuery Mobile

[64]

In the following screenshot, we can see the five swatches (a, b, c, d, and e) for buttons
and bars and how they are applied and look like:

A set of icons is also included and can be used in a variety of situations, including
lists and buttons:

By default, if no theme is specified, jQuery Mobile assigns the "A" (black) swatch
to headers and footers. Content blocks will default to "C" (light gray) swatch to
maximize contrast. Any button that's placed in a bar is automatically assigned a
swatch letter that matches its parent bar or content box: for example, "A" bars will
have "A" buttons by default.

Chapter 3

[65]

And if we ever get bored after combining and mixing and matching the swatches
included in the default theme, jQuery Mobile allows for the creation of customized
themes to help our own web application stand out.

Custom themes can modify a number of options, including shadows, icon sets, and
corner radius values for buttons and boxes, as well as the more obvious foreground
and background colors, gradients, and font family.

In order to apply a particular swatch to a page or specific element, we should make
use of the data-theme attribute, which can be set to a letter from "a" to "z" and
represents the swatch we want to be applied to the selected element.

Note that the data-theme attribute can be applied to the whole page
instead of just individual elements. So apply it to a <div> outside of the
elements and it will cascade down to inner elements.

The following code might be a useful resource to better understand how we can
apply different color swatches to elements on the same page:

Button A
Button B
Button C
Button D
Button E

Configuring and Extending jQuery Mobile

[66]

The buttons created by the preceding code will look like the following image:

Summary
In this chapter, we have gone through an overview of what is jQuery Mobile and
how its elements look and behave by default.

It is obvious that many of the aspects we have just mentioned will be discussed
in greater detail in the following chapters, along with each covering technique,
information, and general aspects of a specific element available for usage with the
jQuery Mobile framework.

The basics for each jQuery Mobile-based application are pages, and, as such, in
the next chapter, we will discover how we can create a simple page, set up more
complex "multiple pages" layouts, and add dialogs and information boxes to the
whole page.

Reading, Writing,
Communicating: Content

Trying to communicate and provide information in an effective way can be a little
trickier when we are targeting mobile devices; their screens are relatively small
(ridiculously small if we think about our 24 inch iMac resting on our office desk), and
we have already understood that we cannot display content in the way we used to,
back in the days when desktop computers were the only way to access data on the
Internet.

With the advent of mobile browsing, new solutions had to be found.

The jQuery Mobile framework provides a number of tools, widgets, and components
which are extremely helpful in formatting our content and make it look elegant and
put-together even on our beloved smaller-screen devices – well, especially for them!

In fact, the difficulty in designing, formatting, and correctly showing a page on
a mobile device is going to become a no-brainer using the set of elements jQuery
Mobile provides in order to allow for an easy styling of our web application content.

As for this chapter, we're going to cover:

•	 How content is displayed
•	 Using columns and grids
•	 A note on collapsible blocks
•	 Theming content

Reading, Writing, Communicating: Content

[68]

How content is displayed
Yes, there is nothing wrong in just writing down what our website or web
application is about in the HTML file. It's always worked and always will.

The actual point here is taking advantage of the tools jQuery Mobile offers us to
format our information, specifically for mobile devices.

For example, there are occasions in which the need for multiple columns may arise:
we can use a layout grid, which is nothing more than some CSS-based columns.

Or, on a completely different note, we might just need to hide/show a block
of content: collapsible blocks have been designed for this, and can be easily
implemented in our site layout.

But before we begin analyzing any of the methods in which we are able to format our
content according to our liking, we should take a look at how content is displayed in
its basic HTML formatting.

Based upon the "light hand approach" (as they call it), jQuery Mobile lets the browser
rendering take precedence over any other third-party styling, with exceptions made
for the following little tweaks the framework applies to any page by default:

•	 Adding a bit of padding for a better readability
•	 Using the theming system to apply fonts and colors

This particular approach to styling by default should make the designers really
happy, as they often find themselves fighting with preset colors schemes, default
fonts, weird margin, and padding values and usually end up resetting everything
and starting again from scratch.

Thankfully, the default padding value looks quite right and, as far as theming goes,
we are able to easily customize (and create new) themes through CSS files and a
theming framework which is extremely versatile and flexible.

Default HTML markup styling
So, what happens if we just write some HTML markup and want some text to be
bold, emphasized, or hyper-linked? jQuery Mobile applies some basic styling to the
elements and makes their look consistent with the simple and clean layout we have
already seen in action.

The following screenshot represents how headings and standard paragraphs are
displayed and generated by the following code:

Chapter 4

[69]

<!DOCTYPE html>
<html>
<head>
<title>Default HTML markup styling</title>
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0a2/
jquery.mobile-1.0a2.min.css" />
<script src="http://code.jquery.com/jquery-1.4.3.min.js"></script>
<script src="http://code.jquery.com/mobile/1.0a2/jquery.mobile-
1.0a2.min.js"></script>
</head>

<body>
<div data-role="page" id="home">
<div data-role="content">
<h1>H1 Heading</h1>
<h2>H2 Heading</h2>
<h3>H3 Heading</h3>
<h4>H4 Heading</h4>
<h5>H5 Heading</h5>
<h6>H6 Heading</h6>
<p>This is a paragraph. Lorem (bold) ipsum
(emphasized) dolor (link) sit amet, consectetur
adipiscing elit.</p>
<blockquote>Blockquote containing a <cite>cite</cite></
blockquote>
<p>This is a paragraph. Lorem (bold) ipsum
(emphasized) dolor (link) sit amet, consectetur
adipiscing elit.</p>
</div>
</div>
</body>
</html>

D
o

Reading, Writing, Communicating: Content

[70]

The result is shown in the following screenshot:

Similarly, the following code produces a preview of what lists and tables look like:

<!DOCTYPE html>
<html>
<head>
 <title>Default HTML markup styling</title>

 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.0a2/
jquery.mobile-1.0a2.min.css" />

 <script src="http://code.jquery.com/jquery-1.4.3.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.0a2/jquery.mobile-
1.0a2.min.js"></script>
</head>

<body>
 <div data-role="page" id="home">
 <div data-role="content">

 Unordered list item 1
 Unordered list item 2
 Unordered list item 3

Chapter 4

[71]

 Ordered list item 1
 Ordered list item 2
 Ordered list item 3

 <table>
 <caption>Table caption</caption>

 <thead>
 <tr>
 <th scope="col">Name</th>
 <th scope="col">City</th>
 <th scope="col">Phone</th>
 </tr>
 </thead>

 <tfoot>
 <tr>
 <td colspan="5">Table foot</td>
 </tr>
 </tfoot>

 <tbody>
 <tr>
 <th scope="row">David Green</th>

 <td>New York City, NY</td>
 <td>555-0123</td>
 </tr>
 <tr>
 <th scope="row">Martha White</th>

 <td>Los Angels, CA</td>
 <td>555-0188</td>
 </tr>
 <tr>
 <th scope="row">Bobby Brown</th>

 <td>Washington, D.C.</td>
 <td>555-0110</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
</body>
</html>

Reading, Writing, Communicating: Content

[72]

Using columns and grids
Even with no additional CSS code, jQuery Mobile formats our content in a simple,
yet clean way. This also makes the text easier to read on mobile devices.

During the development of our web application, there might be times when we just
need to place certain elements in a particular position, which would require a certain
fluency in CSS (which we might not have).

Thankfully, jQuery Mobile provides a quick way to create a sort of grid layout: it
applies a set of CSS rules with which we are able to obtain columns and rows to
display our content as if it was in a table:

Chapter 4

[73]

The page pictured above shows a 3x3 grid themed with Swatch B colors applied.

The use of grids, though perfectly legitimate, is somewhat discouraged,
due to the narrow screen width, which is a feature common to all the
mobile devices.

In short:

•	 They are useful for displaying any sort of content which needs to be
presented side-by-side (buttons and navigation bars are an example)

•	 They have no margins, no padding, no borders, and no background
•	 They, in general, do not interfere with any styling
•	 They are 100 percent wide
•	 They can have two, three, four, or five columns
•	 They can have multiple rows

Reading, Writing, Communicating: Content

[74]

How to create a simple grid with buttons
We'll begin by creating a simple grid with one row and two columns, each of which
will contain a button:

1. In order to tell jQuery Mobile we want a two-column layout, we need to give
a div the ui-grid-a class. This way, jQuery mobile will apply to the children
divs (that is, our blocks or cells) the CSS rules necessary to take up 50 percent
of the screen.
<div class="ui-grid-a">
 <!-- blocks go here -->
</div>

2. Depending on the number of columns we have specified, we are able to add
our cells to the grid. For each cell, we need to specify the ui-block-X class,
where X is a lowercase letter from a to z. The first block will be assigned the
letter a, the second one will have a b, and so on:
<div class="ui-grid-a">
 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
</div>

3. Next we add the buttons (one for each block), which is a fairly
straightforward task:
<div class="ui-grid-a">
 <div class="ui-block-a">
 <button type="submit">Click me!</button>
 </div>

 <div class="ui-block-b">
 <button type="submit">Clicky clicky</button>
 </div>
</div>

Chapter 4

[75]

4. We can obviously apply any theme we wish to the buttons, in order to make
them stand out more or just as a style improvement:

<div class="ui-grid-a">
 <div class="ui-block-a">
 <button type="submit" data-theme="a">Click me!</button>
 </div>

 <div class="ui-block-b">
 <button type="submit" data-theme="b">Clicky clicky</button>
 </div>
</div>

Reading, Writing, Communicating: Content

[76]

Creating grids with more than two columns
The preset configuration layouts also comprehend grids with three, four, and
five columns.

Needless to say, there is hardly any use at all for grids with four or five columns
on devices that, by definition, have a small screen, but three-column layouts may
come in handy sometimes.

Creating grids with multiple columns is no different from creating a simple
two-column grid — we only need to change the class.

We use letters from b to d to create grids with a number
of columns from three to five.

In fact, jQuery Mobile has a set of CSS rules that make sure the grid always takes up
the full width of the screen and all of the blocks have the same width too:

1. Our first step towards the realization of a four-column grid with two rows is
creating a div element which has a ui-grid-c class:
<div class="ui-grid-c">
 <!-- we can have rows of four blocks in here! -->
</div>

2. As we have split the page up into four parts (25 percent wide each), we are
able to fit four blocks for each row in the grid (letters from a through d):
<div class="ui-grid-c">
 <div class="ui-block-a">
 <p>First block, First row (A)</p>
 </div>

 <div class="ui-block-b">
 <p>Second block, First row (B)</p>
 </div>

 <div class="ui-block-c">
 <p>Third block, First row (C)</p>
 </div>

 <div class="ui-block-d">
 <p>Fourth block, First row (D)</p>
 </div>
</div>

Chapter 4

[77]

3. As for creating rows other than the first one, we just need to insert
other blocks, repeating the letters we have already used. jQuery Mobile
automatically recognizes our attempt at inserting a new row and breaks the
line, so any time we add a block with the letter a, a new row is appended to
the grid:
<div class="ui-grid-c">
 <div class="ui-block-a">
 <p>First block, First row (A)</p>
 </div>

 <div class="ui-block-b">
 <p>Second block, First row (B)</p>
 </div>

 <div class="ui-block-c">
 <p>Third block, First row (C)</p>
 </div>

 <div class="ui-block-d">
 <p>Fourth block, First row (D)</p>
 </div>

 <!-- second row -->

 <div class="ui-block-a">
 <p>First block, Second row (A)</p>
 </div>

 <div class="ui-block-b">
 <p>Second block, Second row (B)</p>
 </div>

Reading, Writing, Communicating: Content

[78]

 <div class="ui-block-c">
 <p>Third block, Second row (C)</p>
 </div>

 <div class="ui-block-d">
 <p>Fourth block, Second row (D)</p>
 </div>
</div>

Using the same method, we can easily create grids with multiple columns and rows
to easily align elements we absolutely need to display one next to another.

A note on collapsible blocks
On a completely different note, jQuery Mobile provides an easy-to-use and
visually-appealing solution to hide and show content, namely, the so-called
collapsible blocks.

Chapter 4

[79]

Collapsible blocks should be already well-known to the web designers out there,
and they have gained in popularity especially after the advent of JavaScript libraries
and frameworks like jQuery, which have made writing the necessary code a matter
of minutes to obtain a pane which shows its content once a button (or any kind of
element, actually) is clicked. The following screenshot shows how jQuery Mobile
renders, by default, any collapsible block we include into our web page:

So, how do we create a (set of) collapsible block(s)?

1. Collapsible blocks are obtained by assigning a container the
data-role="collapsible" attribute. As easy as that.
<div data-role="collapsible">

<!-- this is a collapsible block -->
</div>

2. The jQuery Mobile framework needs a heading element to be present inside
the container. The heading (which can be from h1 through h6) will be styled
like a clickable button, and a plus (+) symbol will be added to its left to
indicate it's expandable. Once we click the header/button and the content
shows, a minus (-) symbol will replace the plus to indicate it's collapsible.

D
o

Reading, Writing, Communicating: Content

[80]

Where do I put the heading?
The heading can be placed anywhere inside the container. Remember that
jQuery Mobile will use as a header the very first h-element it finds inside
the container, and remove it from its original position.
Once the required header is provided, you can add any other h-element
to the container and it will not be processed (that is, it will behave like a
normal heading would).

<div data-role="collapsible">
 <h3>Collapsible block header</h3>
 <p>Lorem ipsum dolor sit amet etc....</p>
</div>

We used an h3 heading in this example, but any other heading would
have looked just the same: jQuery Mobile changes completely the style of
the heading to match a button's style.

