<
oy

1\(
R e
R

2

R

W

X /i
¥ { W/
O - W -
=1 ‘ ~ Ay y A b <
N ' & 5
Yy o V &y % \ ™
} »
R

S LSty

Wk

i fﬁr‘*:‘!‘:ﬂ‘/ﬁ" GRS i ﬁ,,-w,égt“,}ﬁﬂ :

e ’ > : : 3 & “1‘ ar 7 L > 2 s 3 ,:é“f;‘
S W A e N /,ea‘:"i“ 2 .%%.i:}v&n-;-i,.{’fl;;ﬂ!;ﬂ
Learn by doing: less theory, more results

PhoneGap

Build cross-platform mobile applications with the
PhoneGap open source development framework

Beginner's Guide

Andrew Lunny

PUBLISHING

Beginner's Guide

Build cross-platform mobile applications with the PhoneGap
open source development framework

Andrew Lunny

PUBLISHING

BIRMINGHAM - MUMBAI

Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2011
Production Reference: 1160911

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-849515-36-8
www . packtpub.com

Cover Image by Asher Wishkerman (a.wishkermanempic.de)

Author Project Coordinator
Andrew Lunny Joel Goveya
Reviewers Proofreader
Paul McCrodden Aaron Nash

Andrey Rebrov

Indexer
Acquisition Editor Hemangini Bari
Usha lyer
Production Coordinator
Development Editor Aparna Bhagat
Meeta Rajani
Cover Work
Technical Editors Aparna Bhagat

Pallavi Kachare

Priyanka Shah

Andrew Lunny is a software developer based in Vancouver, BC, where he is ""Chief NOOb"
at Nitobi Software. He has worked at Nitobi for four years, since a brutal shark attack cut
short his promising career as a surfer. He is the lead developer and all-around fall guy for

the PhoneGap Build web service, a member of the PhoneGap team, and has over 10 years'
experience with PhoneGap and related technologies. He is fond of Ruby, JavaScript, Unix, Git,
and the Internet.

Nitobi is a software company run by Andre Charland, Dave Johnson, and Brian Leroux. They
specialize in cross-platform mobile development and design, and sponsor the PhoneGap
open source project.

In his spare time, Andrew enjoys cycling, running, walking, and jumping. He has two
unrelated degrees from the University of British Columbia.

Thanks to Tammy, to my parents, and to Hugo and Natasha for putting

up with me while | procrastinated along. Thanks to Michael Brooks for
running a Windows VM so | did not have to, and thanks to all of my other
co-workers for working on such a great open source project. Thank you to
everyone who follows me on Twitter.

Finally, thanks to all my old surfing buddies—Skip, Dingo, even Jelly! I'll get
back on the waves with you guys some time, | promise.

Paul McCrodden is a Digital Media Developer from a small country in the west of Europe
known for its potatoes and leprechauns. He is a chartered engineer graduating with a
Bachelor of Engineering in Digital Media from Dublin City University and a Master of Science
in Multimedia Systems from Trinity College Dublin. With this knowledge he aims to merge
the technical with the creative when it comes to digital media production.

Paul has previously worked for global companies such as Ericsson and Bearingpoint
Consulting along with various medium to small businesses on contract. He recently gave
up the 9 - 5 to work 9 - 9 for his own company, which provides digital media consulting and
a range of services including, web solutions, mobile application development, and other
multimedia. For more information go to www . paulmccrodden. com.

I would like to thank my family, friends, and last but by no means least, my
girlfriend Claire for her support and patience. A huge thanks to the Drupal
community for all their hard work and the Wordpress and PhoneGap
communities for theirs. Lastly, a thank you to Packt for asking me to review
the book; it has been a great all round learning experience.

Andrey Rebrov, 23, has big plans for his future. He started as a software developer
in Magenta Technology—a big British software company specialized in Enterprise Java
Solutions, and worked there for more than three years. Now, he is working on Luxoft as
a senior Java web developer. In February 2011 he graduated from the IT Department of
Samara State Aerospace University with an honors degree.

He is also working with different web technologies—JavaScript (ExtJS, jQuery), HTML/
HTML5, CSS/CSS3, and has some experience in Adobe Flex. He is also interested in mobile
platforms, and developing web and native apps. Exploring PhoneGap, jQuery Mobile, and
Sencha Touch, he has created some plugins for jQuery Mobile.

In his work he uses Agile methodologies such as Scrum and Kanban, and is interested
in innovation and Agile games. At the moment he is working on innovation games
popularization in Russia and Russian communities.

He also uses GTD methodologies, which help him in his work and daily routine. And, of
course, it helps him with blogging.

In his blog he writes about interesting technologies, shares his developer experience, and
translates some articles from English into Russian.

| would like to thank Kartikey Pandey who asked me to review this book
and Joel Goveya who helped me throughout the review.

| would like to thank my parents for providing me with the opportunity to
be where | am. Without them, none of this would even be possible. You
have always been my biggest support and | appreciate that.

And the last thanks go to my girlfriend, Tatyana, who always gives me
strength and hope.

support files, eBooks, discount offers and more

You might want to visit www. Packt Pub. com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www. Packt Pub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

I@ PACKT! 1°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

¢ Fully searchable across every book published by Packt
¢ Copy & paste, print and bookmark content

¢ Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Tahle of Contents

Preface 1
Chapter 1: Installing PhoneGap 7
Operating systems 7
Dependencies 8
Getting started with iOS 9
Time for action — Getting an app running on the simulator 9
Installing PhoneGap-iPhone 12
Time for action — Hello World with PhoneGap-iPhone 12
Getting started with Android 17
A note on development environments 18
Time for action — Getting the SDK running 18
PhoneGap Android 22
Time for action — Hello World on PhoneGap Android 23
What's in a PhoneGap Android application, anyway? 25
Getting started with BlackBerry web works 26
Time for action - Your first PhoneGap BlackBerry app 27
Code signing for BlackBerry 33
Summary 34
Chapter 2: Building and Debugging on Multiple Platforms 35
Designing with desktop browsers 36
WebKit 36
Developing our first application: You Are The Best 36
Time for action - Initial design and functionality 37
Our workflow 41
Our styles 41
Unobtrusiveness 41

Width and height 42
-webkit-border-radius 42

Table of Contents

Our scripts 43
Unobtrusiveness 44
addEventListener 44
DOMContentLoaded 45
Using the web inspector 46
Accessing web inspector 46
Time for action — Simple logging and error checking 47
Moving to native platforms 52
Time for action — You Are The Best for iPhone 52
<meta name="viewport"> 57
phonegap.js 57
deviceready 58
Summary 59
Chapter 3: Mobile Web to Mobile Applications 61
Implementing web server roles 61
Time for action — Implementing LocalStorage 62
Other storage options 68
Web SQL 68
Indexed DB 68
View templating 69
Time for action — Food detail view 70
Accessing remote resources 76
Cross-origin policy 76
Time for action — Talking about food 77
Accessing remote resources 84
Parsing remote data 85
Event delegation 86
Sleight: The PhoneGap development server 88
Summary 89
Chapter 4: Managing a Cross-Platform Codebase 91
Inherent differences between platforms 91
Using a single codebase 92
Time for action - Detection and fallbacks 93
User agent sniffing 102
Feature detection 104
Media queries 106
Preprocessing code 109
Summary 110
Chapter 5: HTML5 APIs and Mobile JavaScript 111
Mobile JavaScript 111

XUl 112

Table of Contents

Time for action — Downloading, building, and using XUI 112
Why not jQuery? 121
HTML5 123
Media elements 123
Time for action — My dinner with PhoneGap 124
Media events and attributes 128

The audio element 129
The canvas element 130
Time for action: Dinner dashboard 131
The canvas API 136

A note on performance 137
What else is in HTML5? 138
Summary 139
Chapter 6: CSS3: Transitions, Transforms, and Animation 141
Translate with transitions 141
Time for action — The modal tweet view 142
Timing functions 150
Other transformations 151
Scrolling 151
Viewports: Visual and otherwise 152
iScroll 152
Time for action — Scrolling list of food 153
Other approaches 158
Explicit animations 159
Time for action — Animating our headline 159
Animations: CSS3 or HTML5? 164
Summary 165
Chapter 7: Accessing Device Sensors with PhoneGap 167
What are device sensors? 168
Time for action — A postcard writer 169
PhoneGap versus HTML5 177
Other geolocation data 178
Accelerometer data 179
Time for action — Detecting shakes 179
Device orientation and device motion events 183
Orientation media queries 184
Time for action — Landscape postcards 184
Other media queries 189
Magnetometer: The missing API 189
Summary 190

Table of Contents

Chapter 8: Accessing Camera Data and Files 191
Time for action — Hello World with the Camera API 191
Browsers are not emulators or devices 198
Image sources 199
Other options 199
What about when we finally get an image? 200
Time for action — Getting a file path to display 200
Where is this image, anyway? 204
Raw image data 204
Time for action — Saving pictures 205
Ensure quality is set 210
Editing or accessing live data 211
Summary 211
Chapter 9: Reading and Writing to Contacts 213
Time for action — navigator.service.contacts.find 214
ContactFields 222
Writing contact data 223
Time for action — Making friends 223
What if | encounter a new problem? 230
ContactFields, ContactName, and similar objects 230

Be responsible 231
Summary 232
Chapter 10: PhoneGap Plugins 233
Getting PhoneGap plugins 234
Time for action — Integrating ChildBrowser 234
Differences between platforms 241
Plugin discovery 241
Writing a PhoneGap plugin 242
Time for action — Battery view 243
Noteworthy information about the PhoneGap plugin with iOS 252
Porting your plugin 253
Time for action — Android and BlackBerry 253
Do you need cross-platform plugins? 261

No limits 261
Summary 262
Chapter 11: Working Offline: Sync and Caching 263
Ruby and Sinatra 263
Time for action — A news site, with an API 264
Alternatives to Sinatra 272
Caching new stories 273
Time for action — Caching stories in a local database 273
Managing application initialization 281
Summary 283

Table of Contents

Appendix A: Deploying to iOS 285
Time for action—deploying to a device 285
Appendix B: Pop Quiz Answers 295
Chapter 1 295
PhoneGap iPhone Basics Answers 295
Chapter 2 295
Initial Design Answers 295
Chapter 3 296
Templating with Mustache Answers 296
Chapter 4 297
Feature Detection vs UA Sniffing Answers 297
Chapter 5 298
XUl Answers 298
Media Elements Pop Quiz Answers 298
Chapter 6 299
Scrolling Answers 299
Chapter 7 299
Geolocation Answers 299
Orientation and Media Queries Answers 300
Chapter 8 300
navigator.camera.getPicture Answers 300
Destination Types Answers 301
Chapter 9 301
Contacts Answers 301
Chapter 10 302
Using PhoneGap Plugins Answers 302
Writing PhoneGap Plugins Answers 302
Chapter 11 303
A Simple Web Service Answers 303
Index 237

PhoneGap: A Beginner's Guide is an introduction to PhoneGap: an open source, cross-
platform framework for developing mobile applications. PhoneGap allows developers

to leverage web development skills—HTML, CSS, and JavaScript—to developed native
applications for iOS, Android, BlackBerry, and many other platforms with a single codebase.
Many of the same benefits of developing websites—for example, deployment to a wide
variety of clients—are at developers' fingertips.

Chapter 1, Installing PhoneGap, helps readers through the often difficult process of setting
up multiple development environments for the iOS, Android, and BlackBerry platforms. After
this chapter, you will have an environment ready to build your PhoneGap applications.

Chapter 2, Building and Debugging on Multiple Platforms, shows how to use the
environment set up in Chapter 1 to quickly and efficiently work on your code for multiple
platforms at once. It also helps you get used to using desktop browsers to assist with
mobile development.

Chapter 3, Mobile Web to Mobile Applications, describes the changes in application design
and architecture that are at the forefront of developing on PhoneGap. In particular, we see
how to write PhoneGap applications that do not rely on a web server for the majority of
their interactions.

Chapter 4, Managing a Cross-Platform Codebase, shows readers how to use common web
techniques, including feature detection and user-agent sniffing, to manage their code that
gets deployed to multiple platforms.

Chapter 5, HTML5 APIs and Mobile JavaScript looks at some of the new JavaScript APIs
available in HTML5 browsers, which are common on modern mobile devices. We also
look at mobile JavaScript libraries that are useful for managing your code.

Preface

Chapter 6, CSS3: Transitions, Transforms and Animation, looks at the new techniques
available in current CSS implementations for sprucing up the look and feel of your
PhoneGap applications.

Chapter 7, Accessing Device Sensors with PhoneGap, demonstrates the use of PhoneGap's
device sensor capabilities for managing the location and accelerometer readings from your
PhoneGap application.

Chapter 8, Accessing Camera Data and Files, shows how to use the PhoneGap APIs to manage
access to the user's photo library and camera, and use the results in your application.

Chapter 9, Reading and Writing to Contacts, uses the Contacts APIs from PhoneGap to work
with the user's native contacts list on their device, for use in your own application.

Chapter 10, PhoneGap Plugins, shows how the iOS, Android, and BlackBerry implementations
of PhoneGap can be easily extended to access any native capabilities not exposed by the
PhoneGap core APIs.

Chapter 11, Working Offline: Sync and Caching, shows how with a small amount of server-
side code, you can use PhoneGap to capture data offline and manage it locally or remotely.

Appendix A, Deploying to iOS, shows you how to get a Developer Certificate from Apple,
allowing you to take your application from a simulator to the market.

Since PhoneGap uses the native capabilities of each supported mobile platform, you will
need to install the appropriate native SDKs for each platform that you want to deploy to.

In the case of i0S, you will require an Apple Mac computer. For BlackBerry, you will require
a Windows PC, or a virtualized Windows environment. Android's SDK supports all major
operating systems.

Other than that, you will just need a web browser—preferably a WebKit based one, such as
Safari or Google Chrome—and a text editor.

This book is ideal for intermediate web developers, who have not worked on the mobile web
or on mobile applications. No experience with native mobile SyDKs is required.

[2]

Preface

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Action1l
2. Action?2
3. Action3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple choice questions intended to help you test your own understanding.

These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "From your FirstApp directory, launch the
simulator."

A block of code is set as follows:

<meta name="viewport" content="width=device-width, initial-scale=1.0,
user-scalable=no"></meta>

Any command-line input or output is written as follows:

$ ant load-device

[31]

Preface

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "To find the PhoneGap Sample,
hit the BlackBerry button (the one with seven circles resembling a B), then Downloads".

% Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@epacktpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

[4]

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you

find any errata, please report them by visiting http: //www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[51]

PhoneGap is, at heart, a set of project templates for different mobile operating
systems, allowing us to ignore the details of each SDK and develop applications
in a consistent fashion. The biggest roadblock developers find with PhoneGap is
getting started—installing the SDKs and development environment to run those
project templates. We're going to cover that task in this chapter.

In this chapter, we will:

Install Xcode and the iOS SDK for iOS development
Install the Android SDK and set up the emulator

Set up the BlackBerry Web Works development environment

* & o o

Build PhoneGap applications to all three platforms

So let's get to the first roadblock...

We touched on this in the preface, but it's worth emphasizing again: PhoneGap plays by the
rules. If a vendor releases their SDK for just a single operating system, then you will have to
use that OS to build and deploy your applications.

In detail, for each PhoneGap platform:

¢ You can develop Android and HP webOS apps on any of the major desktop
operating systems—Windows, Mac OS X, or Linux. Hooray!

Installing PhoneGap

L 4

You can develop Symbian Web Runtime apps on any OS, but you can only run the
simulator from Windows.

Developing for BlackBerry is similar—the SDK can be installed on Windows or Mac
0S X, but, at the time of writing, the simulator only runs on Windows.

The Windows Phone 7 SDK only runs on Ubuntu Linux, versions 10.04 and above.
That one's a joke.

And, as you're no doubt aware, the iOS SDK requires the latest version, 10.6, of Mac
OS X (and, according to the OS X EULA, a Mac computer as well).

Practically speaking, your best bet for mobile development is to get a Mac and install
Windows on a separate partition that you can boot into, or virtualize using Parallels or
VMWare Fusion. According to Apple's legal terms, you cannot run Mac OS X on non-Apple
hardware; if you stick with a Windows PC, you will be able to build for every platform except

iOS.

If getting a new computer sounds a bit too expensive, you'll probably want to skip the
How To Buy a Dozen Phones chapter as well.

Nearly there! There are just a few other important tools you'll need to get up and running:

L 4

git: git is the best thing in the world (other opinions are available). More precisely,
git is a distributed version control system, a superb tool for managing every aspect
of software development. PhoneGap is developed with git at hand, and git is the
best way to work with PhoneGap. You can find installation and usage information
athttp://git-scm.com/.

For Mac and Linux users, | recommend using Git directly from the Terminal
application. If you're on Windows, you may consider MsysGit, available at
http://code.google.com/p/msysgit/.

ant: More precisely Apache Ant, is a Java-based build tool, similar to make.

Unlike make, ant tasks are specified with XML. It is a very popular tool in the Java
community. We'll use ant extensively for building Android and BlackBerry apps. You
can get ant on your system from http://ant.apache.org/, Detailed and current
installation instructions are available there.

Also, ensure that ANT HOME is set correctly in your environment variables—this will
ensure the PhoneGap ant scripts can run correctly.

Ruby: The droidgap build tooling depends on Ruby, a widely available programming
language. If you're running on Mac OS X or Linux, Ruby should be available with your
installation. An installer for the latest Ruby release for your system is available at
http://www.ruby-lang.org/en/downloads/.

Chapter 1

So let's finally get something started—building applications on iOS. Firstly, we're going to get
the developer tools installed on our Mac, and then we'll get PhoneGap itself up and running.

Time for action - Getting an app running on the simulator

Let's start at Apple's iOS Dev Center—https://developer.apple.com/devcenter/
ios/index.action. I'm going to assume that somebody intelligent enough would have
purchased my book, and is fully capable of registering and creating an account. What next?

1. Download the latest SDK (4.3 at the time of writing) and the XCode and iOS package.

05 SDK 4.1 05 5DK beta Q

Resources for i0OS 4.1 Featured Content

| A i
Downloads 8 GCetting Started with Game Center

% What's new in i05 4
Getting Started Videos

@ Supporting Multitasking In Your Applications
M iAd Framework Reference
Getting Started Documents

Start Developing iPad Apps

@ Apple Push Motification Service Programming
i0S Reference Library Guide

@ In App Purchase Programming Guide

& B I N e

iAd J5 Reference Library @ Cetting Started with In App Purchase

2. Wait for the three gigabyte download to finish. This may be a good time to get
a cup of coffee.

3. Runtheinstaller!

Installing PhoneGap

4. Launch Xcode, and start a New Project—select iOS and View-based Application.
Name your application FirstApp when prompted.

Edit View Project Build Run Design SCM Window @ Help
New Project. ..
New File... BN
Open... #®0
Open Quickly... o®D
Open Recent File >
Open Recent Project >
Get Info ¥
Close Window HW
Close Current File T+ 8W
Save £
Save As.. 385
Revert to Saved U
Make Snapshot ~¥S
Snapshots
Print #P

5. The following screenshot shows what the final application should look like in Xcode:

(e Nolo) [FirstApp ()
(=] S0) o i g
Overview Action Breakpoints Build and Run Tasks Info Search
Groups & Files 1+ File Name 4 A Code a A (o]
¥ A FirstApp = ﬁ CoreGraphics.framework o
b] Classes E| FirstApp-Info.plist =N
b || Other Sources ',14, FirstApp.app =] ‘
b | Resources E| FirstApp_Prefix.pch :
b | Frameworks |—1| FirstAppAppDelegate.h |
#[] Products @ FirstAppAppDelegate.m v [
» (@) Targets [] FirstappviewController.h
» ¢ Executables E| FirstAppViewController.m v [C
v Q\ Find Results E| FirstAppViewController.xib [C
b 11 Bookmarks % Foundatinn framewnrle . a LT
b Edsem [«Tw» I, ™ | Cy| #4
@ Project Symbols L No Editor
> @ Implementation Files
b (G NIB Files
£
L

[101

Chapter 1

6. Hit Build and Run on the Menu Bar—you should see the iPhone simulator launch on
your screen. If you go to the home screen on your simulator, you should see the icon
for your application:

® iPhone Simulator Edit Hardware Window Help

7. This verifies that your setup is ready to begin writing PhoneGap applications for iOS.
Congratulations, you're an iOS developer!

nl

Installing PhoneGap

What just happened?

We just wrote our first iOS application!

Okay, so we didn't actually write any code—perhaps the project title counts as code, but
it's a bit of a stretch. But if you can get this far—installing Xcode and launching the iPhone
simulator—then the rest of the setup should be fairly easy.

One part that can also be tricky is deploying your new application to a physical iOS

device. Please check Appendix, Deploying to an iOS Device, for help with this; you can also
consult Apple's documentation at http://developer.apple.com, for the most up to
date details.

First things first—yes, it should be called PhoneGap iOS. As the old programming saying goes,
there are only two hard problems in Computer Science: cache invalidation, off by one error
and naming things.

You'll notice that neither of those problems involved PhoneGap, which is a doddle by
comparison. Let's get going.

Time for action - Hello World with PhoneGap-iPhone

1. Open your 0S X Terminal, and navigate to a folder you don't mind writing to. Make
sure you have the Git installed and available in your PATH.

2. Enter the following command:
$ git clone git://github.com/phonegap/phonegap-iphone.git

0.0 Terminal — bash — 79x22

$ git clone git://github.com/phonegap/phonegap-iphone.git B
Cloning into phonegap-iphone. ..
remote: Counting objects: 8934, done.
remote: Compressing cbjects: 180% (3137/3137), done.
remote: Total 8934 (delta 5477), reused 8236 (delta 5839)
Receiving objects: 10@% (8934/8934), 8.82 MiB | 1.58 MiB/s, done.
Resolving deltas: 100% (5477/5477), done.
-/dev §

121

Chapter 1

3. Now change into that directory, build the installer, and run it:
$ cd phonegap-iphone
$ make
$ open PhoneGapLibInstaller.pkg

4. You'll see the PhoneGap GUI installer in front of you. Follow the instructions
onscreen—the installation process takes up less than a megabyte on disk and
doesn't require administrative privileges, so you shouldn't encounter any errors.

OO « Install PhoneGapLib

Welcome to the PhoneGapLib Installer

VERSION 20101019)

liziecucon PhoneGapLib is a static library that enables users to include

® Read Me PhoneGap in their iPhone application projects easily, and also create
new PhoneGap based iPhone application projects through a Xcode

® Destination Select project template.

® Installation Type 20101019

- Updated the Base SDK to i0S 4.1 {the minimum to submit to the App

® Installation Stare) for the project files

® Summary 20100902 "

- Updated the Base SDK to iOS 4.0 {the minimum to submit to the App
Store) for the project files

- Added PhoneGapBuildSettings xcconfig to the template. To override
your PHONEGAPLIB folder on a project by project basis, modify the
PHOMEGAPLIB value in this file.

20100416

- Removed keys from PhoneGap.plist (AutoRotate, StartOrientation,
RotateOrientation).

- To suppaort orientation in your app: editadd the i
UlSupportedinterfaceQrientations (iPhone) or v

Go Back Continue)

v

5. Quit and reopen Xcode if you still have it open—it will need to be restarted for the
PhoneGap Project Template to be visible.

1131

Installing PhoneGap

4. From the newly opened Xcode, select New Project again, and this time choose
PhoneGap from the User Templates section, and PhoneGap-based Application from
the main pane. Call your new project FirstGapApp (or, you know, something clever).
You should see the familiar project view on Xcode, along with a www directory on the
left-hand side.

aas |7| index.html - FirstGapApp —
[Slmulator - 4.1 | Debu.. '] - E] '& ' a Q- String Matching
Overview Action Breakpoints Build and Run Tasks Info Search
Groups & Files I+ File Name 4 A Code D A e
v ﬁ FirstGapApp B [# index.html
v L www

|#] index.html
> -l PhoneGaplib.xcodepraj
#[| Classes
P[] Plugins
W[| Other Sources
P _|Resources
L]

| Frameworks
|| Products —
bTargets < » |~ index.html:34 + 1 onDeviceReady = J_|"™ |C.|#.| B (@&
'\.J Executables function onBodylLoad() H
¥ . Find Results -
»] Bookmarks document.addEventListener(“deviceready", onDeviceReady, false);
P =2 5CM
8 Project Symbols /* When this function is called, PhoneGap has been initialized and is
¥ (@ Implementation Files function onDeviceReady()
¥ [EE] NIB Files

/f do your thing!

=/script=>
</head>
<body onload="onBodyLoad()">

</body>
</html= o

€ >] 14l e

5. Open www/index.html from the left pane of your application window. Scroll down
to the JavaScript function onDeviceReady and add the following line of code:

alert(‘Hello PhoneGap!’);

(1]

Chapter 1

6. Hit Build and Run to see the results.

index.html

Hello PhoneGap!

7. Your JavaScript code has now executed, and your PhoneGap application is
ready to go.

What just happened?

We got our first PhoneGap application up and running, that's what—an application running
natively on a mobile platform that is wholly controlled through HTML, JavaScript, and CSS.
We should give ourselves a pat on the back for that alone!

151

Installing PhoneGap

We can get an initial sense of how PhoneGap works if we look at the left-hand side of the
Xcode window, and contrast it with what we saw on FirstApp. Here are the important things
to note:

¢ Thereis a blue folder called www, next to a bunch of yellow folders similar to those
in FirstApp. In Xcode's world, a blue folder is a directory on the file system that
is bundled in with your project, whereas yellow folders are virtual directories
containing project source code.

It's important to be aware of this for one reason especially—as bundled files,
PhoneGap source files are not automatically refreshed on each compile of your
application. If you want to refresh your application in the simulator, or on your
device, you will need to Clean it first.

® Xcode File Edit View Projectmmn Design SCM Window @ Help

. Build Results {388
o000 —
Build ®B | 9
[Simulator - 4.1 | Debu... '] Build and Analyze A T String Matching
Overview Action Build and Archive Search
Groups & Files I File Name Build and Run 3+ | Code L] A @
v [FirstGapApp B 7 indexhtn Byild and Run - Breakpoints Off R
TD“’“’_"" Build and Debug - Breakpoints On %Y
\#| index.html Clean 2K
» E PhoneGaplib.xcodepraj

Clean All Targets

| Resources

|| Classes

| 3 i . .

'—'gt‘hg'”ss Next Build Warning or Error =
| er sources . - .

i Previous Build Warning or Error ®+

>

|| Frameworks

¥ || Products
hTargets 4|k
» < Executables
¥ () Find Results ln
» [l Bookmarks document.addEventListener("deviceready", onDeviceReady, false);
b0 SCM

@ Project Symbols /# When this function is called, PhoneGap has been initialized and is
b [Implementation Files function onDeviceReady()
b (3] NIB Files

2 * 1Co | #% a

f/ do your thing!
alert{'Helle PhoneGap!')|

=/script=
</head=>
<body onload="onBodyLoad()"=
</body= a
</html= Y
€ >] 4k
Debugging terminated. @ Succeeded /. 3 Y

¢ Thereis a second blue Xcode project called PhoneGapLib.xcodeproj, below the
main FirstGapApp Xcode project. This is the static PhoneGap library that was
installed by the installer, and that GapFirstApp links to. If you wish, you can double-
click on the project and edit away at the PhoneGap library—that's the beauty of
open source software. But don't do that just yet.

1161

Chapter 1

¢ The more eagle eyed among you will have noticed that the www folder contains only
index.html, but it requires a file called phonegap. js on line 15. This JavaScript
file isn't strictly necessary for PhoneGap development, but it does give you access
to all of the PhoneGap APIs. By default, it's autogenerated when you build your
application.

There are a couple of other differences between a PhoneGap-based Xcode application and
a regular view-based iOS application, but we'll come to those in due time. Let's play around
with our iPhone application for a bit, and then move onto the next platform.

1. Where are your PhoneGap assets (HTML, JavaScript, and CSS) located in an
Xcode project?

a. Inthe project root
b. Inthe phonegap folder

c. Inthe www folder

2. How do you rename a PhoneGap iOS application?
a. Changethe <title>tagin index.html
b. Rename index.html to SomeThingNew.html

c. Edittheapplication-Info.plist file

3. What function is called by the alert ('Hello PhoneGap!') code?
a. Thestandard alert function in the iOS WebView
b. The alert function defined in phonegap.js
c. The native Objective-C notification API that PhoneGap links to

Getting started with Android

Google's Android operating system is, in many ways, the antithesis of iOS: open instead of
closed, and fragmented instead of integrated. This applies to the development environment
as well—Android is a less bureaucratic environment than iOS, but has a few more rough
edges along the way.