3. We can specify whether we want a collapsible block to be expanded on page
load or not by adding the data-collapsed="true" attribute to the container:

<div data-role="collapsible" data-collapsed="true">
 <h3>This block will be collapsed (does not show content)</h3>

Chapter 4

[81]

 <p>Lorem ipsum dolor sit amet etc....</p>
</div>

<div data-role="collapsible">
 <h3>This block will expand on page load</h3>
 <p>This text is visible right away!</p>
</div>

Nested collapsible blocks
Collapsible blocks can also be nested, resulting in a series of blocks which control
various paragraphs and content:

1. To create a set of nested collapsible blocks, we only need to insert a block
into another block, which will be its container:
<!-- Top level collapsible block -->
<div data-role="collapsible">
 <h3>Collapsible block header</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.</p>

 <!-- nested collapsible block -->
 <div data-role="collapsible">
 <h3>Nested collapsible block</h3>
 <p>Class aptent taciti sociosqu ad litora torquent per conubia
nostra, per inceptos himenaeos.</p>
 </div>
</div>

2. We may have any number of collapsible blocks nested; for example, here is
another one:
<!-- Top level collapsible block -->
<div data-role="collapsible">
 <h3>Collapsible block header</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.</p>

 <!-- nested collapsible block -->
 <div data-role="collapsible">
 <h3>Nested collapsible block</h3>
 <p>Class aptent taciti sociosqu ad litora torquent per conubia
nostra, per inceptos himenaeos.</p>

 <!-- nested into a nested block -->
 <div data-role="collapsible">
 <h3>Nested into a nested collapsible block</h3>
 <p>Integer lectus eros, accumsan eget ultrices vel, sagittis
volutpat odio.</p>

Reading, Writing, Communicating: Content

[82]

 </div>
 </div>
</div>

Collapsible sets
Collapsible sets are a certain number of collapsible blocks grouped together so that
they act like an accordion widget: all other blocks close when a new one is opened:

1. A set of collapsible blocks is created by adding the
data-role="collapsible-set" attribute to a container:

<div data-role="collapsible-set">
 <!-- collapsible blocks go here -->
</div>

2. We then add our collapsible blocks, as we would do in any other page:

<div data-role="collapsible-set">
 <div data-role="collapsible">
 <h3>Collapsible block in a set (1)</h3>
 <p>Lorem ipsum dolor sit amet, etc....</p>
 </div>

 <div data-role="collapsible">

Chapter 4

[83]

 <h3>Collapsible block in a set (2)</h3>
 <p>Lorem ipsum dolor sit amet, etc....</p>
 </div>

 <div data-role="collapsible">
 <h3>Collapsible block in a set (3)</h3>
 <p>Lorem ipsum dolor sit amet, etc....</p>
 </div>

Nested collapsible blocks in collapsible sets
You cannot have nested collapsible blocks in a collapsible set, as jQuery
Mobile treats all the collapsible blocks in the same way so that, when
the nested collapsible block is clicked, all other blocks are closed and the
content is hidden: even the container block is in fact closed, being part of
the same collapsible set.
As of now, this problem seems to be fixed on certain handsets (Android 1.6
and 2.1 didn't even have this issue), but a bug is still filed for other devices.

Reading, Writing, Communicating: Content

[84]

Theming content
Theming content is extremely easy, thanks to the excellent theming system jQuery
Mobile is shipped with.

As for collapsible blocks, we can add the data-theme attribute so we can choose from
any swatch color. Various swatches appear as shown in the following screenshot:

However, in order to have the content of collapsible blocks with the same color
swatch, we need to add the same data-theme attribute to the outer container
(in most cases, the page div).

A more interesting issue is the one related to the appearance of grids and their
blocks: in order to obtain a grid of colorful cells, it is suggested to create an inner
div which is styled using classes from a theme (swatch) of our liking:

<div class="ui-grid-b">
 <div class="ui-block-a">
 <div class="ui-bar ui-bar-b" style="height: 60px">
 <p>Content</p>
 </div>
 </div>

 <div class="ui-block-b">
 <div class="ui-bar ui-bar-b" style="height: 60px">
 <p>Content</p>
 </div>
 </div>

Chapter 4

[85]

 <div class="ui-block-c">
 <div class="ui-bar ui-bar-b" style="height: 60px">
 <p>Content</p>
 </div>
 </div>
</div>

Of course, we could use the following code to wrap each block's content into the div
we need once the page loads, and still get the same result with much less work to do!

<!-- in the HEAD -->
<script type="text/javascript">
 $(document).ready (function () {
 $('div[class^=ui-grid]').children ().each (function () {
 $(this).html ('<div class="ui-bar ui-bar-b" style="height:
60px">' + $(this).html () + '</div>');
 });
 });
</script>

<!-- in the BODY -->
<div data-role="page" id="home">
 <div data-role="content">
 <div class="ui-grid-b">
 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
 <div class="ui-block-c"></div>

 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
 <div class="ui-block-c"></div>

 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
 <div class="ui-block-c"></div>
 </div>
 </div>
 </div>
<div>

Reading, Writing, Communicating: Content

[86]

Summary
Dealing with content and displaying it on our page using jQuery Mobile is, as
we've seen, fairly easy.

The problems we might run into when trying to accomplish a particular look and
feel would be mainly related to the way jQuery Mobile processes the HTML markup
and applies its own CSS rules to our elements.

However, the framework does its best not to interfere with our code and styling,
preserving our layout as we thought it originally – there shouldn't be any
problems then.

In the next chapter, we're going to see how to move between pages using toolbars,
which can be customized to match our personal preferences, too!

Navigation Made Easier:
Toolbars

One of the very first things we are used to looking for in the website is some form of
navigation, a series of buttons or links we can use to move from one page to another.

There have been many studies on the field of how readers (or readers of a website)
look at a page and process information, and how they gather the key words and
sentences is quite a well-known fact as of now: people tend to look at the left-most
content first and they place more attention on words and images which are bold and
close to the top.

Website designers know this, and place the most important information near that
area: the majority of the websites out there (exception made for those which are edgy
and artistic – or try to) have their logo and menu on the top of the page. Some prefer
a horizontal list of links; some go for vertical buttons.

In the mobile world, none of these key concepts change: jQuery Mobile provides a
set of tools (well, toolbars) which can be used to deliver information (and links) to
the user in a discreet, yet effective, manner.

Toolbars can be used as headers (usually containing the page title and some navigation
buttons), footers (for navigation and informative purposes), and utility bars.

This chapter will address the following issues:

•	 How do toolbars actually work?
•	 Different types of bars
•	 On positioning
•	 Theming toolbars

Navigation Made Easier: Toolbars

[88]

How do toolbars actually work?
First of all, what exactly is a toolbar?

As the name quite clearly suggests, a toolbar is just a bar that contains buttons, text,
or links we can interact with.

The following screenshot represents a standard page created with the aid of jQuery
Mobile, in which a toolbar (header) is present:

As we can see, the header has a different coloring than the rest of the page, in the
attempt to make it stand out and be more noticeable.

On the bar we can find, from left to right, a button, some text in the center, and
another button positioned far right.

The first button reads Back and it is obvious what would happen if we clicked it:
jQuery Mobile would take us back to the previous page we were viewing.

The centered text is the page title, and is very helpful in reminding us what we
are reading and/or where we are in the website.

Chapter 5

[89]

Lastly, the circular button on the right is a link to the home page that is the site root.
Clicking on this button will bring us back to the top-most directory.

Different types of bars
Being the great framework it is, jQuery Mobile provides a standard set of bars
and navigation tools to cover most standard scenarios: header bars, footer bars, and
navigation bars.

Header bars
The Header bar serves as the page title, is usually the first element inside each
mobile page, and typically contains a page title and up to two buttons.

We can place buttons on the left or right of the page title element, which is a heading.
All heading levels from H1 through H6 are allowed to represent the page title and
are treated and styled the same, provided they are inside a div whose data-role is set
to 'header'.

It's common practice to include a header element at the top of each
page, though it is not required. Pages can also consist of the content
portion exclusively.

Creating a header
Creating a header is really, really simple. Here's how:

1 Inside the page div, but before the content container, add a div with a
data-role='header' attribute:
<div data-role="header">
 <!-- header content goes here -->
</div>

2. Inside the header container, add the heading for displaying the page title.
Any heading level (H1-H6) can be used: the end result will be the same.

For consistency purposes, h1 headings seem to be preferred for header
bars over any other lower-level heading.

<div data-role="header">
 <h1>Page title</h1>
</div>

Navigation Made Easier: Toolbars

[90]

The following screenshot shows our simple header bar:

3. The framework automatically generates a back button and a home
button on every page. To get rid of the back button, simply add the
data-backbtn="false" attribute to the header container:
<div data-role="header" data-backbtn="false">
 <h1>Page title</h1>
</div>

Customizing buttons
By default, jQuery mobile creates slots of button on either side of the page title.

If you're not happy with the default configuration, you can wrap your
custom-styled markup into a div inside the header container: jQuery
Mobile won't apply its styling to it.

•	 Buttons are anchor elements (or buttons created with button markup – see
Chapter 6, Mobile Clicking: Buttons) which are as wide as the text they contain.

•	 The framework automatically sets the first link in the left button slot and the
second link in the right.

Chapter 5

[91]

We can use the data-icon attribute to add icons to the button.

<div data-role="header">
 <!-- This will appear on the left -->
 Index

 <h1>Page title</h1>

 <!-- This will appear on the right -->
 Add
</div>

Because of our code, buttons appear on both sides of the heading:

•	 Buttons automatically adopt the color swatch of the header in which they are
contained, but we can specify a data-theme attribute in order to change it:

<div data-role="header">
 <!-- This will appear on the left -->
 Index

 <h1>Page title</h1>

Navigation Made Easier: Toolbars

[92]

 <!-- This will appear on the right (and is yellow) -->
 Add
</div>

•	 A custom back button can be obtained by adding the data-rel="back"
attribute to a button. The button will then behave as a back button
would—go back one history entry and ignore the href attribute.

We still provide a valid URL in the href attribute to make sure that our
code works correctly on unsupported (Grade C) browsers too.

<div data-role="header">
 <!-- This goes back one history entry, regardless of the href
-->
 Go back!

 <h1>Page title</h1>

 <!-- This will appear on the right -->
 Add
</div>

Chapter 5

[93]

•	 In order to obtain a reverse transition without actually going back in
history, we should use the data-direction="reverse" attribute
instead of data-rel="back":
<div data-role="header">
 <!-- This causes a reverse transition, without actually going
back in history -->
 Reverse!

 <h1>Page title</h1>

 <!-- This will appear on the right -->
 Add
</div>

•	 Buttons can be moved to the left or right, regardless of their position in the
code. This applies also to a single button we want on the right.

We can use classes that are also automatically applied by
jQuery Mobile, in order to make sure a certain element has
a specific set of characteristics.

<div data-role="header">
 Right
 <h1>Page title</h1>
 Left
</div>

Navigation Made Easier: Toolbars

[94]

•	 The preceding code applies also to a single button we want on the right:

<div data-role="header">
 Right
 <h1>Page title</h1>
</div>

Our button is now displayed on the right side of the header bar:

Footer bars
The Footer bar is usually the last element inside each mobile page, and tends to be
more freeform than the header in terms of content and functionality, but typically
contains a combination of text and buttons.

Footers have the same structure as the headers, except they are created by using the
data-role="footer" attribute. No buttons are automatically added to the left or
right side, nor is text, in case we don't provide it.

Chapter 5

[95]

Creating a footer
The page footer is very similar to the header in terms of options and configuration:

1. Inside the page div, but after the content container, add a div with a
data-role="footer" attribute:
<div data-role="footer">
 <!-- footer content goes here -->
</div>

2. Inside the footer container, add the heading for displaying the page title.
Again, any heading level (H1-H6) can be used.

Footer headings are best chosen in the h4-h6 range, in order to avoid any
kind of compatibility issue on devices which don't support jQuery UI
enhancements: the heading will then result in a standard heading smaller
than the header's – because the footer is not as important as the heading.

<div data-role="footer">
 <h4>Page footer</h4>
</div>

Navigation Made Easier: Toolbars

[96]

Adding buttons and other elements
By default, jQuery Mobile does not add any element to the footer to allow for
more flexibility.

Buttons are not placed left and right according to the page markup:
instead they are positioned from left to right, in order of appearance
in the code.

•	 Any link or valid button markup (or buttons created with button
markup – see Chapter 6, Mobile Clicking: Buttons) will be automatically
turned into a button.

•	 By default, there is no padding to accommodate elements in the footer.
To include padding, add a class="ui-bar" to the footer container:
<div data-role="footer" class="ui-bar">
 <h4>Padded footer</h4>
</div>

•	 We can add buttons sitting in a row using the following code:
<div data-role="footer" class="ui-bar">
 <a href="left.html" data-icon="arrow-l" data-
role="button">Left
 Up
 <a href="down.html" data-icon="arrow-d" data-
role="button">Down
 <a href="right.html" data-icon="arrow-r" data-
role="button">Right
</div>

The buttons have some space in-between them:

Chapter 5

[97]

•	 We can group buttons together into a button set by wrapping them into a
div with a data-role="controlgroup" attribute:

<div data-role="footer" class="ui-bar">
 <div data-role="controlgroup" data-type="horizontal">
 <a href="left.html" data-icon="arrow-l" data-
role="button">Left
 Up</
a>
 <a href="down.html" data-icon="arrow-d" data-
role="button">Down
 <a href="right.html" data-icon="arrow-r" data-
role="button">Right
 </div>
</div>

Navigation Made Easier: Toolbars

[98]

jQuery Mobile removed rounded corners of buttons, except for those at both ends of
the group:

•	 Buttons can be assigned different color swatches specifying a
data-theme attribute:

<div data-role="footer" class="ui-bar">
 <a href="left.html" data-icon="arrow-l" data-role="button" data-
theme="a">Left
 <a href="up.html" data-icon="arrow-u" data-role="button" data-
theme="b">Up
 <a href="down.html" data-icon="arrow-d" data-role="button" data-
theme="c">Down
 <a href="right.html" data-icon="arrow-r" data-role="button"
data-theme="e">Right
</div>

A sample of the four color swatches is represented in the following screenshot:

Chapter 5

[99]

Navbars
"It's very common to have a horizontal navigation or tab bar inside the header
and/or footer; jQuery Mobile includes a navbar widget that turns an unordered list
of links into a horizontal button bar, which works well in these instances."

jQuery Mobile has a very basic navbar widget that is useful for providing up to five
buttons with optional icons in a bar, typically within a header or footer.