[l

Installing PhoneGap

It was the Roman playwright Terence, of the second century BC, who wrote Homo sum,
humani nihil a me alienum puto; | am human, nothing human is alien to me. | feel likewise,
except where the Eclipse IDE is concerned.

There are Eclipse plugin for both Android and BlackBerry development, which are certainly
compatible with using PhoneGap on each platform. However, the major benefit of these
plugins is their assistance with Java development, which is not the chief concern for developers
using PhoneGap. Any text editor is sufficient for developing HTML, JavaScript, and CSS.

Rest assured, if Eclipse is your preferred environment, all of the content for these two
platforms also applies in Eclipse.

Time for action - Getting the SDK running

Android isn't tied to a single IDE in the manner iOS is tied to Xcode, although you can use
the ADT plugin for Eclipse for a somewhat similar experience. There is also an Android plugin
for Intelli) IDEA available. For PhoneGap's purposes, this is a boon: we can go straight to a
PhoneGap application, once the basic SDK is set up. Let's do that now, and then get on to the
good stuff:

1. Download the latest SDK package (r11 at the time of writing) from
http://developer.android.com/sdk/index.html.

Download the Android SDK

Welcome Developers! If you are new to the Android SDK, please read the Quick Start, below, for
an overview of how to install and set up the SDK.

If you are already using the Android SDK and would like to update to the latest tools or platforms,
please use the Android SDK and AVD Manager to get the components, rather than downloading a
new SDK package.

N e N =

Windows android-sdk_r07- 23669664 69c40c2d2e408b623156934f9ae574f0
windows.zip zip bytes

Mac OS X android-sdk_r07- 19229546 0f330ed3ebb36786faf6dc72bBacf819

(intel) maec_x86.zip bytes

Linux (i386) android-sdk_r07- 17114517 e10c75dadd1aa147ddd4a5c58bfc 3646
linux x86.tgz bytes

[181

Chapter 1

2.

Unpack the contents of the SDK to a safe location, and then add that location to
your operating system's PATH environment variable.

Launch the SDK and AVD manager—on Windows, run the SDK Setup.exe
program, otherwise enter android at your prompt.

SNeNG] Android SDK and AVD Manager
Virtual Devices List of existing Android Virtual Devices located at /Users/andrewlunny/.android/avd
Inst:alled Packages [AVD Name Target Name Platform APl Level | New.
Available Packages | No AVD available __ -
Settings Delete...
About
Repair...
Details...
Start...
Refresh
~ Avalid Android Virtual Device. A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details’ to see the error.
7

Install some packages! Select Available Packages on the left, and click everything
that looks good. In particular, you'll want the SDK Platform, Google APIs, and
Documentation for the version of the Android APl you want to target and the
latest API tools. | would recommend installing 2.2, with APIs 8: the emulator for
2.3 has a bug with PhoneGap, and later releases are targeting tablets, primarily.
Be forewarned: this will take a while to download.

Now we need to create an AVD. Unlike iOS, there isn't a default simulator provided
with the SDK, so we need to create one (there are lots of reasons for this, but no
good ones). Select Virtual Devices on the left, then press New... on the right.

The settings are up to you, but a few recommendations:

Go for the latest release of the Google APls. Google APIs offer access to proprietary
services offered by Google, in addition to the open source Android APIs. Most
consumer devices will have these APIs available. The one major vendor that does
not use Google's APIs is China Mobile—if you're developing for the Chinese market,
just use the stock Android APls. WVGAS800 (480 pixels by 800) is a good resolution
to go with.

1191

Installing PhoneGap

7. The SD card should have at least a few hundred megabytes—this should be available
to you on the menu shown below:

™ 7 Create new Android Virtual Device (AVD)
| Name: BasicEmulator |
fes Target: [Google APIs (Google Inc.) - APl Level 8 |4] Bounny/.al
rkages | (o . ftform |4
ckages @) size: 400 (M8 T3 1
Opte: Browse...
Skin:
& Built-in: | WVGA800 FH
() Resolution: x
Hardware:
Property Value m
Abstracted LCD density 240 -
Max VM application he: 24 Delete
rtual Devic|
Override the existing AVD with the same name
to see the
(CreateAVD) (Cancel)
T

7. Select your new AVD from the list and hit Start (if the screen looks funny, adjust the
screen size when prompted—I find around 8-10 inches gets a good size). It will take
a while to boot up, during which time you can read the OS's source code, and bask
in Google's openness/beneficence/omniscience.

[201

Chapter 1

See all your apps.

Touch the Launcher icon.

It may not be pretty, but you can read the source.

What just happened?

It's a bit more subtle than iOS, but we did more or less the same thing as the first tutorial
of the chapter—got the SDK up and running, and launched an emulator.

One thing that's immediately apparent is that targeting the Android platform is not the
same thing as targeting the iPhone device, or even the iPhone, iPod Touch, and iPad family
of devices. There isn't a uniform screen resolution, operating system revision, or amount of
storage space we can rely on, and the SDK tools don't allow us to easily build an emulator to
represent, say, the HTC Desire phone. We need to use our own judgment to figure out the
best emulator for our given application.

[211

Installing PhoneGap

More than anything, we want to run applications directly on devices, to get the best sense of
how they work. Luckily, this is easier on Android than on either of the other major platforms
we will cover in depth. To allow app deployment via USB:

Open the top-level Settings on your Android device

Select Applications

Check Unknown sources, to install non-Market applications

Select Development

Check USB debugging

* 6 & o o

If you're going to do serious Android development, we highly recommend getting a developer
phone directly from Google—see http://google.com/phone for available devices. |
recommend HTC's Nexus one, if it is available in your region. You can also purchase an Android
Dev Phone from the Android Market—http://market .android.com—though you will
need a developer account, which costs $25 US. The Android emulator experience is frustrating
enough, and the deployment to phone process is smooth enough, to make this the outstanding
approach.

Of course, we don't have any applications yet, but that should change shortly.

Android is the second most mature PhoneGap platform, after PhoneGap-iPhone, and
the development process is highly polished at this point. To avoid confusion, we should
emphasize the difference between the two related, but distinct, parts of PhoneGap Android:

¢ The PhoneGap Library, or phonegap. jar: The Java library that links the
PhoneGap APIs into the Android WebView, and initiates an app with that WebView

¢ Droidgap: A Ruby-based generator/utility for creating and deploying PhoneGap
Android projects

Droidgap was created, at least partially, from frustration with the Android development
process. It attempts to streamline and enhance a lot of the long-winded steps of Android
development. However, it's a little brittle at the time of writing, so your patience is
appreciated.

[22]

Chapter 1

Time for action — Hello World on PhoneGap Android

1. Firstly, ensure that you have all the dependencies set up: ant, git, and Ruby should
all be available on your path. Please see earlier in this chapter for help getting these
set up.

2. Let's start like phonegap-iphone, with a git clone into somewhere sensible:
$ git clone git://github.com/phonegap/phonegap-android.git

3. The next bit is a bit tricky, so bear with me. Ensure the Ruby executable
bin/droidgap is somewhere you can access, either in your PATH or somewhere
you can access directly (as in the screenshot below).

4. Switch to the example directory, run droidgap create, then switch to the
example android directory (again, I'm relying on the screenshot to make sense

of this):
LY Terminal — bash — 84x24
android $ cd example =]
droid/example $./../bin/droidgap create
vle § cd ../ example_android/
dev/phonegap-android/example_android $ 1s
AndroidManifest.xml build.properties libs sre
assets build.xml local.properties
bin default.properties res
IRy = S ey e | B P S

5. Build and install the application (this requires either a running simulator or an
attached device):

$ ant debug install

[231

Installing PhoneGap

6. Pull up your AVD/non-virtual device, and check out your first PhoneGap
Android project!

A OO

Welcome to PhoneGap!

5554:BasicEmulator

Platform: Android
Version: 2.2
UUTD: 9774456068 2e549¢

50 P [PG [e e ey

--|_|—|="—r—r—r—'
P e e) g P

ALT | ALT

What just happened?

Well, the not-quite-as-elegant-as-we-had-hoped command line tooling for PhoneGap
Android has generated a sample application that demos all of the PhoneGap functionality.

The droidgap create command is, currently, the smoothest way to create a sample
PhoneGap Android application from a given set of client-side assets. We can then use
the predefined ant tasks to build the application itself and install directly to our virtual or
physical device.

The PhoneGap Android tools allow you, as a developer, to be further removed from the
nitty gritty of the Java implementation and focus on the client-side technology that counts.

[24]

Chapter 1

What's in a PhoneGap Android application, anyway?

One side effect of the droidgap app creation process is that it's possible to miss the structure
of the application itself, which you can't really do with iOS development through Xcode.
Here's what the project contents look like:

) Terminal — bash — 66x37
~/dev/phonegap-android/example_android $ tree

— AndroidManifest.xml
— assets
—
F— index.html
— master.css
— phonegap. js
build.properties
build.xml
default.properties
gen
— com
— phonegap
— example
— R.java
libs
— phonegap. jar
local.properties
res
drawable-hdpi
— icon.png
drawable-ldpi
— 1icon.png
drawable-mdpi
— icon.png
layout
— main.xml
values
— strings.xml

111 " TIT117T
I R R R

w
[1
A

com
— phonegap
L— example -
— example.java

k!i

17 directories, 16 files
e

Some parts of note:

¢ AndroidManifest.xml is the equivalent of Application-Info.plist on
PhoneGap iPhone—global settings, like the package name of your app, are put
here, and in res/values/strings.xml.

1251

Installing PhoneGap

¢ Your PhoneGap code is in assets/www, not just www.

¢ There are three copies of icon.png in the res folder, based on the DPI of the
target screen (this is in common with iOS, just with a different directory structure).
Droidgap just copies the same file in each location, but you can change this when
getting ready to submit your application to the Android Market.

¢ Sinceit's Java at heart, the qualified name of your app (in this case, com.
phonegap . example) has to be the name of your main Android activity. It falls
under "tedium we try to avoid" but you should be aware that your AndroidManifest
has to match your directory structure, or bad things start to happen.

Have a go hero - going further with Android

Check out the other Android command line tools—in particular, adb logcat and adb
shell. Obviously Android has a lot more of the OS open than iOS, but what are some of the
cool things you can do with that?

If you're familiar with the Ruby programming language, look into the source for droidgap
(in the 1ib directory of the phonegap-android git repository). See if you can figure out what
exactly it's doing, and how it works.

Getting started with BlackBerry weh works

On to BlackBerry, the oldest of the three mobile platforms we're focusing on and the one
with the most baggage.

In the annals of PhoneGap lore (two months ago), PhoneGap supported BlackBerry through
the BlackBerry JDE Component Pack, on devices running RIM's BlackBerry OS 4.2 and above.
While the code is still available, it has since been deprecated. It was, frankly, a nightmare,
both in terms of PhoneGap's implementation and the browser that was ultimately exposed.
You can look at some of the older tutorials on the PhoneGap wiki for evidence of these
horrors.

As of BlackBerry OS 5.0, there is a better way—the BlackBerry Web Works SDK. Based on
the W3C's web widget specification, which dovetails very nicely with PhoneGap, BlackBerry
Web Works move PhoneGap BlackBerry from the slowest major PhoneGap platform to one
of the very fastest.

As with every platform, and with web development in general, you still need to tread with
caution regarding JavaScript and CSS support. In particular, if you do choose to work with
devices running less than 5.0, the embedded browser is quite poor.

On top of that, the OS 6.0 devices (right now, just the BlackBerry Torch), have a credible,
WebKit-based browser to hook into. Whatever next!

1261

Chapter 1

Time for action - Your first PhoneGap BlackBerry app

First things first: to run the BlackBerry simulator (as of the time of writing), you will need
to be running on Windows—if you've been following from the start of the chapter, now
is a good time to throw your Mac out the window. Or reboot into your other partition,
whatever works.

1. Let's start by downloading the SDK: http://na.blackberry.com/eng/
developers/browserdev/widgetsdk. jsp.

2. You're probably used to this bit by now, but here it goes: run the SDK installer. One
thing to note is that you should install to C: /, rather than C: /Program Files/;
this will avoid some issues with permission when running the ant scripts.

3. Clone the PhoneGap repo (in this case, we're using the git bash program to run
git on Windows—other options are available):

$ git clone git://github.com/phonegap/phonegap-blackberry-
webworks.git

- MINGW32:/c/Development/phan honegap-blackberry-widget

$ git clone gi ithub.c h honega E dget.git
n T1ized empt; t re in e e honegap/phenegap-blackberry-widget/.git/
ng obj H
ing obje
ing objec , 292.00 KiBE | 100 ki

done.

[21]

Installing PhoneGap

4. Like with PhoneGap Android, we'll use ant to generate our sample application:

$ ant create -Dproject.path="C:\Development\FirstApp"

[m%djr%Jc ated dir
zip] Building zip:
[echo] Created: ¢

create:

[mkdir] Cre d dj_

o]

BUILD SUCCESSFUL
Total time:

5. One quick gotcha is here: if you're running a 32-bit build of Windows, you will need
to edit the project .properties file in your FirstApp directory, changing the
bbwp . dir variable to point to where you have installed the SDK. The ant scripts
can be a little bit brittle with older versions of Windows, so make sure that the
WebWorks Packager is referenced correctly.

1281

Chapter 1

From your FirstApp directory, launch the simulator:

$ ant load-simulator

Or, if you're ambitious/determined enough to have your code signing set up already,
launch your application on a device:

$ ant load-device

A couple of processes will be launched—the BlackBerry simulator and the Mobile
Data System Connection Server (MDSCS). The simulator is self explanatory, but the
MDSCS is necessary for the simulator to server network requests.

Sunday 24 October

-

e PR

01 31

Contacts Calendar

i3

Browser Media

1291

Installing PhoneGap

I'm not sure exactly how much detail you'll want on this, but here goes: on a
BlackBerry device, all network traffic is proxied through RIM's servers. On a
BlackBerry simulator, everything is proxied through a local server. If you close that
server, your application will silently fail, and an army of RIM ninjas will attack you
while you sleep. Allegedly.

At any rate, the simulator is launched now. To find the PhoneGap Sample, hit the
BlackBerry button (the one with seven circles resembling a B), then Downloads:

*: BlackBerry

22:51

Downloads

Browser Phone Media Maps

AGIRGERS!

Clock Camera Help Search

55 B .

Instant
Messaging

,<],)) (T T N

Sounds Manage
(Normal) Connections

Applications Games Downloads

Setup Options

Chapter 1

You should now see the icon for the sample application:

=== BlackBerry

22:51

PhoneGap Sample

[Downloads

in

PhoneGap
Sample

[311

Installing PhoneGap

9. The next challenge is to launch the application. I'm sure you can figure this one out:

Simulate Tools Help

*zBlackBerry

window.device
window.device.platform = 2.13.0.95
window.device.version = 5.0.0.469
window.device.uuid = 553648138

window.device.phonegap = 0.9.2

window.notification

m

Beep | Vibrate | Alert | Confirm |

navigator.network
isReachable = Carrier data connection
navigator.geolocation

| Latitude:

Longitude:

LCD: (43,397)

What just happened?
We got another application running on another mobile platform, using PhoneGap to fill in
the gaps. Huzzah!

Things should be getting more familiar now—we use the PhoneGap tools to generate a
sample project that contains a JavaScript reference to all of the PhoneGap APIs, and from
then on we only need to worry about writing and rewriting the HTML, JavaScript, and CSS.

If we look at the structure of a BlackBerry Web Works PhoneGap application, things should
look familiar:

[321

Chapter 1

o5 Terminal — bash — B0x24
~fdev/FirstApp § tree =

— build.xml

— 1lib

| L— ant-contrib

| l—— LICENSE.txt

| L— agnt-contrib-1.8b3. jar
}—— project.properties
| W

=
=
=

[TT 1T¢

config.xml

ext

L—— phonegap.jar
index. html
javascript

l— json2.js

L—— phonegap.js
resources

}—— 1icon.png

}—— icon_hover.png
L—— loading_foreground.png

b directories, 12 files
~/dev/FirstApp §]

P

Once more, we have a www directory containing our index.html and phonegap. js files,
abuild.xml file (just like Android) for running ant tasks, an external library (www/ext /
phonegap . jar) linking the native PhoneGap APIs, and an XML-based configuration file
(www/config.xml) that defines global settings for our application.

Though there are major differences between the browser environments on each of these
platforms, which we will cover in pain-staking detail over the rest of the book, a high-level
look at PhoneGap on each of these platforms shows the commonalities.

Something | glossed over a bit earlier is Code Signing—Ilike Apple with iOS, RIM requires you to
sign your applications, with their approval, before you can install them on your (their) devices.
Phew. It's an involved process, and we're all tired at this point, but here's an overview:

1. Gohere:https://www.blackberry.com/SignedKeys/.
2. Fill out the form.

3. Allow RIM to relieve you of $20.

4

After a week or so, follow the instructions they email to you.

Say what you like about Apple, at least they're efficient at taking your money.

Installing PhoneGap

Already in this chapter, we've seen how PhoneGap gives similar structures to applications
you can deploy to multiple mobile platforms. Try to take that a step further—can you link
all three platforms to a single development directory? Do you need separate copies of
phonegap. js for each platform?

Try to edit each platform's sample application. How do you remove, rebuild, and reinstall
applications on each platform? Be sure to familiarize yourself with the documentation for
each platform, in case any of these tasks become difficult—we'll try to take the SDKs for
granted as we move on through the book.

Well that was a lot of fun (ahem). The mobile development landscape is strewn with clunky
SDKs—if nothing else, the attrition that this chapter has covered should highlight the scope
of the problem that PhoneGap aims to solve. From here on, things go a lot smoother.

Specifically, we covered:

¢ Getting an iOS PhoneGap application up and running
¢ Doing likewise for Android

¢ And once more for BlackBerry Webworks

We also discussed how you can begin to automate your workflow, using ant tasks where
available. We're starting to look towards building cross-platform applications, rather than
starting with a single platform and porting over—and now that we've installed all of these
SDKs, we're going to spend as little time with them as possible.

Over the coming chapters, we will begin to add more and more functionality to our mobile
applications, while building on the base we have established here. Our next step is to see
how to structure mobile applications to get the best use out of PhoneGap.

341

As I've stated a few times, the first chapter's work neatly covered the problem
PhoneGap aims to solve: incompatible software and environments between
different mobile platforms. From here on, things should be a lot more
straightforward; we'll be developing with familiar, open web standards, and
we'll start to actually write some applications.

In this chapter we will:

¢ Learn how to develop simple applications for mobile devices using a desktop
browser
Begin debugging JavaScript from within the browser
Move our web browser-based project to mobile platforms

Insert some native PhoneGap calls into our nascent application

So what application should we start with...

Building and Debugging on Multiple Platforms

So now we have an application concept—what's the next step?

Well we could break out PhoneGap and start native development straight away for a single
platform—BlackBerry perhaps, since their users need the most encouragement. But this
isn't a great approach—even using PhoneGap and simulators, as opposed to native code and
physical devices, there's a large amount of overhead with native development. We need to
build and compile our projects, install them on devices (virtual or physical), and then clean,
uninstall, and rebuild whenever we make a small change. It's a good way to kill the early
momentum of a project.

Because PhoneGap leverages open web standards (HTML, CSS, JavaScript), we don't need
to go straight to the native SDKs—we can start work in a desktop browser, and then move
on to a native project once the functionality is fleshed out. This way, we speed up our
development cycles and spend more time implementing core functionality.

Strictly speaking, you can use any major desktop browser to get started on your PhoneGap
app—Internet Explorer (IE), FireFox, Safari, Google Chrome, or Opera. All of these browsers
(at least, the latest revisions) have adequate, at least, developer tools for logging and
debugging our code.

For our purposes, however, we strongly advocate using a WebKit based browser—of

those listed above, either Safari or Chrome. With the exception of Microsoft, all of the

major mobile OS vendors now use a WebKit-based browser. This doesn't mean that a web
application in Safari on OS X or Windows will behave just as it does on a Nokia N8 WebKit
browser, for instance—but it will be a lot closer than running that same application in Opera.

If you're using PhoneGap just to develop the Windows Mobile and Windows Phone
platforms, you would want to use IE in this part of the process.

Developing our first application: You Are The Best

We want to start on a positive note, so the project we'll develop in this chapter will be called
You Are The Best, which will notify the user that they are the best. As people like to feel
significant, our application should have a target market of six billion or so. As a developer,
you can execute this application flawlessly, being, yourself, the best (see what | did there?).

That's our simple specification—produce a notification to the user on demand.

Chapter 2

Time for action - Initial design and functionality

We remember from Chapter 1, Installing PhoneGap that PhoneGap apps are organized inside
a www directory, with an index.html file as the starting point, so:

1. Create a directory for our project—you_are_the best—and inside there, create a
www directory with an empty file called index.html.

2. Fill out index.html with some HTML boilerplate and a positive initial message:

<html>
<head>
<title>You Are The Best</title>
</head>
<body>
You’re really great!
</body>
</html>

3. Let's open that in Safari and see how it looks:

ana You Are The Best
[4+ | # file:///Users/andrewlunny/dev/y G] I._Q' Google b
You're really great!

3. You'll notice I've resized Safari so it's fairly close to a smartphone sized-screen—it's
an obvious approach, but very useful.

4. We have something, but not much. Let's put a few styles in there so it looks a bit
more colorful—insert this <style> element into the <head> of your document:
<style>

body {
background: #f£fO0;

}

[311

Building and Debugging on Multiple Platforms

div#tmain {
background: #ccf;
height: 460px;
width: 320px;
padding: 10px;
-webkit-border-radius: 8px;
}

</style>

That last property may well look a little strange—don't worry, we'll cover
it later in this chapter.

Now modify the <body> element so it looks like this:

<body>
<div id="main">
You’'re really great!
</div>
</body>

Save the file and reload Safari to see what we have now (please note the colors will
appear differently on your full color screen than on this monochrome page):

(2 Ralé) You Are The Best
[+ | = file:// Users fandrewlunny/dev/y ¢] If_’Q* Google \,.l))

You're really great!

o
—

Well that certainly looks more colorful, but a bit of interaction would be

nice—we want to tell the user directly that they are the best. Luckily, JavaScript has
a built-in alert () function that does just this, and is never annoying to the user.
Let's add a script element to our head to callalert ():

<scripts>

document .addEventListener ("DOMContentLoaded", function () {

Chapter 2

alert ("We really do think that you are the best.")
}, false);
</script>

Don't worry if that doesn't all make sense right now—we'll cover it later in detail.

9. Once more, save and reload Safari—you'll notice the alert pop up loud and clear:

0 1 T You Are The Best

| &+ |17 file:// /Users/andrewlunny/dev/yc (] _

N Q- Google 138

JavaScript

We really do think that you are the best.

10. This is great! But we would like to be able to see this message on demand,
whenever we want. Let's write a JavaScript function to display the alerted
message (this goes in the same script element):
function alertCompliment () {

alert ("We really do think that you are the best");

}

11. we'll add a button to the div#main tag to show the alert:
<div id="main">
You’re really great!<brs>
<button id="likeMe">Tell me I'm great</buttons>

</div>

Building and Debugging on Multiple Platforms

12. Then attach the alertCompliment () function to that button (in the script tag,
in the DOMContentLoaded listener):
document .addEventListener ("DOMContentLoaded", function ()
alert ("We really do think that you are the best.");

document .getElementById ("likeMe") .
addEventListener ("click", alertCompliment, false);

}, false);

Again, if you're not sure why that code went in that place, don't worry. We'll get
to that.

13. Save and reload. Now try clicking the button.

You Are The Best

+ IE file:// /Users /andrewlunny /dev/y ¢ | (Qr Google »

You're really great!

Tell me I'm great)

14. voila! Now, to the App Store!

What just happened?

Alright, You Are The Best is no Plants versus Zombies—it's barely an iFart—but we've
managed to get some basic functionality and styling into an HTML-based application with
very little code and very little effort. These are the fundamentals of development with
PhoneGap—rapid development in a stable desktop environment, quick iterations, and
unobtrusive CSS, and JavaScript.

[401

Chapter 2

After the fairly exhausting bureaucracy of the first chapter, it will have come as some relief to
avoid generating projects, building projects, launching emulators, signing binaries, cleaning
builds and so forth, ad nauseum. Of course, as your application takes on extra complexity,
more involved logic will require spending more time on application behavior with specific
devices; however, your initial goal should be to spend most of your time in a quick edit-save-
reload loop, switching between your text editor and your web browser.

You will also notice that we are working locally—all of the Safari screenshots above point to
afile:// URL. This is the same protocol that all PhoneGap apps run from on the supported
platforms—the web assets are served directly from the file system, and, in most cases, a
remote server is only used to serve dynamic data that cannot be bundled at compile time.

There are lots of benefits to this approach—your application functions offline, there is
lower latency for retrieving assets, and available bandwidth is less of a concern—but, at this
stage, the main benefit is that you won't need to upload your files anywhere to get the full
testing experience. Just open index.html directly from your file system to get the optimal
PhoneGap development workflow.

Cascading Style Sheets (CSS) are the standard approach to styling web pages and
applications, and PhoneGap doesn't modify CSS rendering in any way. However, there
are a few features of the CSS we wrote that may be unfamiliar:

All of our CSS rules for You Are The Best are kept in a single <style> element in the head
of the document. If you've used CSS before, you may have applied rules directly onto an
element, like so:

<p style="color:red">This is some red text</p>

That's something we want to avoid. There's a philosophical reason to avoid setting styles
through the style attribute: we should endeavor to separate markup and presentation code,
so that CSS rules are only in CSS files or style elements. For simple, small apps, such as the
one we've just developed, style elements are sufficient; once we have more complexity, we
will definitely keep our styles in external CSS files. Then the body of the HTML document just
contains document markup.

More convincing than the philosophical argument is the pragmatic one: changing styles is
more work if elements are styled individually. With a small document, it doesn't make much
difference, but if we have 500 paragraph tags with a style attribute coloring them red, that's
500 changes we have to make. If each tag has a class attribute set, and the class sets the color
to red, we only need to change the code in one place to change all of the paragraph colors.

[al

Building and Debugging on Multiple Platforms

Width and height

A confession—you don't want to set the width and height of your only top-level element, as
we have done. Even if you just target a single platform, you can't be sure of every resolutions
and DPI for every device on that platform, and setting an absolute size set will lead to
problems down the road.

A more robust strategy is to use a combination of flexible widths and heights, CSS3 media
queries, and the special <meta name="viewport"s element. You'll see these features
when we port our application to a PhoneGap project.

So why set width and height? Mainly, so we have a rough idea of what the screen size

will actually be on our device—it's a useful way to help get a sense of proportions when
developing on a desktop browser. Usually, this does not affect the appearance on a mobile
device, but it will be worth keeping note of when deploying to our handsets.

Now here's something that's actually new! —-webkit-border-radius is the first CSS3
property we'll encounter. It rounds the corners of a (rectangular) block element, as
demonstrated in the following screenshot:

boxes.html

+ | # file:///Users/andrewlunny/c ¢ | (Qr Google »

® O O boxes.html (~/dev/...e_the_best/ww...
B

ound: black;
: 208px;
t: 12@px;
n: 3dpx;

-webki t-border-raodius: HSpx; |

oox

box rounded

[T A A

-- VISUAL LINE -- 9,26-32 Bot

F

[42]

Chapter 2

It's pretty neat, especially if you're familiar with the contortions web developers previously
went through to achieve flexible rounded corners.

However, calling ~webkit-border-radius a CSS3 property is a little inaccurate. The
CSS3 property is border-radius, and -webkit-border-radius is a vendor-prefixed
prerelease implementation of the border-radius spec. There's a similar -moz-border-
radius property you would use when targeting FireFox.

Border-radius is actually one of the better implemented CSS3 properties, and we could
have used the non-prefixed property for this example, but you should be familiar with these
prefixes and what they mean:

¢ A -webkit prefixed CSS property will only work in some WebKit-based
browsers—not older WebKit browsers, and not non-WebKit browsers

Vendor prefixed CSS properties are not guaranteed to be spec-compliant

New properties are initially only available in prefixed form

If you're writing a website for a general audience, you'll want to specify the property with
every vendor's prefix, along with the non-prefixed CSS3 standard property, which is annoying
but future-proof. For PhoneGap applications, you can be safe most of the time with using
prefixed properties, but if the non-prefixed version is supported, that's the best bet to
ensure your code is portable and plays nice with the specs.