Creating a navbar
1. A navbar is an unordered list of links wrapped into a container that has a

data-role="navbar" attribute. We might want to place the navbar in the
header (right after the page title) or in the footer:
<div data-role="footer">
 <div data-role="navbar">
 <!-- links go here -->
 </div>
</div>

Navigation Made Easier: Toolbars

[100]

2. We can then add the unordered list and two elements: the navbar items are
set to divide the space evenly:
<div data-role="footer">
 <div data-role="navbar">

 One
 Two

 </div>
</div>

3. In this case, each button is half the width of the browser window:

Customizing navbars
If we're not happy with the default configuration, we can tweak some of the settings
to make our navbars look different:

•	 To set one of the links to the active state (that is, a selected link), simply add
the class ui-btn-active to it:

<div data-role="footer">

Chapter 5

[101]

 <div data-role="navbar">

 One
 Two

 </div>
</div>

The blue background indicates that a button is selected (active). Coloring (obviously)
varies depending on the chosen theme:

•	 If up to five elements are added, the space will be split evenly:
<div data-role="footer">
 <div data-role="navbar">

 One
 Two
 Three
 Four
 Five

 </div>
</div>

Navigation Made Easier: Toolbars

[102]

The horizontal space is still split evenly, when the first button is selected:

Chapter 5

[103]

If more than five elements are added, the navbar will wrap to multiple lines:

<div data-role="footer">
 <div data-role="navbar">

 One
 Two

 Three
 Four

 Five
 Six

 </div>
</div>

We can add any number of buttons. Just bear in mind the way in which jQuery
Mobile handles a number of buttons greater than five:

Navigation Made Easier: Toolbars

[104]

Icons can be added to navbar elements by specifying a data-icon attribute:

<div data-role="footer">
 <div data-role="navbar">

 <a href="one.html" data-icon="arrow-l" class="ui-btn-
active">One
 Two
 Three

 </div>
</div>

Icons are displayed on top of the text by default:

Chapter 5

[105]

On positioning
The jQuery Mobile framework provides three different ways in which we
can position our bars, each of which proves useful in certain situations: fixed
positioning (convenience of static toolbars without the drawbacks of implementing
faux-scrolling); fullscreen positioning (toolbars hidden to maximize the viewport);
and a persistent footer option.

Fixed positioning
We can apply fixed positioning to header or footer toolbars by adding a
data-position="fixed" attribute to the element:

<div data-role="header" data-position="fixed">
 <h1>Fixed header</h1>
</div>

Fixed positioning lets the page content flow naturally, allowing us to take advantage
of native scrolling instead of a scripting a faux-scrolling workaround. The header
and footer divs are right in the flow of the document, but whenever they are out of
view, you can tap the screen to make them appear. Tapping again or scrolling the
page will cause them to reappear in the flow of the page (at the top and bottom).

The toolbars start in their natural positions on the page, but when a bar scrolls
out of the viewport, the bar is automatically repositioned back into view.

At any time, tapping the screen will toggle the visibility of the fixed toolbars.
Tapping the page when the toolbars aren't visible brings them into view; tapping
again hides them until you tap again.

Fullscreen positioning
Fullscreen positioning is achieved by adding a data-position="fixed" attribute
to the bar(s) we want to stay over the content. We also need to add a data-
fullscreen="true" attribute to the page container we wish to be viewed fullscreen:

<div data-role="page" data-fullscreen="true">
 <div data-role="header" data-position="fixed">
 <h1>Fullscreen header</h1>
 </div>

 <!-- Content and footer containers follow -->
</div>

Navigation Made Easier: Toolbars

[106]

The fullscreen positioning is used "in special cases where you want the content to
fill the whole screen, and you want the header and footer toolbars to appear and
disappear when the page is clicked responsively — a common scenario for photo,
image, or video viewers".

This is useful for applications like photo or video viewers where you want the
content to fill the whole screen and toolbars are bound to appear by tapping
the screen.

The toolbars in this mode will sit over page content, so not all content will be
accessible with the toolbars open.

Persistent footer
By adding a footer with the same data-id attribute of another footer on another
page, we can make use of the persistent footer feature and see the page content
change while the footer remains fixed, even when transitioning to a new HTML
page.

On page one.html:

<div data-role="footer" data-id="footer1">
 <div data-role="navbar">

 One
 Two
 three

 </div>
</div>

On page two.html:

<div data-role="footer" data-id="footer1">
 <div data-role="navbar">

 One
 Two
 three

 </div>
</div>

Chapter 5

[107]

On page three.html:

<div data-role="footer" data-id="footer1">
 <div data-role="navbar">

 One
 Two
 three

 </div>
</div>

Theming toolbars
Both the header and footer bars will be styled by default with the theme's "a" color
swatch because these bars are typically primary in the visual hierarchy of a page.

Navigation Made Easier: Toolbars

[108]

We can, of course, change the theme swatch to one of our liking by adding a data-
theme attribute to the bar:

<div data-role="footer" data-theme="b">
 <h4>Swatch B</h4>
</div>

Buttons automatically inherit the color swatch from the bar they are contained
in, but can be styled differently to increase contrast and visibility by adding a
data-theme attribute.

The jQuery Mobile website has a demo of the variations that can be achieved by
tweaking the theme swatches and buttons inside the headers and footers:

Chapter 5

[109]

Summary
In this chapter, we have analyzed in great detail how and when to create and use
toolbars in our mobile application: from providing information and navigation
options (header), to linking to pages or different sections with footers and navbars.

In the next chapter, we will be dealing with buttons, whose markup will be
extremely useful in creating and styling our custom button elements to be placed in
toolbars of any kind. Many options and features (such as custom icons, effects, and
coloring) will also be discussed.

Mobile Clicking: Buttons
What would the Internet be without buttons? No, seriously, every time we see a
form, or there is the possibility to perform some sort of action, we instinctively look
for a button to click in order to submit the information we wish to process.

The jQuery Mobile framework provides a series of options and markup facilities for
us to choose from whenever we have to decide how to style the buttons we need in
our mobile interface.

In fact, we might have trouble handling and creating buttons due to their nature:
they are elements we can click, but we also expect them to (usually) do something
other than navigate through the website.

However, jQuery Mobile makes heavy use of buttons as a means of navigation,
often preferring buttons to regular links.

A simple example is the back button which is automatically added to most of the
pages we create using the jQuery mobile framework; actually, though, this is a link
which is styled as a button that links back to the previous page.

There is a fundamental difference between regular buttons and the so-called link
buttons: the former are used in forms, and perform some kind of action; the latter
can be used anywhere and are, in fact, mere means of navigation – exactly as an
anchor link is.

In this chapter, we'll have a look at the following topics:

•	 What do buttons look and feel like in jQuery Mobile?
•	 Buttons markup and icons
•	 Displaying buttons
•	 Theming buttons

Mobile Clicking: Buttons

[112]

What do buttons look and feel like in
jQuery mobile?
Each button we decide to create will be styled in the same way by the jQuery mobile
framework, in order to improve the consistency of our web application.

But what exactly are buttons, and how do they look? First of all, we have a choice
between link buttons and form buttons.

Link buttons are, actually, links which are styled as buttons. We can see an example of
this type of button in almost all of our pages, in which the back button, placed on the
top-left corner of the header bar, is a link to the previous page in the browsing history:

For navigation purposes, you should use link buttons instead of regular
buttons, which are best suited to submit form data because of the submit
action they perform when clicked.

Chapter 6

[113]

The jQuery Mobile framework automatically adds the necessary CSS classes to style
the link as a button.

Here is an example of link buttons looking exactly like form buttons:

On the other hand, form buttons are "real" buttons, but are styled and behave just
like link buttons.

Every time we need to create a form (see Chapter 7, Transmitting Information: Forms),
we also need some input fields and at least one button to let the user submit the data
they entered.

Mobile Clicking: Buttons

[114]

The following screenshot shows how a Submit button is displayed inside a
form element:

The interesting thing about buttons is that jQuery Mobile actually keeps the original
HTML-based button (created with the input tag) hidden and displays a custom
button that looks better and behaves the same way; when we click on it, the event
triggers another click event on the original, hidden button, which is responsible for
actually submitting the form.

For example, the actual markup for a simple button would be as follows. Note that
jQuery Mobile automatically applies a set of classes to modify the markup for a
better user experience on mobile devices. The theme is also specified in the outer
div, while the actual button element is replaced by a span element:

<div data-theme="c" class="ui-btn ui-btn-corner-all ui-shadow ui-btn-
up-c">

 Button element

 <button class="ui-btn-hidden">Button element</button>
</div>

Chapter 6

[115]

Buttons markup and icons
There is, of course, only one way in which we are able to display a working button on
a web page. However, there are a number of options we are allowed to apply to our
buttons to further customize, change, or tweak their appearance and/or functioning.

Creating link buttons
These are the most straightforward buttons to create and place anywhere in a page.

Due to the nature of links though, they'd be better used exclusively for navigation
purposes, whereas form buttons are better suited for, well, forms!

1. In the main content block of a page, we first need to have an anchor link
element we want to turn into a button:
Click me!

2. We can now add a data-role="button" attribute to the link: jQuery
Mobile will do the rest and add the necessary styling to the link.
Click me!

3. And that's it; we already have a button we can click to navigate through
our website. Adding a data-role="button" attribute is enough to obtain
the following screenshot:

Mobile Clicking: Buttons

[116]

Creating form buttons
As previously pointed out, jQuery Mobile automatically hides any button and
displays a custom button, which will trigger any event on the original element.

In fact, the framework converts any button element or input with a type of button,
submit, reset, or image into a link button; the link-based button is dynamically
created by jQuery Mobile and behaves in the very same way as a regular link button
would.

Form buttons are used to submit forms or interact with forms and are obtained in the
same way as a regular HTML button is created – no additional options are required.

1. For example, here is how a button element is created. This line of code will
be eventually substituted by a div and span element to which the necessary
styling has been applied:
<button>Button element</button>

2. In a very similar fashion, any input element with the type button, submit,
reset, or image can be created this way. It will be assigned a class of ui-btn-
hidden and a link-based button will be displayed instead:

<input type="submit" value="Input element" />

The result can be seen in the following screenshot:

Chapter 6

[117]

Adding icons
Buttons can have icons added in order to improve the graphical appearance of a
web page.

The jQuery Mobile framework provides a set of icons most used in web applications.
Icons are white in color and supplied in a sprite; to ensure good contrast on any
background color, a semi-transparent black circle is added behind every icon (see the
Appendix):

•	 To create a button with an icon, we need to add a data-icon attribute to the
button markup:
Home
page

Mobile Clicking: Buttons

[118]

And we obtain a page similar to the following screenshot:

•	 By default, all icons are positioned on the left of the button text. We can
change an icon position by specifying a data-iconpos attribute. Possible
values are right, top, bottom, and they respectively place the icon on the
right, above and under the button text:

<a href="home.html" data-role="button" data-icon="home" data-
iconpos="right">Home page

Icons created using the preceding code are displayed in the following way:

Chapter 6

[119]

•	 The data-iconpos attribute can also have a value of notext: the button text
will be hidden, leaving only the icon visible, and used as a title attribute.

<a href="home.html" data-role="button" data-icon="home" data-
iconpos="notext">Home page

Mobile Clicking: Buttons

[120]

A button icon is represented in a way similar to the following screenshot:

•	 For a list of all the available icons, see Appendix A. Using the icon name
as the data-icon value will let you obtain a button adorned with the
corresponding icon.

•	 Custom icons can be used with jQuery Mobile:

1. We first need to specify a data-icon value that has a unique name such as
myapp-smile:
<a href="smile.html" data-role="button" data-icon="myapp-
smile">Smile!

2. The jQuery Mobile framework will then create a new CSS class by
prefixing ui-icon- to the data-icon value and apply it to the button.
We will thus have a button with a class="ui-icon-myapp-smile".

3. In the stylesheet, we can then write a CSS rule that targets the ui-icon-
myapp-smile class to specify the icon background source:

Chapter 6

[121]

.ui .icon-myapp-smile {
 background-image: url('smile.png');
}

To maintain visual consistency, the jQuery Mobile team suggests creating
a white icon 18x18 pixels saved as a PNG-8 with alpha transparency.

Displaying buttons
We can go on customizing the look of our buttons well beyond just placing them
on a page or just changing their icons or color. In fact, we can further tweak their
appearance, relative to the page.

Inline buttons
By default, buttons take up the whole page width, as they are displayed as block-
level elements.

We can, however, override the default settings and make buttons as wide as they
need to be in order to correctly contain the button text. This is achieved by adding a
data-inline="true" attribute to the button element:

Inline
button

Mobile Clicking: Buttons

[122]

We can see the difference in the following screenshot:

In the case we have multiple buttons we wish to display inline, side-by-side,
we can wrap them into a div element which has a data-inline="true" attribute.

This will cause the buttons to sit side-by-side on the same line, thanks to the
container element which provides the inline attribute. If buttons are too large
for one line, jQuery Mobile will split the elements on two (or more) lines:

<div data-inline="true">
 Open
 Close
 Save
</div>

The preceding code results in the following three buttons together on one line:

Chapter 6

[123]

Using grids (see Chapter 4, Reading, Writing, Communicating: Content) we can also
place buttons side-by-side, but taking up the full page width; this technique allows
for two (up to five) normal full-width buttons to be placed on the same line:

<div class="ui-grid-a">
 <div class="ui-block-a">
 Open
 </div>

 <div class="ui-block-b">
 Close
 </div>
</div>

Mobile Clicking: Buttons

[124]

The code for inline buttons lets us create the following page:

Grouped buttons
Alternatively, in case we wish to visually group a set of buttons together to form a
single block that looks like a navigation component, jQuery Mobile lets us make use
of this feature which comes in handy in several situations.

Wrapping a set of buttons in a container with a data-role="controlgroup"
attribute will cause the framework to create a vertical button group. This consists
of a series of CSS rules that remove margins and shadows between the buttons.

<div data-role="controlgroup">
 Open
 Close
 Save
</div>

Grouped buttons are displayed in the following way:

Chapter 6

[125]

We can add a data-type="horizontal" attribute to the control group element
in order to obtain a horizontal group of buttons. They are styled so that they float
side-by-side; the width is large enough to contain all elements, but if too many
elements are added – and they no longer fit the screen width – multiple rows will
be used:

<div data-role="controlgroup" data-type="horizontal">
 Open
 Close
 Save
</div>

Mobile Clicking: Buttons

[126]

Buttons grouped together can also be placed in line in order to create a
"toolbar-like" feeling:

Theming buttons
Buttons can be styled in the very same way in which any other element is styled.

We can choose between the usual swatches (A, B, C, D, and E) and their
combinations. In the jQuery Mobile documentation, we can find a couple of
informative images that help in understanding how buttons, button icons, and
text look when a certain theme is applied:

Chapter 6

[127]

Summary
Buttons play an important role in several aspects of a web application: first of all,
navigation. The jQuery mobile framework provides easy and quick ways in which
we can turn our links into nice-looking buttons in order to eventually obtain a page
and navigation system which look visually consistent.

It should be made clear, however, that buttons are extremely useful – and necessary
– in other contexts too; for example, forms. Without buttons, we wouldn't be able
to submit information and transmit data. A button needs to be easy to spot and use
(that is, click), blending well with other elements in the page.

jQuery Mobile makes this button-form interaction as easy as possible, leaving
unnecessary tasks out of the developer's responsibility. In the next chapter,
we will see how.

Transmitting Information:
Forms

If our goal is to create a static, dull website with no possible interaction from the
user, we might as well skip this chapter. However, chances are that the majority
of us are interested in learning how forms and various controls work and can be
implemented using the jQuery Mobile framework.

Forms are particularly useful (well, necessary) whenever we need the user to submit
any kind of data or information: submitting comments, posting a reply, taking a
quiz, and purchasing something online – and generally, any action that counts on
some interaction – are some of the activities forms are used for.

Along with forms, we will learn what elements we can create and make use
of; jQuery Mobile provides a set of input elements which, acting on top of the
standard HTML ones, offer a customized look and feel to match with the projects.

All of the elements are easy-to-use and of intuitive use, thanks to the simplicity
in which sliders, select menus, input fields, and switches behave.

In this chapter, we'll go over the following topics:

•	 Form basics
•	 Text and password inputs, text areas, and search fields
•	 Flip switches, radio buttons, and checkboxes
•	 Sliders and select menus
•	 Theming forms

Transmitting Information: Forms

[130]

Form basics
First things first: all of the elements we might ever need in order to create a form
(that is, inputs, buttons, switches, and so forth) are built by the jQuery Mobile
framework on top of standard (native) HTML elements.

By creating a custom element, jQuery Mobile is thus able to provide a visually
more appealing set of buttons and inputs to A-grade (and B-grade as well) mobile
browsers. On lower-graded platforms (C-grade), no JavaScript or CSS is applied,
and therefore plain HTML elements are used.

In a nutshell, jQuery Mobile applies its scripting to mobile devices which are known
to support it and render the page correctly. Other browsers will fall back to a
standard display as if jQuery Mobile was not used at all.

Form structure and initialization
Given the way in which the framework behaves, there are only a few differences
we need to point out in order to create forms.

Basically, all forms should be constructed following the standard guidelines we
would use in plain HTML: we still wrap all elements into a form tag and must
decide whether we prefer to submit data via POST or GET.

Keep in mind jQuery is a JavaScript library, and as such, operates on the client-side.
Unless we know what we're doing, we thus need to provide an action attribute
which handles the data processing on the server-side.

The following code is a sample of the standard form structure we may employ
(and modify) in our web pages:

<form action="form_process.php" method="POST" name="myform1"
id="myform1">
 <!-- elements go here -->
</form>

The form action attribute should be an existing page which is capable of processing
the data we submit though the form.

As jQuery Mobile makes use of a single-page navigation model (which
allows for multiple pages to be present at the same time in the DOM)
we must make sure all of our forms (and form elements as well) have a
different form ID to prevent any kind of trouble.

Chapter 7

[131]

If, for any reason, we'd like to prevent jQuery Mobile from enhancing any of our
form elements, we can make sure some of them are not styled and present the
standard HTML characteristics.

A simple, immediate way to accomplish this is by adding a data-role="none"
attribute to the element(s) we wish to leave untouched, like so:

<input id="myinput1" data-role="none" value="" />

However, this may prove complicated or annoying if we prefer our markup to be as
clean as possible or if we have a large number of elements we want to display with
no enhancement whatsoever.

In the mobile initialization function, we can thus add the following line, which does
the very same thing a data-role="none" does, but saves a lot of hassles in the
majority of situations:

$(document).bind ('mobileinit',function () {
 $.mobile.page.prototype.options.keepNative = "textarea,
input#myinput";
});

We just list the elements we decided not to style and jQuery Mobile will not apply
any kind of touch-friendly enhancement to them.

Input elements
The jQuery Mobile framework is designed so that all elements are flexible and
comfortably fit the width of any mobile device screen; more importantly, depending
on the screen width, jQuery Mobile displays labels and their associated elements
side-by-side if the page is wider than 480px.

This means that, if our page is narrower than the above-mentioned size, elements will
be placed under their label, to save horizontal space and improve the page layout.

On the other hand, on wider screens, labels and form elements are styled as inline
(as opposed to the block styling applied in the other case) and take advantage of
the greater width of the screen.

Transmitting Information: Forms

[132]

On a wider screen that allows side-by-side placement, we can further
improve the overall look and feel by wrapping form elements and labels
into a div or fieldset with a data-role="fieldcontain" attribute.
This makes sure the framework adds a thin vertical bottom border on this
container to act as a field separator and visually aligns the label and form
elements for quick scanning.

Text inputs
Text inputs (that is, actual text inputs, password inputs, and text areas) are the
primary way in which we are able to enter information and interact with the form.
These represent the free form element, as users are allowed to write nearly anything
inside them unless we set (standard) HTML attributes to limit the field length or
make use of some JavaScript to control the text entered.

Text fields
The only thing which is important to get right is to assign a unique ID to the input
and the corresponding for attribute of the associated label. We then wrap all of it
into a container which has a data-role="fieldcontain" attribute:

<div data-role="fieldcontain">
 <label for="myinput1">Text Input:</label>
 <input type="text" name="myinput1" id="myinput1" value="You can type
here!" />
</div>

The preceding code produces the following input field. Note the difference between
styled and unstyled input fields:

Chapter 7

[133]

Password fields
In order to display a password field, we specify a type="password" attribute, as we
would in a standard HTML document. Obviously, any character which is entered
is shown as a little circle to prevent anyone from reading our password over our
shoulders.

Again, the markup isn't much different from what we've used in the text field
example:

<div data-role="fieldcontain">
 <label for="mypwd1">Password Input:</label>
 <input type="password" name="mypwd1" id="mypwd1" value="" />
</div>

Transmitting Information: Forms

[134]

The result can be seen in the following screenshot, together with an unstyled
password field:

Text areas
Text area elements are used as multi-line text inputs.

The jQuery mobile framework prevents the use of a scrollbar by applying an
auto-grow feature to text area elements: their height will then auto-grow to a
suitable size as you write!

The following code produces a sample text area element:

<div data-role="fieldcontain">
 <label for="mytextarea1">Textarea:</label>
 <textarea cols="20" rows="10" name="mytextarea1" id="mytextarea1">
 Write here and see it auto-grow!
 </textarea>
</div>

Chapter 7

[135]

Text areas (styled and unstyled) are displayed like this:

Search inputs
Search inputs share with other text inputs all of the characteristics of input elements,
but jQuery Mobile further enhances text inputs by adding a magnifier icon on the left
and, once something is written in them, an X icon to clear the field on the right.

We can create search inputs by specifying a type="search" attribute in any input
element:

<div data-role="fieldcontain">
 <label for="mysearchinput1">Search Input:</label>
 <input type="search" name="mysearchinput1" id="mysearchinput1"
value="" />
</div>

Transmitting Information: Forms

[136]

Search inputs are displayed like this. Notice how different they look thanks to the
enhancements by jQuery Mobile:

Flip switches, radio buttons, and
checkboxes
Whenever we need the user to choose between a restricted set of answers or options,
it's usually a good idea not to make them write into a text field: people are funny
beings and often "mistakenly" enter some completely unrelated (though sometimes
hilarious) text into a field we might value as important.

For this reason, we might force the user to answer either "Yes" or "No" to a yes/no
question, or choose one (or more) option(s) out of a number of possibilities.

Chapter 7

[137]

Flip toggle switches
Binary flip toggle switches are UI elements used for any binary (yes/no, on/off,
left/right, and so on) type of data input.

Actually, flip toggles are a particular type of select menu: the first option is styled as
the "off" state of the switch, whereas the second option corresponds to the "on" state
of the switch.

It is not possible to add a third option, as jQuery Mobile doesn't know how to handle
it and the whole behavior of the flip toggle would be compromised.

To create a flip toggle, we can add a data-role="slider" attribute to a select menu.

Note that if we don't provide any data-role attribute, jQuery Mobile will
treat the flip toggle switch as a select menu and all the enhancements
applied to it will be those of the select menus.

In order to prevent jQuery Mobile from styling a flip toggle, we need to provide a
data-role="none" attribute, but the element will be displayed as a non-styled select
menu – there is no such element (on/off switch) in plain HTML!

The following code creates a flip toggle switch:

<div data-role="fieldcontain">

 <label for="mytoggle1">Flip toggle:</label>

 <select name="mytoggle1" id="mytoggle1" data-role="slider">

 <option value="off">Off</option>

 <option value="on">On</option>

 </select>
</div>

Transmitting Information: Forms

[138]

The following screenshot shows how flip toggles are displayed based on data-role:

Radio buttons
Radio buttons are UI elements which come in handy when we want the user to
select one item from a list of several options.

They are usually displayed as a circular hole containing a white space (unselected)
or a dot (selected), with an adjacent text (a label) describing the option.

The jQuery Mobile framework enhances radio buttons by providing a more user
(and touch)-friendly component which is presented in a button-like fashion.

Radio buttons can be grouped in sets of two or more using a fieldset with a data-
role="controlgroup": jQuery Mobile will automatically remove margins and
borders from the buttons, and users can select only one of the radio buttons grouped
this way.

The legend element of the fieldset will serve as a label for the radio buttons group:

•	 We still make use of the container div with a data-role="fieldcontain"
to separate the radio buttons from other elements on the page:
<div data-role="fieldcontain">

Chapter 7

[139]

 <!-- fieldset goes here -->
</div>

•	 We then add a fieldset with a data-role="controlgroup" attribute to
group radio buttons together:
<div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Please make a choice:</legend>

 <!-- radio buttons go here -->
 </fieldset>
</div>

•	 Radio buttons can now be added. We can also specify which one will be
selected by default on page load:
<div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Please make a choice:</legend>

 <input type="radio" name="myradio1" id="myradio1"
value="radio1" />
 <label for="myradio1">First</label>

 <input type="radio" name="myradio2" id="myradio2"
value="radio2" checked="true" />
 <label for="myradio2">Second</label>

 <input type="radio" name="myradio3" id="myradio3"
value="radio3" />
 <label for="myradio3">Third</label>
 </fieldset>
</div>

Transmitting Information: Forms

[140]

•	 Vertical radio buttons are displayed as shown in the following screenshot.
Standard radio buttons can also be created.

•	 We can also group radio buttons horizontally – so that they are
displayed side-by-side – by adding a data-type="horizontal"
attribute to the fieldset:
<div data-role="fieldcontain">
 <fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Please make a choice:</legend>

 <input type="radio" name="myradio1" id="myradio1"
value="radio1" />
 <label for="myradio1">First</label>

 <input type="radio" name="myradio2" id="myradio2"
value="radio2" checked="true" />
 <label for="myradio2">Second</label>

 <input type="radio" name="myradio3" id="myradio3"
value="radio3" />
 <label for="myradio3">Third</label>
 </fieldset>
</div>

Chapter 7

[141]

•	 Using jQuery Mobile, we can make a choice of displaying radio buttons in
a variety of ways, whereas unstyled (standard) radio buttons always look
the same:

Checkboxes
Checkboxes are UI elements used to provide a list of options, of which more than
one can be selected.

They can be grouped together (much like radio buttons) horizontally or vertically,
or can be used singularly to let the user (dis)agree with a statement:

1. To create a checkbox, simply add a type="checkbox" attribute to an input
element:
<div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Do you agree?</legend>

 <input type="checkbox" name="mycb1" id="mycb1" />
 <label for="mycb1">Yes, I agree!</label>

Transmitting Information: Forms

[142]

 </fieldset>
</div>

2. Notice that styled checkboxes provide a more user-friendly interface than
unstyled elements:

3. We can also group any number of checkboxes vertically, so as to give the
user a choice between them:
<div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>What are your favorite colors?</legend>

 <input type="checkbox" name="mycb" id="mycb1" />
 <label for="mycb1">Black</label>

 <input type="checkbox" name="mycb" id="mycb2" />
 <label for="mycb2">Grey</label>

 <input type="checkbox" name="mycb" id="mycb3" />
 <label for="mycb3">White</label>
 </fieldset>
</div>

4. We can group checkboxes as we would do with radio buttons:

Chapter 7

[143]

5. Eventually, we can even display a group of checkboxes horizontally by
adding a data-type="horizontal" to the fieldset; and as the boxes
are hidden, they pretty much look like buttons:

Transmitting Information: Forms

[144]

Sliders and select menus
At last, we're going to see how sliders and the select menu work and how they can
be modified to suit our needs.