The other notable (well, somewhat notable) part of You Are The Best was the JavaScript
code. PhoneGap is at heart about writing mobile applications with JavaScript, and it pays
to have a good understanding of the language. If you're looking for a reference guide to
JavaScript in book form, check out David Flanagan's JavaScript: The Definitive Guide; if you
prefer an online reference, your best bet is the Mozilla Developer Network at http://
developer.mozilla.org, or Apple's Safari Developer Library, at http://developer.
apple.com/library/safari.

As PhoneGap has a full JavaScript runtime on every platform, you are free to use a full-stack
framework, such as Sencha Touch or jQuery Mobile. | would recommend using the standard
JavaScript APIs to keep file size down, and to increase the clarity of your code. However,

the benefits of these frameworks are well known. They're certainly popular options when
combined with PhoneGap.

JavaScript is a beautiful, albeit often misunderstood language, and it's really worth your
time to understand it's intricacies fully. Hopefully, once you've written a few PhoneGap
applications, you'll get a good sense of the language's joys.

[431

Building and Debugging on Multiple Platforms

Much like our CSS, the JavaScript in You Are The Best is isolated to a single element in the
document, rather than intruding on all of the Document Object Model (DOM). In particular,
our event handlers (the initial alert message once the DOM is ready and the subsequent
alerts when our button is clicked) are not defined as attributes of the elements they are
attached to. For many people, their first experience with JavaScript is writing code inline

on the DOM, like this:

<button id="likeMe" onclick="alertCompliment (); return false">Tell me
I'm great</button>

Or even:

Tell me
something, pleasel!

As with obtrusive CSS, this kind of code quickly becomes a maintenance nightmare—and
for users with JavaScript disabled, a link like our second example will give a 404 HTTP error.

Since a mature PhoneGap application will involve hundreds of lines of JavaScript, it's
important to keep our code well organized and robust from the start—and the best approach
is to ensure JS stays only with JS. As with CSS, this may involve using an external file, or
separate script tags: either way is preferable to using JavaScript inline in HTML attributes.

addEventlistener

One of the means we have to ensure unobtrusive JavaScript is the addEventListener
function, the DOM level 2 mechanism to register event listeners. The mature PhoneGap
platforms we will be focusing on (iOS, Android, and the BlackBerry widgets runtime) all
support addEventListener.

The ancestors of addEventListener, were, for DOM level 1, binding JavaScript to the
oneventname property of the JavaScript object at hand:

window.onload = function () { alert("hello!") }
Or, for DOM level 0, binding through an attribute on the related HTML tag:
<body onload='alert ("hello!")'> .. </body>
addEventListener is the preferred mechanism for a couple of reasons:
¢ Separation of Concerns: With addEventListener, it's trivial to keep your

event-handling JavaScript code separate from the code that renders your DOM.

¢ Multiple Listeners: With both the level 0 and 1 mechanisms, it's tricky
to bind multiple handlers to a single event; with level 2, you simply call
addEventListener multiple times.

[a4]

Chapter 2

¢ Better Support for Custom Events: For example, you can use addEventListener
to listen for PhoneGap's custom deviceready event to fire—since the JavaScript
document object doesn't have an ondeviceready property, older event binding
methods cannot attach to this event.

¢ Easy Unregistering: You can use the corresponding removeEventListener to
detach a listener from a specific event.

You should get used to addEventListener—it will treat you well.

DOMContentloaded

You'll notice in the above examples the discouraged event examples both bound to the
onload global event, on the window object or the <body> element. The 1oad event does
have its uses for code that should execute as soon as possible—in practical terms, anything
that doesn't rely on the DOM being rendered. Our alert call in the sample code above
could have been bound to the 1o0ad event without any change to the user experience.

However, attaching to the DOMContentLoaded event is another example of a best practice
that we should get the hang of early. This event, which is also supported in all OS the
platforms we're interested in right now, fires after the page has fully rendered and the
DOM is in a state with which we can confidently interact.

1. Let's say we wanted to add a second page to our application, with the same CSS
and JavaScript code. What would be the best approach?

a. Copy index.html to a new file, and then edit that new file

b. Extract our CSSinto an app . css file, and our JavaScript to an app . s file,
and include those on the new page

c. Create an empty new file.html thatinherits from index.html
2. You Are The Best has proved so popular that the users are demanding a tablet

application release to go with their smartphone application. How should we edit
the CSS?

a. Make the absolute measurements (height and width) relative, so that they
scale up to the size of larger devices

b. Don't change anything—Ilet the browser resize things natively

c. Copy our existing CSS code to a best .phone. css file and create a new
best.tablet.css file; conditionally load the correct one on out device

451

Building and Debugging on Multiple Platforms

3. The other demand we've received from users is for a second button, that says Tell
my cat she's great too. This button should present a different message to the user.
How should we best implement this code?

a. Refactor our alertCompliment function to base its message on the object
that calls the function, and attach that function to button#likeCat

b. Write a new function alertCatCompliment that is bound to
button#likeCat

c. Copy and paste the existing addEventListener call, replacing the
message contents and the ID of the button appropriately

Using the weh inspector

So that's all well and good for a moronically simple application, but what about when we
have more complex logic? We will need some kind of debugging tools. Luckily, Safari now has
an exemplary set of JavaScript tools, centered around the Web Inspector, a useful hub for
CSS, JavaScript, and DOM manipulation.

There are also debugging tools for other browsers: Google Chrome has the same Web
Inspector, since it is a part of the WebKit codebase; Firefox has a very popular plugin called
Firebug, which is the precursor of most other web debugging tools; Opera has a similar tool
called Dragonfly; and IE has equivalent developer tools also. I'm focusing on Web Inspector
through Safari since, as mentioned, it's the closest desktop environment to the mobile-
WebKit devices we'll be deploying to.

Accessing weh inspector
It's not on by default, but it is dead simple to get access to the Developer Tools in Safari. To

do so, we just need to go into Safari's Preferences... panel and enable Show Develop menu
in menu bar:

Advanced

[Fd @ 7] B e

General Appearance Bookmarks Tabs RSS AutoFill Security E Advanced

Universal Access: || Never use font sizes smaller than o ~

|_! Press Tab to highlight each item on a webpage
Option-Tab highlights each item.

Style sheet: | None Selected ¥]

Proxies: [Change Settings... 3

@Show Develop menu in menu bar (‘?)

1461

Chapter 2

We can then display the inspector by choosing Show Web Inspector from the application's
Develop menu:

Edit View History BookmarksWindow Help

oY) You Are Thi Open Page With »

[+ | # file:///Users/andrewlunny/de el .
Show Web Inspector A%l

You're really great! Show Error Console X®C

Show Snippet Editor

| empre———
Tell me I'm great - §
Show Extension Builder

Stop Debugging JavaScript
Start Profiling JavaScript LOEP

Disable Caches

Disable Images

Disable Styles

Disable JavaScript

Disable Runaway JavaScript Timer
Disable Site-specific Hacks

Time for action - Simple logging and error checking

Let's add a second button to You Are The Best with some new social behavior, and see what
to do when things go wrong:

1. Open index.html in your text editor of choice, and add our second button
immediately below the first:

<button id="likeMe">Tell me I'm great</button>

<button id="likeHer">Tell her I'm great</buttons>

[a11

Building and Debugging on Multiple Platforms

2.

3.

Let's open the page in Safari to verify that it renders as expected:

elele You Are The Best
[+ | = file:///Users/andrewlunny /dev/y C] (0.' Google _‘)))

You're really great!

r | N
Tell me I'm great

r " .
Tell her I'm great

&

Now let's add some behavior for our new button. We'll rewrite the JavaScript
as follows (changes are highlighted):

function alertCompliment () {
var elementId = this.id,

var greeting;

if (elementId) {

greeting = "you are";
} else if (elementId == "likeHer") ({
greeting = "she is";

}

alert ("We really do think that " + greeting + " the best.")

}

document .addEventListener ("DOMContentLoaded", function () {
alert ("We really do think that you are the best.");
document .getElementById ("likeMe") .addEventListener ("click",
alertCompliment, false);

document.getElementById("likeHer") .addEventListener ("click",
alertCompliment, false);

}, false);

[481

Chapter 2

4. Again, we'll refresh Safari, and this time click on our second button:

You Are The Best
+ | file:///Users/andrewlunny/dev/yc & | (Qr Google }}|

You're really great!
[Tell me I'm areat

JavaScript

We really do think that you are the best.

| SN

5. Itis not what we expected. We see the first alert message no matter which button
is pressed. Luckily, we can begin to use Web Inspector to see what's going on.
We're going to add a few log calls to our alertCompliment function and
see what's going on. We only have two variables, so let's verify the value of
those during the function's execution:
function alertCompliment () {

console.log("alertCompliment () called")
var elementId = this.id,

var greeting;
console.log("elementId is", elementId)

if (elementId) {

greeting = "you are";
} else if (elementId == "likeHer") {
greeting = "she is";

console.log("greeting is", greeting)

alert ("We really do think that " + greeting + " the best.")

1491

Building and Debugging on Multiple Platforms

6. Now let's open the page in Safari again, but this time open Web Inspector also, press
the first button once and dismiss the alert, and then press the second button and
dismiss the alert. Now look at the output in Web Inspector's console:

M ™ M Web Inspector — file:// /Users/andrewlunny/dev/you_are_the_best/ww...
=] v

<= CE Ol [-

Elements Resources Timeline Profiles Storage Console Search Scripi

- index.html % [e

1 |<html> » Watch Expressions

2 <head> U

3 =titlesYou Are The Best</titles ¥ Call Stack

4 =style= Not Paused

5 body { i

6 background: yellow; ¥ Scope Variables

7

B divé#main { Not Paused

9 background: #cct; .

10 height: 468px; Il

11 padding: 1Bpx; i No Breakpoints

12 width: 32@px;

13 —wehkit-horder-radius: BT

o O
alertCompliment() called index.html:18
elementId is likeMe index.html:23
greeting is you are index.html:31
alertCompliment() called index.html:18
elementId 1s likeHer index.html:23
greeting is you are index.html:31

> |

(=S RSN All] Errors Warnings Logs Y

L

7. elementIdiswhat we want, but greeting is not set correctly—the error is
somewhere between our first and second console. log calls. Let's change the first
if statement we have to be more careful:

if (elementId == "likeMe") {
greeting = "you are";

} else if (elementId == "likeHer") ({
greeting = "she is";

}

Chapter 2

8. Let's try the second button in the browser, aga... oh wow, it works!

A

You Are The Best
[== J # file:// /Users fandrewlunny/dev/y G] f:Q" Google ?)))

You're really great!
Tell me I'm great

Tell her I'm great

JavaScript

We really do think that she is the best.

What just happened?

We got our first taste of Web Inspector, and the console. log function in particular.
console.log and its aliased PhoneGap platform calls, is your run of the mill logger, but
because JavaScript (in the browser) doesn't have a robust 10 setup, as other languages do,
the logger is always sent to a pre-determined view, usually determined by the browser.
There's an easy way, for example, to redirect the output of console.logto afile, ortoa
separate logging service on your network.

Debugging is not a primary focus of the book, but if any of the code samples don't work for
you, or work but don't work very well, it's a fine tool to have at hand. Your next step is to use
console.log and the Web Inspector console to isolate what the problem is; once that's
isolated, finding a solution should be trivial.

[51]

Building and Debugging on Multiple Platforms

Have a go hero - Playing with Weh Inspector and JavaScript

One of the neatest features of JavaScript is dynamic scope reassignment—that is, you can
call a function in the context of any other function (and change what the this variable
points to). Every function that is called has a magic variable, this that points to the outer
scope of the function: either an object that it was called on, or the global scope. That's why
our code works—the element alertCompliment was called on becomes this, which we
can query for an id.

What exactly is going here? Look up Function.prototype.call, Function.
prototype.apply, and Function.prototype.bind, and see what can be done with
those tools.

We have also barely touched on the surface of Web Inspector's functionality—in particular,
you should try entering text directly at the console (a feature not available in JavaScript
development, unfortunately). Can you execute alertCompliment from the console with a
different message?

Okay, so far so good, but to really appreciate PhoneGap we will need to create a native
project based on the code that we have.

Time for action - You Are The Best for iPhone

We're going to build You Are The Best for iPhone now, but if you followed Chapter 1,
Installing PhoneGap, you shouldn't see any surprises if you want to build to something
else first:

1. Launch XCode and create a new PhoneGap-based project, YouAreTheBest,
in a safe location.

2. Copy our YouAreTheBest assets into that project's www directory.

521

Chapter 2

3. Hit Build and Run to launch the iPhone simulator:

index.html

We really do think that you are the

best.

OK

4. Not bad, but a couple of things stand out right away—the scale is way off, and the
alert should be from YouAreTheBest, not from index.html.

5. Firstly, let's deal with the scale of the application. Mobile web views typically have a
component called the viewport that handles things like scale. We'll touch on what
the viewport actually does later on, but for now, add this tag to the head of our
document:

<meta name="viewport" content="width=device-width, initial-
scale=1.0, user-scalable=no"></meta>

Building and Debugging on Multiple Platforms

6. And we'll also modify our CSS to take advantage of the new dimensions:
divi#tmain {
background: #ccf;
height: 82%;
padding: 10%;
width: 80%;
-webkit-border-radius: 8px;

}

7. Back to the simulator, and things look a lot better already:

Carrier ‘5

You're really great!

B e
hs Tell me I'm great J

(__Tell her Im great)

[541

Chapter 2

10.

11.

12.

13.

Now for that pesky alert box. This will be the first PhoneGap JavaScript call we make
in You Are The Best. The first priority is to add the phonegap . js script to our
document:

<script src="phonegap.js"></script>

If you list the contents of the www directory, you will notice that phonegap.jsis
already there—it gets automatically generated at build time.

We are next going to change our call to alert a PhoneGap specific call to
navigator.notification.alert: we go from:

alert ("We really do think that " + greeting + " the best.")
To the following:

navigator.notification.alert ("We really do think that " +
greeting + " the best.", function() {}, "You Are The Best")

navigator.notification.alert allows us to customize the alert box
with a title and button name, so it appears less like a web notification and
more like a native notice.

Please note that we're including an empty function as the second argument to
the function; this is due to navigator.notification.alert taking a callback
argument, for asynchronous execution of a callback code. This is distinct from the
browser's alert call, which is blocking.