These are two of the most versatile elements we can include in a form, due to their
flexible nature; we can use sliders to select a value from a range of numbers, and
select menus are traditionally used to select shipping methods or some similar kind
of information.

Sliders
Slider elements have been introduced recently by the HTML5 standard and are a
particular UI element that, once you have specified the minimum and maximum
values, lets the user choose one of those values in-between.

To create a slider, add a type="range" attribute to an input element.

We then specify the min and max attributes, as well as the value attribute, which
represent the position the track handle starts in:

<div data-role="fieldcontain">
 <label for="slider">Input slider:</label>
 <input type="range" name="myslider1" id="myslider1" value="50"
min="0" max="100" />
</div>

Sliders are displayed like this:

Chapter 7

[145]

Select menus
The basics of the select menu is that, when a select menu is inactive, it displays a
single value; when a click event is registered on it, the menu drops down a list of
options we can choose from.

To create a select menu, we do exactly as we would in plain HTML:

<div data-role="fieldcontain">
 <label for="myselect1" class="select">Choose one:</label>

 <select name="myselect1" id="myselect1">
 <option value="option1">Option 1</option>
 <option value="option2">Option 2</option>
 <option value="option3">Option 3</option>
 </select>
</div>

A select menu is shown in the following screenshot, next to an unstyled element:

Transmitting Information: Forms

[146]

•	 We can add a placeholder element to the select menu so that it is visible by
default (but hidden by jQuery Mobile once the drop-down list opens). A
valid option, as per jQuery Mobile, must have both text and value; if one of
the two is missing, the option will be treated as a placeholder. Alternatively,
we can add a data-placeholder="true" attribute to an option:
<div data-role="fieldcontain">
 <label for="myselect1" class="select">Choose one:</label>

 <select name="myselect1" id="myselect1">
 <option>Please choose</option>

 <option value="option1">Option 1</option>
 <option value="option2">Option 2</option>
 <option value="option3">Option 3</option>
 </select>
</div>

The Please choose option (in our example) is automatically recognized as a
placeholder and shown accordingly by jQuery Mobile:

•	 Options can be disabled by adding a disabled attribute to the option tag:

<div data-role="fieldcontain">
 <label for="myselect1" class="select">Choose one:</label>

 <select name="myselect1" id="myselect1">
 <option>Please choose</option>

 <option value="option1" disabled="true">Option 1</option>
 <option value="option2">Option 2</option>

Chapter 7

[147]

 <option value="option3">Option 3</option>
 </select>
</div>

•	 If a select menu contains the optgroup elements, jQuery Mobile divides
options and groups them based on their label attribute's text:

<div data-role="fieldcontain">
 <label for="myselect1" class="select">Choose one:</label>

 <select name="myselect1" id="myselect1">
 <option>Please choose</option>

 <optgroup label="Group 1">
 <option value="option1" disabled="true">Option 1</option>
 <option value="option2">Option 2</option>
 <option value="option3">Option 3</option>
 </optgroup>

 <optgroup label="Group 2">
 <option value="option1">Option 1</option>
 <option value="option2">Option 2</option>
 <option value="option3">Option 3</option>
 </optgroup>
 </select>
</div>

•	 A group of items is shown in the following screenshot:

Transmitting Information: Forms

[148]

•	 We can also create select menus so that multiple options can be selected by
adding multiple attributes to the markup. If this is the case, jQuery Mobile
automatically creates a header element inside the menu which provides the
way to close the drop-down list, as clicking an element inside the widget will
not close it. Once more than two elements are selected, a counter element will
appear on the right side of the button.

<div data-role="fieldcontain">
 <label for="myselect1" class="select">Choose one:</label>

 <select name="myselect1" id="myselect1" multiple="true">
 <option>Please choose</option>

 <optgroup label="Group 1">
 <option value="option1" disabled="true">Option 1</option>
 <option value="option2">Option 2</option>
 <option value="option3">Option 3</option>
 </optgroup>

 <optgroup label="Group 2">
 <option value="option1">Option 1</option>
 <option value="option2">Option 2</option>
 <option value="option3">Option 3</option>
 </optgroup>
 </select>
</div>

The selected items are listed once the select menu is closed and a number is added
as a counter:

Chapter 7

[149]

Theming forms
Pretty much like any other element, form elements can be styled by applying
different swatches to their markup.

Colors will automatically change so that they are consistent with other elements in
the page. We can see an example of how color contrast and coordination is changed
when applying, for example, a Swatch B:

Transmitting Information: Forms

[150]

Also, the yellow-based theme may seem a little too much, but color contrast is
handled very well and everything can be read easily:

Summary
This chapter has taken a tour of the most important features of forms and has
demonstrated how easily we can play around with the custom elements jQuery
Mobile provides us with and make them suit our needs with very little effort.

We're almost close to the end, but the next chapter, the last one, will take care of
explaining what list views are and how they can be used to display and group
information, images, and any other kind of content.

Organizing Information: List
Views

You might have noticed that the vast majority of websites built using jQuery
Mobile have their content laid out in very similar ways; sure, they differ in the
design, colors, and overall feel, but they all have a list-based layout.

There is a way in which we can organize our information and take advantage of each
and every space in the browser: information is displayed vertically, one piece under
another. There are no sidebars of any kind and links are organized in lists – for a
cleaner and tidy look.

But list views are also used to actually be a list of information. Some examples may
be lists of albums, names, tasks, and so on: after all, our purpose is to build a mobile
web application and the majority of services and pages can be organized in a way
which closely resembles a list.

The jQuery Mobile framework obviously makes available a set of list types, each
of which is best suited to certain situations and applications: we can have numbered
lists, nested lists, lists with icons, thumbnails, and many other improvements, and
user-friendly options that will no doubt enhance the usability of our list view elements.

This chapter will address the following issues:

•	 Basics and conventions for list views
•	 Choosing the list type, as per your requirements

Organizing Information: List Views

[152]

Basics and conventions for list views
Due to the particular nature of lists, list views are coded exactly the same way a
standard HTML unordered list would.

After all, the purpose of list views is to organize our information in a tidy way,
presenting a series of links which are placed one under another; the easiest way
to grasp their usefulness is, in my opinion, imagining a music player application.

A music player would need a clean enough interface, listing the artists, albums,
and songs by name. In order to play a song, the user would need to select an artist,
and then choose the album in which the song he wishes to play has been released.

To create our first view (artists), we would use the following code. Make sure you
add the data-role="listview" attribute to the unordered list tag:

<ul data-role="listview">
 Astra
 Frank Zappa
 Jethro Tull
 Radiohead
 The Who

The jQuery Mobile framework automatically styles the list elements accordingly,
and adds a right arrow icon. List elements fill the full width of the browser window:

Chapter 8

[153]

Whenever an item is selected (click/tap event), jQuery Mobile will parse the code
inside the list element and issue an AJAX request for the first URL found.

The page (obtained via AJAX) is then inserted into the existing DOM and a page
transition event is triggered.

The default page transition is a slide-left animation; clicking
the back button on the newly displayed page will result in a
slide-right animation.

Choosing the list type as per your
requirements

A somewhat large variety of lists are available for us to choose from in order to
make use of the type of list view that is best suited to our needs.

Organizing Information: List Views

[154]

Below are listed (sorry, no pun intended!) the different types of list views along with
a brief description of how to use them and what part of code we need to change in
order to obtain a certain list view.

Nested lists
Bearing in mind that list views elements are based on the standard HTML unordered
list element, we might be wondering what would happen if we try and create a
second list inside a list view.

By nesting a ul element inside list items, jQuery Mobile will adopt a different kind
of behavior to our list items.

Our first step toward the creation of a nested list is removing any link present in
the list item, as a click event will show the nested list instead of redirecting to
another page. The child list will be put into a new "page" with the title of the
parent in the header.

We're now implementing nested list elements into our sample music player interface
by changing our markup to the following. This way, we are able to browse artists
and albums.

Please note that we have removed any links to external pages:

<ul data-role="listview">
 Astra

 The Weirding

 Frank Zappa

 Hot Rats
 Yellow Shark

 Jethro Tull

 Aqualung
 Thick as a Brick

 Radiohead

Chapter 8

[155]

 OK Computer
 In Rainbows
 The King of Limbs

 The Who

 Who's Next
 Quadrophenia
 Tommy

If we clicked on the Radiohead element, we would then be able to see the
following page:

By default, child list will be given a Swatch B theme to indicate they are at
a secondary level of navigation; we can select a different color swatch by
specifying a data-theme attribute on the child list element.

Organizing Information: List Views

[156]

We can see the header turned blue, and the artist name is used as the header. We
have a choice to go back to the previous page (artists) or click again onto a list item
(album) to view more.

Numbered lists
Our music player interface has reached the point in which we need to list the tracks
contained in an album. Of course, tracks have a sequence, and we want to give the
user the possibility to see what track number is without having to count them all –
and without writing numbers manually, that would be terrible!

In a very similar fashion, we can use ordered list elements (ol) to obtain numbering:
jQuery Mobile will try to use CSS to display numbers or, if not supported, JavaScript.

The following code lists all of the tracks for an album:

There is no limit to the number of lists you can nest.

<!-- … -->

Radiohead

 OK Computer
 In Rainbows
 The King of Limbs

 Bloom
 Morning Mr. Magpie
 Little by Little
 Feral
 Lotus Flower
 Codex
 Give Up the Ghost
 Separator

<!-- … -->

Chapter 8

[157]

Read-only lists
Sometimes, we just need to list a certain number of items and don't want to provide
a link for them.

Organizing Information: List Views

[158]

Read-only lists can be created by omitting the anchor link element. The jQuery
mobile framework will automatically style the list items so that they look flat.
They are displayed using a Swatch C coloring.

However, this kind of list is usually displayed using a data-inset="true" to the
(un)ordered list attribute, which inserts some spacing and allows lists that have
borders, or don't take up the whole page, to coexist with other elements on the page.

The King of Limbs
 <ol data-inset="true">
 <!-- list items with no anchor links -->

Chapter 8

[159]

We can see how a list with the data-inset attribute looks in the following
screenshot:

Split button lists
There may be cases in which we wish to be able to let the user perform more than
one action on the same list item. For example, were the user browsing a list of
albums, they should be presented with the possibility to buy, rate, or listen to each
of them in a quick and simple way.

In order to provide such functionality, a split button can be used to offer two
(or more) clickable items for each list item.

To create a split list item, simply add a second link to the list item; jQuery Mobile
will then add a vertical line to separate the two buttons.

Organizing Information: List Views

[160]

If we were to implement a "buy album" button next to the album name, we would
need the following code:

<ul data-role="listview">
 <!-- … -->

 Radiohead

 OK Computer
 Buy album

 In Rainbows
 Buy album

 The King of Limbs
 Buy album

 <!-- … -->

The following screenshot shows how split buttons are rendered by jQuery Mobile.
Notice the thin vertical line separating the main text body from the arrow button
on the right:

Chapter 8

[161]

jQuery Mobile sets the title attribute of the second button to the text of the
anchor link. You may want to use some descriptive text.

The icon can be changed by specifying a data-split-icon attribute with the icon
name we wish to display:

<ul data-role="listview">
 <!-- … -->

 Radiohead
 <ul data-split-icon="gear">

 OK Computer
 Buy album

 In Rainbows
 Buy album

 The King of Limbs
 Buy album

 <!-- … -->

Organizing Information: List Views

[162]

In the following screenshot, the arrow icon has been replaced with a gear icon:

Spicing up your lists
Sure, list views appear to be of undoubted usefulness already, but there are some
details and tweaks that will make them even more interesting and fun to use and
work with.

Count bubbles
To proceed with our music player interface example, we are about to show the
number of tracks in each album into a count bubble.

Count bubbles are count indicators sitting on the right of the list item, and they are of
proven usefulness in many e-mail applications as indicators of how many messages
are contained in a certain folder.

To create a count bubble, we simply wrap the number in an element with a class of
ui-li-count, just like the following:

<ul data-role="listview">
 <!-- … -->
 Radiohead

Chapter 8

[163]

 <ul data-list-icon="gear">

 OK Computer
 Buy album
 12

 In Rainbows
 Buy album
 10

 The King of Limbs
 Buy album
 8

 <!-- … -->

Clicking on count bubbles does not trigger any event.

Organizing Information: List Views

[164]

List dividers
To allow for an easier browsing experience, we might want to add headers for
each letter in the "artists" view. The user will be able to identify their favorite
band looking after the right letter.

The jQuery Mobile framework supports turning a list item into a list divider by
adding a data-role="list-divider" attribute to any list item:

<ul data-role="listview">
 <li data-role="list-divider">A
 Astra

 <li data-role="list-divider">F
 Frank Zappa

 <li data-role="list-divider">J
 Jethro Tull

 <li data-role="list-divider">R
 Radiohead

 <li data-role="list-divider">W
 The Who

Chapter 8

[165]

As you can see, artists are now grouped by letter.

List dividers are styled using a Swatch B, by default; this can be changed by
specifying a data-group-theme attribute.

Images
Album artwork can be added to the list item by providing an image as the first child
of the list item; that is, the img tag must be before any link or text we want to be
displayed in the list item.

The jQuery Mobile framework will automatically resize the image to an 80 pixels
square.

Note, however, that if an image is larger than 80x80 pixels, it will still
need the bandwidth to travel from the server to the client (that is, your
computer). In addition, images that are not square in proportion will not
look right when resized.

Organizing Information: List Views

[166]

<ul data-role="listview">
 <!-- … -->

 Radiohead
 <ul data-list-icon="gear">

 OK Computer
 Buy album
 12

 In Rainbows
 Buy album
 10

 The King of Limbs
 Buy album
 8

 <!-- … -->

The following screenshot shows the album cover next to the album name:

Chapter 8

[167]

Alternatively, we can use regular 16 pixels square icons instead of an image: simply
add the class ul-li-icon to the img tag.

Formatting content
Now that our list elements are bigger, we can add some more text, to give some
more detailed information.

There are various ways in which we can modify the overall look of list items
and content:

•	 Text hierarchy is added by using headers (increase emphasis) and
paragraphs (reduce emphasis):

<ul data-role="listview">
 <!-- … -->

 Radiohead
 <ul data-list-icon="gear">

Organizing Information: List Views

[168]

 <h3>OK Computer</h3>
 <p>Capitol, 1995</p>

 Buy album
 12

 <h3>In Rainbows</h3>
 <p>Self-released, 2007</p>

 Buy album
 10

 <h3>The King of Limbs</h3>
 <p>Self-released, 2011</p>

 Buy album
 8

 <!-- … -->

A smaller line of text (label name) appears under the album name:

Chapter 8

[169]

•	 Additional information can be added to the right of each list item by
wrapping content in an element with a class of ul-li-aside.For example,
here we are adding the track length (in minutes) to the right side of each list
item in an album:

<!-- … -->

Radiohead

 <!-- … -->

 <h3>The King of Limbs</h3>

 <p>Self-released, 2011</p>

Organizing Information: List Views

[170]

 Bloom

 <p class="ui-li-aside">5:15</p>

 Morning Mr. Magpie</a
 <p class="ui-li-aside">4:41</p>

 Little by Little

 <p class="ui-li-aside">4:27</p>

 Feral

 <p class="ui-li-aside">3:13</p>

 Lotus Flower

 <p class="ui-li-aside">5:01</p>

 Codex

 <p class="ui-li-aside">4:47</p>

 Give Up the Ghost

 <p class="ui-li-aside">4:50</p>

 Separator

 <p class="ui-li-aside">5:20</p>

 Buy album

 8

Chapter 8

[171]

Note that, in order to create a nested list with formatted content, we
need to specify an anchor link for the text we wish to provide in the list
item element. The link can also point to the same page (#), so we prevent
jQuery Mobile from fetching another page and messing up coloring and
the title/header of the nested list(s).

Organizing Information: List Views

[172]

Implementing a search filter bar
As a last trick, in case we want to make it easier for the user to find their favorite
artists, we may implement a search filter bar.

A search filter bar will look like an input element (search input) and will filter out
all list elements that do not match with the user input in real time.

The search input will sit on top of the list and it can be included by adding a
data-filter="true" attribute to the list:

<ul data-role="listview" data-filter="true">
 Astra
 Frank Zappa
 Jethro Tull
 Radiohead
 The Who

The following screenshot shows how search filters work:

Chapter 8

[173]

Summary
In this chapter, we have created a simple (not dynamic), jQuery Mobile-based music
player interface, which has helped us in illustrating and understanding exactly what
list views are and how we can use them in our own web applications.

API Calls and Properties
In this appendix, you can find a list of the API calls and properties to interact with
jQuery Mobile internals.

List of properties and methods
The jQuery Mobile framework has some exposed variables and methods we can
configure and use in our applications. Here is a list of them and their functioning.
Please note we've already had a look at many of them in the preceding chapters,
and these are reported here for easier reference only.

$.mobile options
The following options can be accessed using $.mobile.[optionName]:

Variable Type Default value
activePageClass (Class used for "active"
button state, from CSS framework).

String ui-page-active

ajaxEnabled (Automatically handle clicks
and form submissions through Ajax, when
the destination page is internal).

Boolean true

defaultTransition (Set default page
transition – dialog transition cannot be
changed and is 'pop').

String slide

gradeA (Support conditions that must be
met in order to proceed – default is a function
checking for media query support or IE 7+).

Function

API Calls and Properties

[176]

Variable Type Default value
hashListeningEnabled (Automatically
load and show pages based on location.
hash).

Boolean true

keyCode (Assigns key codes. There is no
reason to change this, but it may come in use
in certain applications).

Object

loadingMessage (Set the text that appears
on page loading).

String loading

nonHistorySelectors (Anchor links with
a data-rel, or pages with a data-role, that
match these selectors will be untrackable in
history).

String dialog

normalizeRegex (Compile the namespace
normalization regex once).

string /-([a-z])/g

ns (Namespace used framework-wide for
data-attributes).

String ""

pageLoadErrorMessage (Error message
that appears when an AJAX page request
fails).

String Error Loading Page

subPageUrlKey (Define the URL parameter
used for referencing widget-generated
sub-pages (that is, example.html?ui-
page=pageid)).

String ui-page

$.mobile methods
The following methods can be called with $.mobile.[methodname]:

•	 addResolutionBreakPoints (int|array values): Add width breakpoints
to the min/max width classes that are added to the HTML element. Pass any
number or array of numbers to add to the resolution classes.

•	 base.reset (string href): Set the generated BASE element's href
attribute to a new page's base path.

•	 base.set (): Set the generated BASE element's href attribute to a new
page's base path.

•	 browser.ie (): On-UA-based IE version check which allows for inclusion
of IE 6+, including Windows Mobile 7.

Appendix A

[177]

•	 changePage (string|array|obj to[, string transition[, bool
reverse=false[, bool changeHash=true]]]): Programmatically change
from one page to another using a transition effect if specified or $.mobile.
defaultTransition). Contrary to default behavior, you can specify a
reverse transition (reverse=true) and make sure not to update hash to the
page's URL when page change is complete (changeHash=false).

•	 The to argument is required and can be a string (URL), a jQuery object
($('#jqobj')), an object for sending form data, or an array specifying two
page references ([from, to]) for transitioning from a known page (from) to a
new one (to).

•	 nsNormalize (string prop): Takes a data attribute property (prop),
prepends the namespace, then camel cases the attribute string.

•	 pageLoading ([bool Done=false]): Shows the page loading message
if loading is not done.

•	 silentScroll ([int yPos=0]): Scrolls to a particular Y position without
triggering scroll event listeners.

•	 url.getPrev (): Gets the previous page (in history) reference.

$.mobile.path methods
The following methods can be called using $.mobile.path.[methodName]:

•	 clean (string url): Returns a URL path with the window's location
protocol/hostname/pathname removed.

•	 getFilePath (string path): Returns the substring of a filepath before
the sub-page key, for making a server request.

•	 hasProtocol (string url): Checks whether a URL has a different protocol
(that is, ftp, mailto).

•	 isExternal (string url): Checks whether a URL is external or under the
same domain.

•	 isEmbeddedPage (string url): Checks whether a URL refers to a page
already in the DOM.

•	 isRelative (string url): Checks whether a URL is relative.
•	 makeAbsolute (string url): Prefixes a relative URL with the current path.
•	 setOrigin (): Sets the path.origin property to the currently viewed

URL path.
•	 stripHash (string url): Returns the URL without an initial '#'.

API Calls and Properties

[178]

$.mobile.path properties
The following property can be accessed using $.mobile.path.[propertyName]:

Property Type
origin (location pathname from initial directory request.) string

$.mobile.urlHistory methods
The following methods can be called using $.mobile.urlHistory.[methodName]:

•	 clearForward (): Wipes URLs ahead of active index.
•	 GetActive (): Gets the active page reference (not URL!).
•	 getNext (): Gets the next page (in history) reference – if any.

$.mobile.urlHistory properties
The following properties can be accessed using $.mobile.urlHistory.
[propertyname]:

Property Type
activeIndex (Index of the active page in the stack) int

stack (array of pages that are visited during a single page load. Each has a URL
and optional transition)

array

$.support tests
A handful of properties and methods are available to use for testing whether the
mobile browser/platform supports features jQuery Mobile makes use of. The
following properties return either true or false if the corresponding feature is
(respectively) supported or not:

•	 $.support.boxShadow

•	 $.support.cssPseudoElement

•	 $.support.cssTransitions

•	 $.support.dynamicBaseTag

•	 $.support.eventCapture

•	 $.support.mediaquery

•	 $.support.orientation

•	 $.support.pushState

Appendix A

[179]

•	 $.support.scrollTop

•	 $.support.touch

Button plugin
Button elements are covered in Chapters 6, Mobile Clicking: Buttons and Chapter 7,
Mobile Clicking: Buttons.

The following options can be modified to match your own liking from the
mobileinit event: $.mobile.button.prototype.options.[optionName]:

Option Type Default value
corners Bool true

icon String Null

iconpos String (i.e. topleft) Null

iconshadow Bool true

inline Bool Null

shadow Bool true

theme String (i.e. 'a', 'b') null

To disable a #button element: $('#button').button ('disable').

To enable a #button element: $('#button').button ('enable').

Check and radio boxes plugin
Checkboxes and radio buttons are covered in Chapter 7, Mobile Clicking: Buttons.

The following option can be modified to match your own liking from the
mobileinit event: $.mobile.checkboxradio.prototype.options.[optionName]:

Option Type Default value
theme String (i.e. 'a', 'b') null

To disable a #radio element: $('#radio').checkboxradio ('disable') to
enable a #radio element: $('#radio').checkboxradio ('enable').

If you make any changes to this kind of elements and/or their labels, you may
want to refresh in order to update changes with $('#radio').checkboxradio
('refresh');

API Calls and Properties

[180]

Collapsible plugin
Collapsible blocks are covered in Chapter 4.

The following options can be modified to match your own liking from the
mobileinit event: $.mobile.collapsible.prototype.options.[optionName].

Option Type Default value
expandCueText String ' click to expand

contents'

collapseCueText String ' click to collapse
contents'

collapsed Bool false

heading String '>:header,>legend'

iconTheme String 'd'

theme String (i.e. 'a', 'b') null

Dialog plugin
Dialogs are covered in Chapter 2, Organizing Content: Pages and Dialogs.

To close a #dialog element: $('#dialog').dialog ('close').

If you don't know the ID of the dialog you want to close, you can close it with
$('.ui-dialog').dialog('close').

List view plugin
List views are covered in Chapter 8, Organizing Information: List Views.

The following options can be modified to match your own liking from the
mobileinit event: $.mobile.listview.prototype.options.[optionName]:

Option Type Default value
countTheme String (i.e. 'a', 'b') 'c'

dividerTheme String (i.e. 'a', 'b') 'b'

headerTheme String (i.e. 'a', 'b') 'b'

inset Bool false

splitIcon String (i.e. 'a', 'b') 'arrow-r'

splitTheme String (i.e. 'a', 'b') 'b'

theme String (i.e. 'a', 'b') 'c'

Appendix A

[181]

We can access the refresh method with $('#listview').listview ('refresh').

Navbar plugin
Navigation bars are covered in Chapter 2, Organizing Content: Pages and Dialogs.

The following options can be modified to match your own liking from the
mobileinit event: $.mobile.navbar.prototype.options.[optionName]:

Option Type Default value
iconpos String (i.e. 'left') 'top'

grid Bool null

Page plugin
Pages are covered in Chapter 2, Organizing Content: Pages and Dialogs.

The following options can be modified to match your own liking from the
mobileinit event: $.mobile.page.prototype.options.[optionName]:

Option Type Default value
addBackBtn Bool true

backBtnText String 'Back'

degradeInputs Object

keepNative Bool null

In the degradeInput object, we can choose whether we want the following elements
to be degraded or not (they are all default to false, and range to "number"): color,
date, datetime, datetime-local, email, month, number, range, search,
tel, time, url, week.

Select plugin
Select menus are covered in Chapter 7, Mobile Clicking: Buttons.

The following options can be modified to match your own liking from the
mobileinit event: $.mobile.select.prototype.options.[optionName]:

Option Type Default value
corners Bool true

closeText String 'Close'

API Calls and Properties

[182]

Option Type Default value
disabled Bool false

hidePlaceHolderMenuItems Bool true

icon String 'arrow-d'

iconpos String (i.e. left) 'right'

iconshadow Bool true

inline Bool null

menuPageTheme String 'b'

nativeMenu Bool false

overlayTheme String 'a'

shadow Bool true

theme String (i.e. 'a', 'b') null

You can programmatically open and close the menu of a #select element with
$('#select').select ('open') and $('#select').select ('close').

Selects can be enabled/disabled using $('#select').select
('enable')/$('#select').select ('disable').

To update changes, use $('#select').select ('refresh').

Slider plugin
Slider elements are covered in Chapter 7, Mobile Clicking: Buttons.

The following options can be modified to match your own liking from the
mobileinit event: $.mobile.slider.prototype.options.[optionName].

Option Type Default value
disabled Bool false

theme String (i.e. 'a', 'b') null

trackTheme Bool null

Sliders can be enabled ('enable'), disabled ('disable'), and updated ('refresh'):
$('#slider').slider ('disable');

Text input plugin
Text inputs are covered in Chapter 7, Mobile Clicking: Buttons.

The following options can be modified to match your own liking from the
mobileinit event: $.mobile.textinput.prototype.options.[optionName]:

Appendix A

[183]

Option Type Default value
theme String (i.e. 'a', 'b') null

Input elements (#text) can be enabled and disabled using the textinput plugin:
$('#text').textinput ('enable').

JqmData: Whenever we need to check, or programmatically set or remove, a data
attribute, we need to make use of the mobile-friendly versions of the data methods.

•	 $.jqmData

•	 $.jqmHasData

•	 $.jqmRemoveData

These can be called either as a standalone function: $.jqmRemoveData (element,
property) or directly on an element: $('#element').jqmRemoveData (property).