Because PhoneGap has to be initialized for that call, we're going to change
the initialization event listener to listen for deviceready rather than
DOMContentLoaded:

document .addEventListener ("deviceready", function () {

// removed initial alert by now - it was getting annoying

document .getElementById ("likeMe") .
addEventListener ("click", alertCompliment, false);

document .getElementById ("likeHer") .addEventListener ("click",
alertCompliment, false);

}, false);

[551

Building and Debugging on Multiple Platforms

14. Now let's run that in the simulator and see if it all works:

You Are The Best

We really do think that you are the
best.

e TSR
OK

Hooray!

What just happened?

We took an application that was prototyped, developed, and debugged in a desktop browser
and rapidly created a native mobile project from that application. While we could have
stopped at what we created in Safari, we were able to make some small device-specific
optimizations to enhance the look and feel of our application.

The key points were the changes we made to our desktop project:

Chapter 2

<meta name="viewport">

The viewport is a little unintuitive at first, but very important to grasp for mobile web

or PhoneGap development. Desktop browsers function in terms of windows: content is
rendered to the size of the window, and the user navigates within the window. Mobile
browsers—that is, post iPhone, usually WebKit-based mobile browsers—render their
content to a window, but have an intermediary between the user and the window, which
is the viewport.

The user can not only move the viewport to different parts of the window (as opposed to
scrolling the window itself), but also zoom in and out to improve legibility, usability, and
other abilities. Using this meta tag, web developers can also recommend how the browser's
viewport should be rendered.

This is fantastic for navigating the web, but is a markedly different experience from using a
native application, where you typically navigate only within a screen-sized fixed window. To
get this kind of behavior, mobile web and PhoneGap developers typically use a meta tag with
these properties:

<meta name="viewport" content="width=device-width, initial-scale=1.0,
user-scalable=no"></meta>

That's saying:
¢ Set the width of my page to the width of the device
¢ Don't do any initial scaling: | will design for the device width
¢ Don't let the user rescale

You may wish to edit that meta tag at a later point, but for now, | highly recommend sticking
with it.

phoneyanjs

The phonegap. js file provides JavaScript access to the native APIs exposed by the
PhoneGap framework. We will cover PhoneGap throughout this book.

Okay, so there are a couple of points to emphasize about phonegap. js:

¢ By default, phonegap.js is automatically generated at build-time in the root of
your www directory. If, for whatever reason, you want to edit this generated file,
but not edit the source JavaScript files (if there's just a quick fix you want to make,
say), | would recommend moving the file to a subdirectory of your www directory
(www/js/phonegap-modified.js, or the like).

[571

Building and Debugging on Multiple Platforms

¢ The reason phonegap.js is generated like this is because it is platform-specific—
you cannot use one phonegap . js file for iOS, Android, BlackBerry, and everything
else. There has been some work toward getting a single unified JavaScript file, but
we're still far away from that.

In some releases of PhoneGap, the JavaScript file will have the version of PhoneGap
appended also: phonegap-0.9.5.7s, phonegap-0.9.6.73s, and so on. Naturally,
you'll want to amend your script tags in these cases.

One other significant change that we made from our desktop code was to subscribe to the
deviceready event instead of DOMContentLoaded. deviceready is a PhoneGap specific
custom event, fired on the document object, that informs the developer that PhoneGap is
ready, and all of the native APIs can now be called.

deviceready always fires after DOMContentLoaded, usually less than a second. If you
have any code that manipulates the DOM and makes PhoneGap calls, it can be safely
called when deviceready fires. However, there is that delay to be aware of—if you need
the code to execute as soon as possible and it doesn't use PhoneGap APIs, either 1oad or
DOMContentLoaded will be your best bet.

Have a go hero - Porting to other platiorms

The obvious next step is to port the application over to some more platforms—Android,
BlackBerry, HP webOS, and any other SDKs you can get your hands on. You should be able to
look at the tutorials from the previous chapter to see how to set up these other platforms,
and copy your files into those projects.

Please note that some releases of PhoneGap for BlackBerry WebWorks include the JavaScript
file under www/javascripts/phonegap.js, rather than www/phonegap.js—it's a
non-standard gotcha you'll want to be aware of.

What behavior surprises you when you port the application? Can you notice the differences
between each platform's WebKit?

Can the same debugging techniques apply for debugging in a simulator—can you call
console.log, and where does it write to? Is this call consistent between browsers? You
should be aware of any quirks now, before you get involved in more complex application
development. Make sure you check http://docs.phonegap . com, noting your PhoneGap
version number, if anything surprising happens.

Chapter 2

This chapter helped us learn a lot about the process of developing PhoneGap applications—
how much time we need to spend in the native SDKs and emulators, and how much we can

offload to a desktop browser. Even on iOS, arguably the most restrictive platform, we can do
most of our work in Safari.

Specifically, we covered:

Rapidly prototyping our application in a web browser

Adding extra functionality and using the browser's debugging tools to ensure the
new functionality works

¢ Bringing our application to a native platform, observing any new issues that arose,
and fixing them in a sensible fashion

We also familiarized ourselves further with the structure of PhoneGap applications and the
conventions that PhoneGap uses to maximize developer productivity—key skills that we'll
need as we progress through the chapters.

Now that we've learned about how to build PhoneGap applications, we need to know what
these applications are going to do. In the next chapter, we'll cover what, specifically,
a PhoneGap application does that a mobile web application does not.

1591

We finally have a robust setup for developing cross-platform mobile
applications using PhoneGap. Now what? How easily can you use your existing
web development skills to build compelling mobile applications? Which parts of
your workflow need to be changed?

This chapter will cover the changes that will turn your projects from great websites

into great mobile experiences. In particular, we'll look at how to restructure a traditional
browser-server site to take full use of a purely client-side environment, and fulfill most of
the web server's roles locally. All of the techniques we use will be based on HTML5 standards
and pure JavaScript, so they will be fully portable across all our supported platforms.

In this chapter, we will:

¢ Use HTMLS5 persistence APIs to store user data locally
¢ Template our views in pure JavaScript

¢ Communicate with network resources across domains

In a traditional web application, the responsibilities for application behavior are divided
between a remote web server and local web browser. The browser handles the user
interface—ensuring that user actions have quick responses and behave as expected, while
the server generates web pages and stores persistent data. This split responsibility allows
the browser application to be light and responsive, while the server can handle more
intensive tasks.

Mobile Web to Mobile Applications

There's no technical reason for a PhoneGap application to depend entirely on a connection
to a remote server in this way and, as we'll see later, the curious nature of PhoneGap's
runtime environment means that remote server calls are unrestricted. However, if you have
any firsthand experience with a smartphone, you will know that connectivity is far less
reliable than on a full personal computer. A mobile device is used in plenty of contexts—in
buses, airports, planes, and bathrooms—where a network connection can be a luxury.

With the JavaScript techniques we're going to explain, is a far less of a hindrance than you
may think—in fact, it's a pleasure to write applications this way. We'll start with the most
important piece: your user's data.

Time for action - Implementing LocalStorage

1. Let's create a new directory for this chapter—sites without servers—and
create an empty index.html file.

2. We'llfill in our index . html file with the same kind of code we had in the previous
chapter, but this time add a couple of form fields (and make the colors less garish):

<html>
<head>

<title>Sites Without Servers</title>
<style>

body {

background: white;
}
div#main {

background: #ccc;

border: black 1px solid;
height: 82%;
padding: 10%;
width: 80%;
-webkit-border-radius: 8px;

</style>
<meta name=»viewport» content=»width=device-width, initial-
scale=1.0»></meta>
</head>
<body>
<div id=»main»>
<hl>List Some Food</hl>
<form id=»foodForm»>
<input type=»text» id=»foodName» placeholder=»A name of
a food» />
<button id=»submitFood»>Tell Us!</button>

[621

Chapter 3

</form>
</div>
</body>
</html>

3. Now open this file in Safari and have a look:

lalalé) Sites Without Servers
[+ | | file:///Users/andrewlunny/dev/BC & l (Q‘ Google)))

List Some Food

(Tell Us!)

4

4. You can write the name of a food in the field, press the button, and the page
reloads. This is good place to improve upon.

5. Incidentally, you can see our use of the HTMLS placeholder attribute on the
input element—giving a cue to our users, if the main header wasn't enough.
It great in browsers that have support, and causes no harm to those that do not.

6. We're going to write some JavaScript to capture the submission of the food form,
write the food's name out to the DOM, and clear the form field, instead of reloading
the page. Everything here is standard browser JavaScript, and should be familiar
from the last chapter:
<scripts

document .addEventListener («DOMContentLoaded», function () {
var foodList = document.getElementById(<foodList') ;
var foodField = document.getElementById(<foodName') ;

Mobile Web to Mobile Applications

document .getElementById («foodForms) .
addEventListener («submit», function (evt) {

evt.preventDefault () ;
var newFood = foodField.value;
var newFoodItem = document.createElement (<1i') ;

newFoodItem. innerHTML = newFood;
foodList.appendChild (newFoodItem) ;

foodField.value = «»;
return false;
}, false);
13N,

</script>

We're also going to add a tag under the form, which we can append new
foods to:

<ul id=»foodList»>

7. Reload the browser, and enter a few foods to test this out.

2858 Sites Without Servers
[+ | = file:f/ fUsersandrewlunny/dev,E G] '/0" Google }»

List Some Food

[| (Tellust)

 bacon
. oﬂmy
» cheese

A
e —

8. Sofar, so good. Now reload the page again. We've lost our list of foods, our users are
distraught, and we're now unemployed. Nobody is safe in this economy. Let's try to
save our foods persistently.

1641

Chapter 3

10.

We're going to use the HTML5 LocalStorage APl here—we'll go into some of the
other options shortly. We will add the API calls after the call to appendchild,
as follows:

var foodKey = "food." + (window.localStorage.length + 1);
window.localStorage.setItem(foodKey, newFoodItem) ;

If you've gone to your browser to test things out, you probably haven't noticed any
difference yet. Patience, dear reader! We need to revise the view code to display the
saved foods. Since this code will also be about writing list items to the foodList,
we'll abstract that part of the code into a separate function. Here's what the final
JavaScript code looks like:

<scripts>

document .addEventListener («DOMContentLoaded», function ()
var foodList = document.getElementById(<foodList') ;
var foodField = document.getElementById (<foodName') ;
var 1 = window.localStorage.length;
var i = 0;
var storedFoodName;

function addNewFoodItem (foodName) {
var newFoodItem = document.createElement('li');
newFoodItem.innerHTML = foodName;
foodList.appendChild (newFoodItem) ;

}

for (i; i < 1; i++) {
storedFoodName = window.localStorage.key (i) ;
if (storedFoodName.match(/"food[.1/))
addNewFoodItem(window.localStorage.getItem(storedFoodName))

}

document .getElementById («foodForms) .
addEventListener («submit», function (evt) ({

evt.preventDefault () ;
var newFood = foodField.value;
var foodKey = «food.» + (window.localStorage.length + 1);

addNewFoodItem (newFood)
window.localStorage.setItem(foodKey, newFood) ;

foodField.value = «»;
return false;
}, false);
}, false);
</script>

Mobile Web to Mobile Applications

11. Enter some foods, then reload the page to verify the food names are persisting now:

(e e W) Sites Without Servers
[+

file:///Users/andrewlunny/dev/BC &] I._O,' Google I»

List Some Food

+ cheese
+ bacon
» celery
+ cabbage
4
What just happened?

We got an introduction to the HTML5 LocalStorage API. The last couple of changes to the
code, to display the stored data at load time, introduced a number of changes. Let's go
through these one at a time:

var foodKey = "food." + (window.localStorage.length + 1);

This is the first time we access the window.localStorage object itself. It is not a JavaScript
array—the object is an instance of the native Storage class which doesn't have constructor
access to from inside the browser environment—but it has array-like features, such as a
length property.

We generate a key to store each food by joining the prefix food. with 1localStorage.
length + 1, arriving at a pseudo-unique string. It's not a sustainable algorithm, but it's
suitable for these purposes, as no key should conflict with any others (our little app is
append-only, for now).

Chapter 3

There is no higher-level namespacing baked into 1ocalStorage—this ad-hoc mechanism
(the food. prefix) is our best bet. All items stored from a domain are kept in the same
blob—this is less of a concern with PhoneGap applications, where you know nobody else is
writing or reading, but can be a concern in other environments, particularly shared hosting.

window.localStorage.setItem(foodKey, newFood) ;

LocalStorage is a key value store—the key is the variable we set in the previous line, and the
value is the food entered by the user in our form. We like the cleanness of the LocalStorage
APl—there's no ambiguity about what this line is doing.

var 1 = window.localStorage.length;

for (i; 1 < 1; i++) {

}

storedFoodName = window.localStorage.key (i) ;
if (storedFoodName.match(/*food[.1/))
addNewFoodItem (window.localStorage.getItem(storedFoodName))

This is the logic to populate our list with the contents of localStorage. A few notes:

& Because localStorage has an array-like 1ength property, we can iterate

through its contents with a simple for loop. There is no more advanced querying
mechanism, for better or worse.

window.localStorage.key is a function to retrieve the key for the item located
at a particular index. As we iterate through 1localStorage, we can use the key
function to check every stored item.

The if statement above checks if the key matches the pattern of the foods we
have set—it should look like food. 1, or food. 42. It uses the regular expression
/" food[.]/ to match against the available keys—this regex checks if the string
begins with food. If so, we use the set Item function to pull out the food's name
and insert it into the DOM. Again, there's no namespacing in localStorage, SO
we need to check the contents of each key for assurance that is what we were
looking for.

What can we deduce about LocalStorage from this example?

L 4

It's simple: We were able to get the desired behavior up and running in fewer than
10 lines of code. The most complex thing we wrote was a loop to iterate through
an ordered list.

It's good enough: We can store the user's input, and utilize it whenever we want.
We can also retrieve the input send back to a remote server, or do whatever we
choose, if we have more powerful tools elsewhere.

1611

Mobile Web to Mobile Applications

¢ It's synchronous, or blocking: Our keys and items are stored in memory, so we
have immediate access to them in most cases. This is nice for small use cases like
the above, but may incur problems with more intensive use. For example, if we're
retrieving very large objects from LocalStorage, the single JavaScript thread will be
occupied doing this, and no other code (for example, responding to user actions)
can execute.