Please note these functions take care of adding the (eventual) namespace (ns) to the
data attribute, so if our namespace is myns- and we need to modify a mydata data,
the core $.data function will be passed the value myns-mydata.

data-* attributes: The following data attributes can be specified in the markup:

Attribute Value(s) Notes Element(s)
data-role button Button element

collapsible Collapsible
element

content Sub page element
controlgroup Radio, checkbox

or button parent
element

fieldcontain Fieldset element
footer Sub page element
header Sub page element
list-divider Sub Listview

element
listview Listview element
navbar Navigation bar

element
page Page element
slider Slider element
none Leave element

untouched by
jQuery Mobile

data-theme a, b, c, d, e Set theme All
data-icon See icon list below Set button icon Buttons

API Calls and Properties

[184]

Attribute Value(s) Notes Element(s)
data-iconpos bottom

left (default)
top
right

Place the icon
accordingly

Elements
with an icon

notext Remove text (icon
only)

data-
collapsed

true Collapsed by
default

Collapsible
block

data-type horizontal Show options
horizontally

Control
group

data-position fixed Stay at top/bottom Headers

Footers
inline Normal HTML

behavior (default)
fullscreen Only visible on

screen tap
data-ajax false Same as

rel=external
Links

data-
direction

reverse Reverse transition
(without going
back in history)

Links

data-rel back Mimic back button
behavior

Links

dialog Open link as a
dialog

data-
transition

fade
flip
pop
slide
slideup
slidedown

Transition effect Links

data-
dividertheme

a, b, c, d, e Set divider theme List
dividers

data-filter true Make a list
filterable

Listviews

data-filter-
placeholder

Default: "Filter
items..."

Set input's
placeholder text

Listviews

data-inset true Apply inset
appearance to a
listview

Listviews

data-split-
icon

See icon list below Set split icon Listviews

data-split-
theme

a, b, c, d, e Set split theme Listviews

Appendix A

[185]

Attribute Value(s) Notes Element(s)
data-
placeholder

true Option which
serves as a
placeholder in a
select menu

Menu element

data-add-
back-btn

true Show back button
(disabled by
default)

Nav bars

data-back-
btn-text

Default: "Back" Configure back
button text

Nav bars

data-url Page location identifier Pages
data-native-
menu

false Use custom menu on
a specific select
element

Select menus

Icons: The data-icon attribute accepts the following icons (apart from the
custom ones):

Icon name Icon
alert

arrow-d

arrow-l

arrow-r

arrow-u

back

check

delete

forward

gear

grid

home

API Calls and Properties

[186]

Icon name Icon
info

minus

plus

refresh

search

star

Resources and
Troubleshooting

In this appendix, you can find a list of useful resources, development tools, and
troubleshooting in order to better understand how jQuery (Mobile) and JavaScript
work together.

Online and offline resources
If this topic is of any interest to you, you may be wondering how to learn more.
Books and (mainly) online documentation can help a great deal in getting a better
grasp of JavaScript, jQuery, and jQuery Mobile.

Official jQuery and jQuery Mobile
documentation
Here are some official websites where you can find a lot of useful information,
featuring examples and user comments:

•	 http://docs.jquery.com

•	 http://jquerymobile.com/demos/

jQuery 1.4 reference guide
Written by Jonathan Chaffer and Karl Swedberg, it is "a comprehensive exploration
of the popular JavaScript library".

https://www.packtpub.com/jquery-1-4-reference-guide/book

Resources and Troubleshooting

[188]

jQuery mobile gallery
JQM Gallery (by Dan Tavelli) was started to showcase jQuery mobile sites/apps
and be a place to go for inspiration and ideas for your next project.

It also features a handful of tutorials and books dealing with jQuery Mobile.

http://www.jqmgallery.com.

Development tools
Utilities and development tools are essential for the savvy developer. Here are some
you may find useful.

FireBug (Firefox)
Essential for the jQuery developer, Firebug integrates with Firefox to put a wealth
of web development tools at your fingertips while you browse. You can edit, debug,
and monitor CSS, HTML, and JavaScript live in any web page.

Get it from http://getfirebug.com.

Also, the possibility to write Firebug's own extensions has contributed to the creation
of FireQuery (http://firequery.binaryage.com), a Firebug extension for jQuery
development.

Internet Explorer 8 developer tools
Microsoft published a guide on using Internet Explorer 8 built in Developer Tools
suite at http://msdn.microsoft.com/en-us/library/dd565622%28v=VS.85%29.
aspx, which also explains how to debug JavaScript code with their debugging tool.

Safari web inspector
Safari comes with a built-in web inspector tool to analyze DOM and JavaScript.

To enable the Web Inspector, open the Preferences and check the Show develop
menu in the menu bar item in the Advanced Preferences pane.

Web Inspector: http://trac.webkit.org/wiki/WebInspector.

Appendix B

[189]

Dragonfly (Opera)
The built-in tool is very promising and allows for CSS, DOM inspection and editing,
and JavaScript debugging.

You can read more about this tool at http://www.opera.com/dragonfly/.

Chrome web inspector
The web inspector is enabled by default, and can be accessed using the Inspect
Element context menu.

More information available at http://www.google.com/chrome/intl/en/
webmasters-faq.html#tools.

Web Inspector: http://trac.webkit.org/wiki/WebInspector.

Troubleshooting
Sometimes we face common problems we need to get sorted out right away.
Here is a list with issues and questions you may encounter and how to solve them.

Mobile equivalent of $(document).ready
If we're used to working with jQuery, we may get a bit confused on how we can fire
our function after the DOM is ready.

To trigger a similar document-ready event on pages loaded with AJAX, we can put
the code we need to be executed inside a pageshow event: the function (or code) will
then be executed each time the page is shown.

You may want to check out the pagecreate event to make sure your code is
executed at the exact moment you want it to.

Target object
Consider the following code:

$(#element').bind ('swipe', function (e) {
var targetElement = e.target;

});

To get the target element (the one we swiped on) we use e.target.

Resources and Troubleshooting

[190]

Creating custom themes and swatches
The jQuery Mobile framework makes it easy to create, add new themes, and modify
existing ones through a theming system which is very simple to understand.

Before we begin, we must have a really clear idea what is, essentially, a jQuery
Mobile swatch: each time we specify a data-theme attribute, the framework selects
the color swatch we have specified from the CSS files of them we are using.

The separation of a theme (in which are defined structural styles) and swatches
(colors and texture) is essential to achieve a wide range of visual effects.

New themes are composed of a stylesheet in which a number of color swatches are
defined. Obviously, the theme can include images, changes in borders, padding,
margins, and so on: it's all up to you.

To use a theme you have created, you need to add a link to the CSS right before the
</head> tag:

<link rel="stylesheet" href="mynewtheme.css" />

As for swatches, jQuery Mobile dynamically looks for a CSS class that matches the
swatch you have specified. So, for example, a data-theme="c" attribute added to a
button will make jQuery Mobile apply the ui-btn-hover-c class anytime we hover
the button, whereas data-theme="b" applies the ui-btn-hover-b class.

To create a new swatch for an existing theme, we basically copy the whole block of
code for one swatch (that is, "a") and rename all selectors appropriately (that is, ui-
btn-hover-a becomes .ui-btn-hover-g, and so on).

You can choose any letter but a, b, c, d, and e, as they are already used by jQuery
Mobile.

After we have tweaked our G swatch, we can add a data-theme="g" attribute to
our elements and see our custom swatch in action.

Index
Symbols
$.extend method 52
$.mobile.activePage property 60
$.mobile.changePage function 36
$.mobile methods

addResolutionBreakPoints 176
base.reset 176
base.set 176
browser.ie 176
changePage 177
nsNormalize 177
pageLoading 177
silentScroll 177
url.getPrev 177

$.mobile object 52
$.mobile options

activePageClass 175
ajaxEnabled 175
defaultTransition 175
gradeA 175
hashListeningEnabled 176
keyCode 176
loadingMessage 176
normalizeRegex 176
ns 176
pageLoadErrorMessage 176
subPageUrlKey 176

$.mobile.path methods
clean 177
getFilePath 177
hasProtocol 177
isEmbeddedPage 177
isExternal 177
isRelative 177
makeAbsolute 177

setOrigin 177
stripHash 177

$.mobile.path properties
origin 178

$.mobile.urlHistory methods
clearForward 178
GetActive 178
getNext 178

$.mobile.urlHistory properties
activeIndex 178
stack 178

$.support.boxShadow property 178
$.support.cssPseudoElement property 178
$.support.cssTransitions property 178
$.support.dynamicBaseTag property 178
$.support.eventCapture property 178
$.support.mediaquery property 178
$.support.orientation property 178
$.support.pushState property 178
$.support.scrollTop property 179
$.support.touch property 179
<a> tag 13
<body> tag 26, 27
<head> tag 26
<html> tag 26
 tag 13
<title> tag 26
 tag 13

A
action attribute 130
activeBtnClass option 52
activeIndex property 178
activePageClass option 52, 175
addBackBtn option 181

[192]

addResolutionBreakpoints method 60, 176
ajaxEnabled option 175
ajaxFormsEnabled option 52
ajaxLinksEnabled option 52
AJAX requests 35
alert icon 185
Alpha version 19
Android 7
arrow-d icon 185
arrow-l icon 185
arrow-r icon 185
arrow-u icon 185

B
back argument 61
backBtnText option 181
back icon 185
base.reset method 176
base.set method 176
binary flip toggle switches 137
bind() 54
Blackberry OS6 7
browser.ie method 176
button options

corners 179
icon 179
iconpos 179
iconshadow 179
inline 179
shadow 179
theme 179

buttons
about 90, 179
adding, to footer bar 96-98
creating, with icons 117-120
customizing, in jQuery Mobile 90-94
displaying 121
theming 126

C
CDN-hosted CSS

URL, for downloading 20
CDN-hosted JavaScript

URL, for downloading 20
CDN-hosted versions 27
changeHash argument 61

changePage method 60, 177
checkboxes, jQuery Mobile framework

about 141, 179
creating 141-143

check icon 185
Chrome web inspector 189
clean method 177
clearForward method 178
closeText option 181
collapseCueText option 180
collapsed option 180
collapsible blocks

about 68, 79, 180
collapsible sets 82, 83
creating 79, 80
nested collapsible blocks 81, 82

collapsible sets 82, 83
color swatches 63
columns

using, in jQuery Mobile 72, 73
content

default HTML markup styling 68-71
displaying, in jQuery Mobile 68
formatting 167-171
theming 84, 85

corners option 179, 181
count bubbles

about 162
creating 162

countTheme option 180
custom data attributes, jQuery Mobile 26
custom icons 120

D
data-add-back-btn attribute 185
data-ajax attribute 184
data-back-btn-text attribute 185
data-collapsed attribute 184
data-direction attribute 184
data-dividertheme attribute 184
data-filter attribute 184
data-filter-placeholder attribute 184
data-group-theme attribute 165
data-icon attribute 183
data-iconpos attribute 184
data-inset attribute 159, 184

[193]

data-native-menu attribute 185
data-placeholder attribute 185
data-position attribute 184
data-rel attribute 184
data-role attribute 30, 183
data-split-icon attribute 161, 184
data-split-theme attribute 184
data-theme attribute 183
data-transition attribute 184
data-type attribute 184
data-url attribute 185
default page transition 153
default settings, jQuery Mobile

customizing 51-54
defaultTransition option 53, 175
degradeInputs option 181
delete icon 185
development tools, jQuery Mobile

framework
about 188
Chrome web inspector 189
Dragonfly 189
FireBug 188
Internet Explorer 8 developer tools 188
Safari web inspector 188

dialogs
about 38, 45, 46, 180
closing 39
creating 38

disabled option 182
div element 122
dividerTheme option 180
document object 51
Dragonfly 189

E
expandCueText option 180
external links 35
external pages

about 34
linking, with internal pages 35
versus internal pages 34

F
features, iUI 14
features, jQTouch 11

features, jQuery Mobile 16, 19
features, Sencha Touch 12
Fennec 7
file bugs 23
FireBug 188
FireQuery 188
fixed positioning 105
flip toggle, jQuery Mobile framework

creating 137
footer bar, jQuery Mobile

about 94
buttons, adding to 96-98
creating 95
elements, adding to 96-98

form buttons
about 112, 113
creating 116
example 114

forms, jQuery Mobile framework
about 129
basics 130
initialization 130, 131
structure 130, 131
theming 149, 150

forward icon 185
fullscreen positioning

about 105
using 106

G
gear icon 185
GetActive method 178
getFilePath method 177
GET method 130
getNext method 178
GitHub 23
Google Code 13
gradeA option 53, 175
grid icon 185
grid option 181
grids

creating, with buttons 74, 75
creating, with multiple columns 76-78
using, in jQuery Mobile 72, 73

grouped buttons
about 124

[194]

appearance 124, 126

H
hashListeningEnabled option 53, 176
hasProtocol method 177
header bar, jQuery Mobile

about 89
buttons, customizing 90-94
creating 89, 90

headerTheme option 180
heading option 180
hidePlaceHolderMenuItems option 182
history, jQuery Mobile 8
history, Sencha Touch 11
home icon 185
HP WebOS 7
href attribute 92
HTML5 standard 25

I
icon option 179, 182
iconpos option 179-182
icons

about 117
buttons, creating with 117-120

icons, data-icon attribute
alert 185
arrow-d 185
arrow-l 185
arrow-r 185
arrow-u 185
back 185
check 185
delete 185
forward 185
gear 185
grid 185
home 185
info 186
minus 186
plus 186
refresh 186
search 186
star 186

iconshadow option 179, 182
iconTheme option 180

id attribute 30
images

adding, to list item 165, 167
img tag 165
index.html file 30
info icon 186
inline buttons 121-124
inline option 179, 182
input elements, jQuery Mobile framework

about 131
search inputs 135
text inputs 132-135

inset option 180
internal links 35
internal pages

about 34
linking, with external pages 35
versus external pages 34

Internet Explorer 8 developer tools 188
iOS 7
iPhone application 10
iphonenav 13
isEmbeddedPage method 177
isExternal method 177
isRelative method 177
iUI

about 13
features 14
users 13

iWebKit
about 14
display 15
features 15
users 15

J
JavaScript API 11
JQM Gallery

about 188
URL 188

jQTouch
display 10
features 11
users 9, 10
versus jQuery Mobile 9
website link 10