¢ It's dumb: There's no querying language, no indexing, no storing of rich objects.
Anything more powerful has to be implemented at the application layer.

From a cross-platform perspective, LocalStorage is the best supported option, and is highly
recommended unless your needs overwhelm it.

How long do you have? Let's skip over the oldest persistent storage hacks—cookies and
the venerable window.name hack—and talk about HTMLS5.

Weh SOL

LocalStorage was initially paired with an interface referred to as Web SQL, which is currently
well-implemented on first-class mobile devices (iOS, Android, and BlackBerry OS 6.0). Web
SQL is a thin, asynchronous wrapper around an SQLite database—SQLite, if you're not
familiar, is an SQL storage interface to a flat file, rather than a database server. Web SQL
works well if your remote application server uses an SQL database, and you want to mirror
the structure of your data between platforms. And if you're familiar with SQL, it offers a
useful interface for storing structured data.

However, Web SQL was never too popular. SQL data-types map poorly to JavaScript objects,
the long strings of SQL literals are particularly error-prone, and the interface was frustratingly
tied to a single version of a single SQL implementation. For these reasons, and probably
others, there was never a full Web SQL spec and it was deprecated in November 2010.

In its place, a competing spec called Indexed DB has been promoted. Indexed DB is a
schema-free approach for storing JavaScript objects (as opposed to strings, or SQL data
types) persistently, based on an indexed property on the object itself. Stores of objects can
be iterated over easily, and indexed on multiple fields. It's a flexible enough option that we
expect very powerful database interfaces to be built right on top of the native interface.

The problem? Indexed DB doesn't really exist yet (at the time of writing). The spec itself has
not been finalized; there are incompatible, vendor-prefixed partial implementations in the
latest releases of Firefox and Google Chrome, and no mobile platform ships with even an
experimental implementation. So for now, it's a non-starter.

Chapter 3

So one deprecated option, and one unimplemented option. LocalStorage isn't looking so bad
now, right?

This covers the situation on the first-class mobile platforms—on older platforms that do not
support any of the HTMLS5 spec, you will need to fall back to either cookies or to a native
solution. For example, on the BlackBerry OS 5.0 and below, PhoneGap includes an interface
to the native key-value store that you can access from JavaScript; there is a similar interface
for PhoneGap's Symbian.wrt release. And if all else fails, you can use PhoneGap's File
API to read and write directly to the file system—but this is likely to be the slowest and most
expensive option.

A word of recommendation should go out to Lawnchair, a storage library written by Brian
Leroux from the PhoneGap team and compatible with all of the supported PhoneGap
platforms. Lawnchair gives a unified key-value store API to all of the storage options listed
above—if you find yourself writing code for multiple different local storage backends, give
Lawnchair a shot. You can get the code at http://github.com/brianleroux/lawnchair.

Have a go hero: Exploring LocalStorage

Look at the instructions for building native applications from the first two chapters, and get
this application running on whatever device you have at hand—an iPhone, an Android, a
BlackBerry device, or whatever. Does the basic functionality still work—once you submit
foods through the form, are they reflected on screen?

Try opening and re-launching the app, manually ending the application if necessary. Are the
values persisting? What happens if you uninstall the application? What about if you reset
the device?

You should have a firm grasp of the 1ocalStorage API at this point—let's implement some
other web server roles.

The next item on our laundry list of web server roles to port over is, unlike persistent
storage, not implemented as an HTML5 API. View templating is the kind of software task
that traditionally lends itself to bike-shedding—that is, an awful lot of debate over very
small differences. It's easy to implement, there are innumerable functioning alternatives,
and it's necessary for every sizeable project. A non-exhaustive list of available libraries can
be found on Mozilla's Developer Network, at https://developer.mozilla.org/en/
JavaScript templates.

Mobile Web to Mobile Applications

We are going to use the Mustache templating language, implemented in JavaScript by Jan
Lehnardt. The code is available at http: //github.com/janl/mustache.js. There's a lot
to like about Mustache—it cleanly separates the templates themselves from any view logic,
and is available in server-side and client environments—but if there's a JavaScript templating
approach you prefer, feel free to use that one.

Mustache. js is also the first external library we'll be using, so best of luck!

Time for action - Food detail view

1.

First things first, let's get a local copy of mustache. js. We could clone the entire
Git repository, but we only need a single JavaScript file. We can grab that one
directly from https://github.com/janl/mustache.js/raw/master/
mustache. js. Download that file and save it in your sites without servers
directory.

Next, include that file in your index.html—add this <script > tag just before your
closing </body> tag:

<script src="mustache.js"></scripts>

Now let's write our first Mustache template. Create a new file called
food detail.mustache and fill it with the following code:

<h2>{{ foodName }}</h2>
<p>{{ foodName }} is my favorite food. I particularly enjoy it
in the {{ timeOfDay }}.</p>

This file is known as our template, by Mustache's (straightforward) terminology. We
need to pair our template with a view in JavaScript that populates its contents. So
let's write our view as follows (you can add this code after the opening <script>
tagin index.html):

var aFoodDetail = {
foodName: «cereals»,
timeOfDay: function () {
return this.foodName.length > 7 ? «evening» : «mornings;

}
}

You probably don't decide your personal eating preferences based on the length
of the food's name, but it illustrates one of the nice features of Mustache—we can
define fields in our view either as JavaScript objects, or as functions to be executed
when we render our template.

701

Chapter 3

Now we need to combine our view and our template to get our output. We've
chosen to store our template in a separate file, so we need to get the contents of
that file first, and then render the view within those contents. Ensure this code is in
the top-level scope of a <script> tag, so that we can easily call the functions from
the Web Inspector:

var storedTemplate = null;

function renderOurTemplate (view) {
function doRender (template, view) {
console.log («rendering nows)
console.log(Mustache.to_html (template, view))

}

if (storedTemplate) ({
console.log(«template is stored - we can render
immediately»)
doRender (storedTemplate, view) ;

} else {
console.log(«template isn't stored - need to request it»);
var req = new XMLHttpRequest () ;

reqg.onreadystatechange = function () ({
if (this.readyState == 4) {
if (this.status == 200 || this.status == 0) ({

storedTemplate = this.responseText;
doRender (storedTemplate, view) ;

} else {
console.log («something went wrong») ;

}

req.open («GET», «food detail.mustache», true);
reqg.send() ;

There's a lot going on there that we'll cover in detail, but first let's verify that
it works.

Reload our index.html file in Safari, and open the Web Inspector. Enter this
command:

$ renderOurTemplate (aFoodDetail)

ni

Mobile Web to Mobile Applications

9. And check the output—there should be the message template isn't stored—need
to request it, and then the rendered Mustache template, logged to the console. Try
running the function again:

$ renderOurTemplate (aFoodDetail)

10. And this time ensure that template is stored—we can render immediately is printed
before the rendered code.

- Site) Web Inspectar — file:///Usersfandrewlunny/dev/BOOK/chapter-3/in...
- | = 2 £=. T
+ | |7 file:jj/Users jandre| e [==1 (= y by E P
- = & @ |[e G g ¥ @
f Elements Resources Scripts Timeline Profiles Storage Console Search Scr
-« index.html % n (3
1 <html= » Watch Expressions
2 <head= |
List SO 3 <title=Sites Without Serve | ¥ Call Stack
lll 4 <style= ot Paused
5 body { Not Faused
6 background: white; ¥ Scope Variables
7
8 div#main { Not Paused
background: #ccc; 2
! v
o EE border: black 1px Breakpoints
height: B2%; No Breakpoints
¢ bacon padding: 10%;
- width: BOS%;
- -webkit-border-rad ,
* cabbage
_</stules 1
4| »
s O
» renderOurTemplate({aFoodDetail)
template isn't stored - need to reguest it index.html:35
undefined
rendering now index.html:27
<h2=cereal</h2= index.html: 28
<p=cereal is my favorite food. I particularly enjoy it im the
morning.</p=
» renderQurTemplate({aFoodDetail)
template is stored — we can render immediately index.html:32
rendering now index.html:27
<h2=cereal=/h2= index.html: 28
<p=cereal is my favorite food. I particularly enjoy it in the
morning.</p=
- undefined

>
*n = | & Ly Errors Warnings Logs

7121

Chapter 3

11. Now the next step is to insert the rendered markup into our document. First, find
the <uls> element that was there from our previous example, and insert an empty
<div> above it:

<div id="foodDescription">

</divs>

11. We next want to modify our renderourTemplate function to return back the
rendered HTML. Since we may have to make a request to get our template, we
get to do this call asynchronously, and only need to change the first few lines of
renderOurTemplate to achieve this:

function renderOurTemplate (view, callback) {
function doRender (template, view) {
console.log(«rendering nows)
callback (Mustache.to_html (template, view))

}

12. Now we can modify our addNewFoodItem function, to write the food detail to our
page as well as entering each new food onto the list. Here's what the function will
now look like—the changes are highlighted:

function addNewFoodItem (foodName) {
var newFoodItem = document.createElement (<1i');
newFoodItem.innerHTML = foodName;
foodList.appendChild (newFoodItem) ;

aFoodDetail.foodName = foodName;
renderOurTemplate (aFoodDetail, function (markup) {

document.getElementById ("foodDescription") .innerHTML =
markup;

DE

7131

Mobile Web to Mobile Applications

13. Note that we're changing the foodName property of our aFoodDetail object to
reflect the user input, and then writing the result to the DOM. Let's reload Safari
and... well, it renders right away, since it's hooked into the same addFoodItem
function as the list of foods. That's convenient!

aee Sites Without Servers
[+ | # file:// /Users /andrewlunny/dev/BC &] I._C);'r Google i»

List Some Food

((Tell ust)

pineapple fried rice

pineapple fried rice is my favorite food. I
particularly enjoy it in the evening.

cheese

bacon

celery

steak tartare
asparagus

cabbage

pineapple fried rice

And now our content is beautifully rendered!

What just happened?

We've done a few things just now:

Created an HTML template to display our application data
Used Mustache to dynamically populate that template at runtime

Integrated Mustache with our existing code to render user data according to
our template.

nl

Chapter 3

A very simple technique, but an enormously useful one.

View templating isn't difficult—all we've done here is taken an HTML fragment with

some placeholder content, replaced that placeholder content with live content from our
application, and rendered the populated HTML into our page. With libraries like Mustache,
once we have our content and our template in the right format, it's just a single function call
to get our output data ready to go.

Also, to re-emphasize a point made prior to the tutorial, the basic premise applies to any
templating library you'll use, or even one you may write. Mustache is just one example
of a library that takes care of the grunt work.

The main tricky point in the above example was getting the template into JavaScript from
the filesystem. There's a lot to love about JavaScript, but one of the major things to hate

about it is the lack of support for multiline strings, or Heredocs as they're often known in
other languages. If our two line template was a JavaScript variable, it would look like this:

var foodDetail = "<h2>{{ foodname }}</h2>" +

"<p>{{ foodname }} is my favorite food. i particularly enjoy it in
the {{ timeofday }}.</p>";

This is fairly ugly with a two line file, but hugely ugly, brittle, and unmaintainable once you
go beyond 10 or 15 lines. And since the Strings can't be unescaped either, all double quotes
have to be manually escaped (the same would apply to single-quotes, if those surround your
string literals).

Instead, we put our HTML fragment in a separate file and use an XMLHt tpRequest to load
it at run time. This makes our view code easier to read and modify, and only has a minimal
performance effect on the application as a whole. The actual loading mechanism is a little
opaque; converting the JavaScript code to pseudo-code makes it easier to see what's
happening:

if (the template is in memory)
render the view on the template
else
request the view, and then
render the view on the template

The actual code is more complicated since the rendering is done asynchronously, and uses
the fairly verbose XMLHt tpRequest API, but the basic idea is to implement a very simple
caching mechanism when loading our template into memory. We're requesting a local
resource, so the actual AJAX request is very inexpensive, and it only needs to be performed
once for each template in your application.

1751

Mobile Web to Mobile Applications

The rest is much the same as the previous chapter—taking data and inserting it into the
DOM, using the standard browser APIs to display interactions with the user. If you're an
experienced web developer coming to PhoneGap to reach mobile devices, all of the code
should be comfortable and familiar.

Pop Quiz - Templating with Mustache

1. What advantages does Mustache have over simple string interpolation?
a. Very few: you could do all of this by concatenating string literals.
b. It gives an optional compatibility layer with your server templates.

c. It handles the standard templating features with speed and consistency.

2. When is the best time to render a template for display?
a. Atload time—insert it into the DOM, and then hide it with CSS.

b. When there are some spare CPU cycles—if the user is idle, do
some rendering.

c. Justin time—render at once when the user requests a view.

Our list of foods, under the foodList element, uses document .createElement to insert
new elements directly into the DOM. What are the pros and cons of using this approach, as
opposed to a template file and a Mustache view?

The last of the three major web server roles we will look at will be accessing remote
resources.

Our section on view templating gave an introduction, in case you were unfamiliar, to the
XMLHttpRequest (XHR) object in JavaScript. As the foundation of Ajax, the world's greatest
pre-HTMLS5 JavaScript buzzword, XHRs allow us to retrieve arbitrary resources from HTTP
servers without doing a full page reload. Although newer innovations, most notably the
WebSockets spec, have stolen some of the XHR thunder, it's still an invaluable tool for the
JavaScript developer.

If XHRs are so powerful, why do web servers still handle most external network requests?
The shortest answer is that XHRs are bound by the browser environment's cross-origin
policy: a resource (an HTML page) can only access other resources from the same origin
(the same URL scheme, the same hostname, and the same port). If my page is served
fromhttp://alunny.ca/foo.html, | can't make an XHR request to http://search.
twitter.com(or https://alunny.ca, for that matter).

1761

Chapter 3

Interestingly, there are changes in the HTML5 spec to allow for cross-origin resource
sharing—these require setting HTTP headers on the server that gets accessed, and are
outside the scope of PhoneGap application development. There is a similar spec for
cross-domain messaging, between frames from separate domains in the same browser
page; but again, this is not applicable for PhoneGap applications.

The cross-origin policy, however, is not a concern for PhoneGap applications, where
our pages are not served from a web server. Luckily, the policy is not enforced on the
file:// protocol—that s, a page served from file:///Users/andrewlunny/foo.
html can make an XHR request to http://search.twitter.com.