[195]

jQuery API browser link 22
jQuery Mobile

about 7, 49
benefits 7
buttons, theming 126
collapsible blocks 79
collapsible blocks, creating 79, 80
comparing, with other packages 16-18
content, displaying 68
content, theming 84, 85
custom data attributes 26
default settings, customizing 51-54
dialogs 45, 46
dialogs, closing 39
dialogs, creating 38
documentation 187
event handling 54
external pages 34
features 16, 19
grades 18, 19
history 8
internal pages 34
linking to 54
methods 60-62
multi-page templates 29-33
navigating 36, 37
official websites 187
offline resources 187
online resources 187
page structure 25-29
pages, theming 39-44
pages, transitioning in AJAX 36, 37
resources 20
simple grid, creating with buttons 74, 75
theme framework 62-65
toolbar basics 88
toolbars, theming 107, 108
toolbar types 89
trouble shooting issues 189
utilities 60-62
versus jQTouch 9
versus Sencha Touch 11
working 21-23

jQuery Mobile Bug Tracker
URL 23

jQuery Mobile CSS 18
jQuery Mobile documentation 58

jQuery Mobile events
about 54
page-related events 57-59
scroll events 56
touch events 55, 56

jQuery Mobile framework
about 25
button elements 179
buttons, displaying 121
checkboxes 141-143
collapsible blocks 180
development tools 188, 189
dialogs 180
flip toggle, creating 137
form buttons 113
form buttons, creating 116
form initialization 130, 131
forms 129, 130
forms, theming 149, 150
form structure 130, 131
grouped buttons 124, 126
icons 117-120
inline buttons 121-124
input elements 131
link buttons 112, 113
link buttons, creating 115
list view plugin 180
methods 175
navbar plugin 181
page plugin 181
positioning 105
properties 175
radio buttons 138-141
select menu 145-148, 181
slider elements 144
slider plugin 182
text input plugin 182

jQuery mobile gallery. See JQM Gallery
jQuery mobile, toolbar types

footer 94-98
header 89-94
navbar 99-104

jQuery Mobile website
options 52-54

jQuery Mobile website, options
activeBtnClass 52
activePageClass 52

[196]

ajaxFormsEnabled 52
ajaxLinksEnabled 52
defaultTransition 53
gradeA 53
hashListeningEnabled 53
loadingMessage 53
metaViewportContent 53
nonHistorySelectors 53
ns 53
pageLoadErrorMessage 53
subPageUrlKey 53

K
keepNative option 181
keyCode option 176

L
layout grid 68
link buttons

about 112
creating 115
example 113

list dividers 164, 165
list type, selecting

about 153
nested lists 154, 155
numbered lists 156
read-only lists 157, 158
split button lists 159-162

list views
about 151, 180
basics 152, 153
content, formatting 167-171
conventions 152, 153
count bubbles 162
creating 152
examples 151
images, adding 165, 167
list dividers 164, 165
search filter bar, implementing 172
selecting 153

live() 54
loadingMessage option 53, 176

M
makeAbsolute method 177
MeeGo 7
menuPageTheme option 182
metaViewportContent option 53
minus icon 186
Mobile Graded Browser Support 17
mobileinit event 51
multi-page templates, jQuery Mobile 29-33
multiple columns

grids, creating with 76-78

N
nativeMenu option 182
navbar, jQuery Mobile

about 99, 181
customizing 100-104

nested collapsible blocks 81, 82
nested lists

about 154
implementing 155

nonHistorySelectors option 53, 176
normalizeRegex option 176
nsNormalize method 177
ns option 53, 176
numbered lists 156

O
offlicial websites, jQuery Mobile 187
offline resources, jQuery Mobile 187
ol element 156
online resources, jQuery Mobile 187
Opera Mobile 7
Orientationchange event 58
origin property 178
overlayTheme option 182

P
padding 68
pagebeforecreate event 58
pagebeforeshow event 57
pagecreate event 58, 189
pagehide event 57

[197]

pageLoadErrorMessage option 53, 176
pageLoading method 177
page plugin, jQuery Mobile framework 181
page-related events, jQuery Mobile

about 57
pagebeforehide 57
pagebeforeshow 57
pagehide 57
pageshow 57

pages
theming 39-44

pageshow event 57, 189
page structure, jQuery Mobile 25-29
page transitions 36
Palm Smartphone 7
password fields 133, 134
path.origin property 177
persistent footer option 106, 107
Please choose option 146
plus icon 186
positioning, jQuery Mobile framework

about 105
fixed 105
fullscreen 105, 106
persistent footer option 105-107

POST method 130
preventDefault() function 56
progressive enhancement principle 19

R
radio buttons, jQuery Mobile framework

138-141, 179
Radiohead element 155
read-only lists 157, 158
refresh icon 186

S
Safari web inspector

about 188
enabling 188

scroll events, jQuery Mobile
about 56
scrollstart 56
scrollstop 56

scrollstart event 56
scrollstop event 56

search filter bar
implementing 172

search icon 186
search inputs elements

about 135
creating 135

select menu, jQuery Mobile framework
about 145, 181
creating 145-148

Sencha Touch
about 11
display 12
features 12
history 11
users 11
versus jQuery Mobile 11

setOrigin method 177
shadow option 179, 182
silentScroll event 62
silentScroll method 177
simple grid

creating, with buttons 74, 75
slider elements, jQuery Mobile framework

about 144
creating 144

slider plugin, jQuery Mobile
framework 182

slideup transition 37
span element 114
split button lists 159
splitIcon option 180
split list item

creating 159-162
splitTheme option 180
stack property 178
star icon 186
stopPropagation() function 56
stripHash method 177
subPageUrlKey option 53, 176
Swatch A 42
Swatch B 42, 149, 155
Swatch C 43, 44
Swatch D 44
Swatch E 44
swipe event 55
swipeleft event 55
swiperight event 55

[198]

Symbian 7

T
tablets 11
tap event 55
taphold event 55
text areas 134, 135
text fields 132
text input plugin, jQuery Mobile

framework 182
text inputs elements

about 132
password fields 133, 134
text areas 134, 135
text fields 132

theme framework, jQuery Mobile
about 62
implementing 63-65

theme option 179-183
Themeroller tool 19
themes 63
theming mechanism 39
theming system 19, 68
to argument 61, 177
toolbars, jQuery Mobile

about 88
theming 107, 108

toolbar types, jQuery Mobile
footer 94-98
header 89-94
navbar 99-104

touch events, jQuery Mobile
about 55
swipe 55
swipeleft 55
swiperight 55
tap 55
taphold 55

trackTheme option 182
trouble shooting issues, jQuery Mobile

about 189
custom themes, creating 190
mobile equivalent of $(document).ready

189
swatches, creating 190
target object 189

U
UI elements 138
ul element 154
url.getPrev method 177
URL hashes 36

W
WebKit browsers 9
window.orientation property 59
Windows Mobile 7

Z
Zip file 20

Thank you for buying
jQuery Mobile First Look

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery 1.4 Reference Guide
ISBN: 9781849510042 Paperback: 336pages

A comprehensive exploration of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and
selector expression in the jQuery library with
an easy-to-follow approach

3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery's
powerful plug-in architecture

jQuery 1.4 Animation Techniques:
Beginners Guide
ISBN: 978-1-84951-330-2 Paperback: 344 pages

Quickly master all of jQuery’s animation methods
and build a toolkit of ready-to-use animations using
jQuery 1.4

1. Create both simple and complex animations
using clear, step-by-step instructions,
accompanied with screenshots

2. Walk through each of jQuery’s built-in
animation methods and see in detail how each
one can be used

3. Over 50 detailed examples of different types of
web page animations

Please check www.PacktPub.com for information on our titles

jQuery Plugin Development
Beginner's Guide
ISBN: 978-1-849512-24-4 Paperback: 288 pages

Build powerful, interactive plugins to implement
jQuery in the best way possible

1. Utilize jQuery's plugin framework to create
a wide range of useful jQuery plugins from
scratch

2. Understand development patterns and best
practices and move up the ladder to master
plugin development

3. Discover the ins and outs of some of the most
popular jQuery plugins in action

PHP jQuery Cookbook
ISBN: 978-1-84951-274-9 Paperback: 332 pages

Over 60 simple but highly effective recipes to create
interactive web applications using PHP with jQuery

1. Create rich and interactive web applications
with PHP and jQuery

2. Debug and execute jQuery code on a live site

3. Another title in the Packt Cookbook range,
which will help you get to grips with PHP as
well as jQuery

Please check www.PacktPub.com for information on our titles

Drupal 6 JavaScript and jQuery
ISBN: 978-1-847196-16-3 Paperback: 340 pages

Putting jQuery, AJAX, and JavaScript effects into
your Drupal 6 modules and themes

1. Learn about JavaScript support in Drupal 6

2. Packed with example code ready for you to use

3. Harness the popular jQuery library to enhance
your Drupal sites

4. Make the most of Drupal's built-in JavaScript
libraries

ASP.NET jQuery Cookbook
ISBN: 978-1-84969-046-1 Paperback: 308 pages

Over 60 practical recipes for integrating jQuery with
ASP.NET

1. Tips and tricks for interfacing the jQuery
library with ASP.NET controls

2. Boost ASP.NET applications with the power of
jQuery

3. Use a problem-solution based approach with
hands-on examples for ASP.NET developers

4. Step-by-step guide with plenty of code snippets
and screen images

Please check www.PacktPub.com for information on our titles

CMS Design Using PHP and
jQuery
ISBN: 978-1-84951-252-7 Paperback: 340 pages

Build and improve your in-house PHP CMS by
enhancing it with jQuery

1. Create a completely functional and a
professional looking CMS

2. Add a modular architecture to your CMS and
create template-driven web designs

3. Use jQuery plugins to enhance the "feel" of
your CMS

Joomla! 1.5 JavaScript jQuery
ISBN: 978-1-849512-04-6 Paperback: 292 pages

Enhance your Joomla! Sites with the power of jQuery
extensions, plugins, and more

1. Build impressive Joomla! Sites with JavaScript
and jQuery

2. Create your own Joomla!, jQuery-powered,
extensions

3. Enhance your site with third-party features,
code-highlighting, Flicker, and more using
Joomla! Plugins

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What is jQuery Mobile?
	How jQuery Mobile was born
	jQuery mobile and other libraries
	jQTouch
	Who is it for?
	How does it look?
	What should I remember?

	Sencha Touch
	Who is it for?
	How does it look?
	What should I remember?

	iUI
	Who is it for?
	How does it look?
	What should I remember?

	iWebKit
	Who is it for?
	How does it look?
	What should I remember?

	Comparison
	Type of package comparison
	Why choose jQuery Mobile?

	How to get jQuery mobile
	jQuery Mobile in action
	Getting involved
	Summary

	Chapter 2: Organizing Content: Pages and Dialogs
	Understanding page structure
	How multi-page templates work
	How to link internal and external pages
	Navigation and page transitioning in AJAX
	Dialogs: creation, deletion, and behavior
	Theming pages and dialogs
	Summary

	Chapter 3: Configuring and Extending jQuery Mobile
	Customizing default settings
	Handling events
	Touch events
	Scroll events
	Page-related events

	Working with methods and utilities
	Using the theme framework
	Summary

	Chapter 4: Reading, Writing, Communicating: Content
	How content is displayed
	Default HTML markup styling

	Using columns and grids
	How to create a simple grid with buttons
	Creating grids with more than two columns

	A note on collapsible blocks
	Nested collapsible blocks
	Collapsible sets

	Theming content
	Summary

	Chapter 5: Navigation Made Easier: Toolbars
	How do toolbars actually work?
	Different types of bars
	Header bars
	Creating a header
	Customizing buttons

	Footer bars
	Creating a footer
	Adding buttons and other elements

	Navbars
	Creating a navbar
	Customizing navbars

	On positioning
	Fixed positioning
	Fullscreen positioning
	Persistent footer

	Theming toolbars
	Summary

	Chapter 6: Mobile Clicking: Buttons
	What do buttons look and feel like in jQuery mobile?
	Buttons markup and icons
	Creating link buttons
	Creating form buttons
	Adding icons

	Displaying buttons
	Inline buttons
	Grouped buttons

	Theming buttons
	Summary

	Chapter 7: Transmitting Information: Forms
	Form basics
	Form structure and initialization

	Input elements
	Text inputs
	Text fields
	Password fields
	Text areas

	Search inputs

	Flip switches, radio buttons, and checkboxes
	Flip toggle switches
	Radio buttons
	Checkboxes

	Sliders and select menus
	Sliders
	Select menus

	Theming forms
	Summary

	Chapter 8: Organizing Information: List Views
	Basics and conventions for list views
	Nested lists
	Numbered lists
	Read-only lists
	Split button lists

	Spicing up your lists
	Count bubbles
	List dividers
	Images
	Formatting content
	Implementing a search filter bar

	Summary

	Appendix A: API Calls and Properties
	List of properties and methods
	$.mobile options
	$.mobile methods
	$.mobile.path methods
	$.mobile.path properties
	$.mobile.urlHistory methods
	$.mobile.urlHistory properties
	$.support tests
	Button plugin
	Check and radio boxes plugin
	Collapsible plugin
	Dialog plugin
	List view plugin
	Navbar plugin
	Page plugin
	Select plugin
	Slider plugin
	Text input plugin

	Appendix B:Resources and Troubleshooting
	Online and offline resources
	Official jQuery and jQuery Mobile documentation
	jQuery 1.4 reference guide
	jQuery mobile gallery

	Development tools
	FireBug (Firefox)
	Internet Explorer 8 developer tools
	Safari web inspector
	Dragonfly (Opera)
	Chrome web inspector

	Troubleshooting
	Mobile equivalent of $(document).ready
	Target object
	Creating custom themes and swatches

	Index