This is broadly true for all of the mobile platforms that PhoneGap supports—the one notable
exception is the native BlackBerry port (which exists for BlackBerry OS 4.6 compatibility,
chiefly), and PhoneGap implements a Network . xhr function to do the equivalent requests.
You will have to use both functions if you want to target BlackBerry OS 4.6, along with more
powerful platforms—your best bet is to write a simple wrapper function that chooses the
appropriate method based on the current execution environment.

One final sidenote: the cross-origin restrictions may end up in place on the file://
protocol after all, as they're beginning to do on desktop browsers. Apple's Safari browser,
which we have been using for development, has some spotty issues with version 5 (version
4 allowed cross-origin requests, much as PhoneGap platforms do); it has been working
with the demo I've prepared, so we'll stick with it for now. For PhoneGap, the dev team has
committed to patch each platform if these restrictions appear; we'll use a workaround for
doing the same on a desktop browser shortly.

Time for action - Talking about food

Back to our little app—we've done a great job of listing the foods that we like, but what do
other people think of our favorite foods? Wouldn't it be great to know what everyone in the
world is saying about the food we love?

Luckily we have an amazing new invention called Twitter to help us. Twitter is a popular
website that allows celebrities to demonstrate their ignorance to thousands and regular
folk to share their insights with coworkers. Although Twitter's timeline API requires
authentication to access (and is a bit frustrating to get working with PhoneGap), it's search
APl is wide open, and is a great one to play around with.

1. Do asanity check API call—we want to ensure the Twitter search API is online,
available, and returning the right kind of results. Open a Terminal window, and use
the curl tool to query Twitter's search API; if you're on Windows, you will probably
want to use a shell like Cygwin or Git Bash to get the best results.

$ curl http://search.twitter.com/search.json?g=bacon

¥1]]

Mobile Web to Mobile Applications

2.

We should get a large JSON response back, which will look something like this:

[o M Terminal — bash — B0x24

~ % curl http://search.twitter.com/search.json?g=bacon

{"results":[{"from_user_id_str":"189221048", "profile_image_url":"http://ald.twimg
.com/profile_images/1175672908./38832_106313496089291_100001319221546_43527_33717
11_n_normal_normal.jpg", "created_at":"Thu, 25 Nov 2010 10:58:84 +B0@@","from_use
r':"apklabox","id_str":"7749856542072832" , "metadata" : {"result_type": "recent"},"t
o_user_id":186234959, "text":"8priiihv RT NiecyNash: Pancakes. Turkey bacon. Foot
ball. In my man's arms. Life is good:) http://bit.isff.com/T7qTh Face! Lol","id"
1 7749856542072832, " from_user_id":189221840, "to_user": "priiihv","gec" :null, "iso_1
anguage_code": "en", "to_user_id_str":"186234959", "source": "<a href=fquot;htip:
//twitter. com/" > ;web< /okgt; "}, {"from_user_id_str":"138232479", "profile
_image_url":"http://a@.twimg.com/profile_images/1141226272/20844_364383905513_85
1258513_16391228_918419_n_normal.jpg", "created_at":"Thu, 25 Nov 2010 1@:57:57 +@
@ea", "from_user":"karencpg","id_str":"7749827219693568", "metadata” : {"result_type
":"recent"}, "to_user_id":null,"text":"RT @ifilosofia: El requisito del “u@Bedxit
o es la prontitud en las decisiones. Bacon","id":7742827219693569,"from_user_id"
138232479, "geo" :null, "iso_language_code":"es", "to_user_id_str":null, "source":"&
1t;a href=Rquot;http://www.tweetdeck.combquot; rel=RBquot;nofollowdquot;>Tweet
Deck< /akgt;"},{"from_user_id_str":"1822586@","profile_image_url":"http://a2.t
wimg.com/profile_images/1168145362/photo_normal.JPG", "created_at":"Thu, 25 Nov 2
@10 1@:57:37 +20e8","from_user": "teagann_","id_str":"7749745405599744" "metadata
"i{"result_type":"recent"},"to_user_id":null,"text":"1@pm bacon sandwich for din
ner :)","id":7749745405599744, "from_user_id": 18225868, "geo":null,"iso_language_c
ode":"de","to_user_id_str":null,"source":"<a href=kquot;http://twitter.com/&q
uot; rel=&guot;nofollowdquot;>Twitter for iPhone</afgt;"},{"from_user_id_s .

Hey, bacon's a very popular food.

Now let's bring that API call into our PhoneGap application. Firstly, we're going to
simplify the logic to call XMLHt tpRequest . send from our application, with a new
getXHR function:

// performs a get request for url
// passes the response text to callback
function getXHR (url, callback) {
var req = new XMLHttpRequest () ;
reqg.onreadystatechange = function () ({

if (this.readyState == 4) {
if (this.status == 200 || this.status == 0) ({
callback (this.responseText) ;
} else {

console.log(<something went wrong') ;

7181

Chapter 3

reg.open (<GET', url, true);
reg.send() ;

4. Asusual, ensure that function is in the global scope, so we can access it easily
from Web Inspector.

5. Do just that—open our page in Safari, launch Web Inspector, and enter the
following:

$ function log(x) { console.log(x) }

$ getXHR('http://search.twitter.com/search.json?g=bacon', log)

6. If you're running into cross-domain restrictions—errors such as Failed to Load
Resource—you can use Twitter's JSONP interface instead. JSONP allows you to
access JSON resources through an external script tag, rather than with an
XmlHttpRequest. First, we'll define a function get JSONP:

// loads an external url through a <script> tag
// avoids cross-domain restrictions
function getJSONP (url, callback) {
var s = document.createElement («script»),
path = url + «&callback=jsonpCallbacks»;
window. jsonpCallback = callback;

s.src = path;
document .body.appendChild(s) ;

7. Then call getJSONP instead of get XHR:
$ getJSONP ('http://search.twitter.com/search.json?qg=bacon', log)

17191

Mobile Web to Mobile Applications

8. The output should look like this (of course, we're getting live tweets, so the exact
content will be different):

4‘ ™ O ™ Web Inspector — file:// /Users/andrewlunny/dev/BOOK/chapter-3/in...

EENAE cla B G

fa Elements Resources Timeline Profiles Storage Console Search Scr

-« index.html % 1 [
1 <html> » Watch Expressions
2 <head=
3 <title>Sites Without Serve | ¥ Call Stack
4 =style= T
5 body I Not Paused
B background: white; ¥ Scope Variables
7
B div#main { Not Paused
9 background: #ccc; :

v v

18 border: black 1px Lol

11 height: B2%; Ne Breakpoints

12 padding: 10%; i

13 width: B0%;

14 —wirhkit—hnrder—rad

o @

» function loglx) { console.log(x] } O
undefined

» getXHR{'http://search.twitter.com/search.json?g=bacon', log)
undefined
{"results": [{"from_user_id_str":"358B8197","profile_image_url":"http://
a@. twimg.com/profile images/1@31BR6B6E/me Cropped normal.jpa","created
_at":"Thu, 25 Nov 2818 11:41:44
+00ea","from_user":"dominicduffy","id_str":"7760B44263702640", "metadat
a":{"result_type":"recent"},"to_user_id":null,"text":"Post @APA_UK
awards bacon sandwich. Oh
yes.","1d": T7T60B44263702640, " from_user_id":35881097,"geo":null,"iso_lan
guage_code":"en","to_user_id_str':null,"source":"<a
href=&guot;http://blackberry.com/twitter&guot;
rel="nofollowkquot;> Twitter for
BlackBerry\uBBae< fakat; "}, {"from_user_id_str":"25601819","profile_i
mage_url":"http://a2. twimg.com/profile images/11439109622/DSCA2573 norm

\ al.JPG","created_at":"Thu, 25 Mov 20818 11:41:38

+@eea","from_user":"ingridcordeiro_","id_str":"776@785946185730", "meta 4
data":{"result_type":"recent"},"to_user_id":113B5362,"text":"@davediar v

Hi>x | & &b Errors Warnings Logs

9. That's all well and good, but, if we're using getXHR, it's just returning a string—a
JSON string, which we can work with, but a string nonetheless. If we're using
getJSONP, we parse the object when the new script element is created.

10. Instead of logging the data we get back and doing nothing else, let's write a smarter
callback function that actually parses the data we receive, if that's necessary:

function parseAndLog (JSONstring) {
var JSONobj = JSONstring
if (typeof JSONstring == "string")

JSONobj = JSON.parse (JSONstring) ;
console.log (JSONobj) ;

}

Chapter 3

11. Please note that for this to work, our browser will need to have the JSON object
available—all modern desktop browsers will have it, but mobile devices will not.
In these cases, you can use Douglas Crockford json2. js library—available at
http://www.json.org/js.html—to patch in this functionality.

12. Cool, let's try that in Web Inspector:

$ getXHR('http://search.twitter.com/search.json?qg=bacon’',
parseAndLog)

13. And examine the results:

A4 OO O Web Inspector — file:// /Users/andrewlunny/dev/BOOK/chapter-3fin...
+ ﬂ o 7 r’@ﬁ - a4 (a =

4 | ¢ index.html % i m | s + |+ p

1 <html= » Watch Expressions
2 <head= e/
3 <titlesSites Without Serve | ¥ Call Stack
: {Sty&EZy I Nor Paused
6 background: white; ¥ Scope Variables
7
B div#main { Not Paused
9 background: #ccc; T
1@ border: black 1lpx ¥ Breakpoints
11 height: B2%; . Ne Breakpoints
12 padding: 10%; k]
13 width: B0%; a3
14 —wimhkit—hnrder—rad
i
o O =
» getXHR('http://search.twitter.com/search.json?q=bacon', parsefAndLog)
undefined
¥ Object index.html:72

completed_in: @.044001

max_id: 77621007B73470968

max_id_str: "7762199787347068"

next_page: "Tpage=2&max_id=7762199787347068&g=bacon"

page: 1

query: “bacon"

refresh_url: "?since_id=7762199787347968&q=bacon"
k results: Array (15)

results_per_page: 15

since_id: @

since_id_str: "@"
» __proto__: Object

. NEI

H»>x= & m| Errors Warnings Logs y

811

Mobile Web to Mobile Applications

14. We can see we're now logging a JavaScript object, rather than a long string. This is
great; we can easily manipulate and render this structure from here.

15. How can we integrate this easily into our existing app? Here's what we'll do: we'll
add Twitter integration to the user experience that we've already created, like so:
o When our user clicks, or touches, the name of a food.
o We query Twitter for the latest tweet mentioning that food.

o Then we display that Tweet in an annoying alert to the user.
Works for me!

16. Let's get going—first, we're going to want to restructure our callback function to
get the latest tweet about a food. Since the Twitter search API returns an array of
results, with the newest result first, this is an easy function to write:
function getLatestResult (JSONstring) {

var twitterPayload = JSON.parse (JSONstring) ;
var latestResult = twitterPayload.results[0];

return latestResult;

!
See, no trouble at all.

17. Next, let's write the event handler for the clicks on <11i> elements. We're going to
use a technique called event delegation to catch all of these events—we listen on
the document element, and then, if the target of the event matches one of our list
items, perform our magic:

document .addEventListener("click", function (evt) {

if (evt.target.tagName == «LI») {
var foodSubject = evt.target.innerHTML;
var foodSearch = encodeURIComponent (foodSubject) ;
var twitterUrl = «http://search.twitter.com/search.json?g=» +
foodSearch;

getXHR (twitterUrl, function (response) {
var latestTweet = getLatestResult (response) ;
var msg = «Latest Tweet about « + foodSubject + « from « +
latestTweet.from user + «: « + latestTweet.text;

alert (msg)
3]
}

}, false);

It's a little complex, but hopefully you can follow what's happening.

1821

Chapter 3

18. Now let's load it in Safari and give things a couple of clicks. If you're like me, you'll
click on the names of the different foods a few different times, until you find a
tweet that's innocuous enough to take a screenshot of and insert into your book on
PhoneGap. Here we are:

N

Sites Without Servers

[+ | = file:// /Users /andrewlunny/dev/B G] (Q' Google)))

-

-

List Some Food

{ Tell Us!)

s

JavaScript

Latest Tweet about steak tartare from GlendaN:
@DuchessWisbeach. Finally going to experience
Duchess. Friends out from London so going on Sat
night. PLEASE let there be steak tartare...

oK

S

Loading “filez{//Users/andrewlunny/d...dex.htmi?", completed 14 of 15 items A

And we now have a social app! Quick, somebody blog about this!

What just happened?

There were three separate, but overlapping, topics we covered in this section:

& Accessing remote resources through an XMLHt t pRequest

¢ Parsing remote data as JSON, using the global 7SON object

¢ Using event delegation to generate dynamic queries to a remote resource

Let's discuss each of these steps in more detail.

Mobile Web to Mobile Applications

We looked at a deliberately simple example in Twitter's search APl—you can make an
HTTP request from anywhere to that APl and get some live data back. There are other
considerations we need to have in most cases, however:

*

*

Authentication: Purely public APIs are the exception, and most interesting work
you'll do with remote APIs will have to be authenticated. Does the remote server
use basic HTTP authentication, OAuth, OAuth 2, or its own custom authentication
setup? Is SSL required for all authenticated requests? Do cookies need to be passed
back and forth on every request?

Ownership: Does the remote server belong to your organization, to an organization
you're working with, or to a large Internet company (a la Twitter or Facebook)?
Larger APIs tend to excel in terms of reliability and stability, while a remote server
you have control over, or access to, clearly offers the most amount of flexibility.

In between these extremes, there's a lot of scope for opaque and volatile APIs to
beware.

Reliability: This covers both uptime (how many of your requests will fail to
complete) and also rate-limiting. Rate-limiting is something to be aware of in terms
of the particular API calls you're making—the Twitter API, for instance, limits the
amount of requests for user icon images far more aggressively than, say, requests
for the public searches.

The APl itself: Is it a RESTful APl or an increasingly rare SOAP one? Does the

API provide XML, JSON, both, or other representations of data? Is there an easy
mechanism to go from one call (get me the latest tweets about bacon) to a related
call (get me the latest tweets from the guy who was talking about bacon)?

The Twitter search API, as an outstandingly simple example, is fairly portable—we should
be able to execute basically the same code on any platform that supports cross-origin XHRs.
With more complex access rules—particularly those based on authentication or other
custom HTTP headers—older platforms will start to struggle. The PhoneGap Symbian.

wrt port, for instance, requires the user to manually enter authentication details for
authenticated requests.

The Time for action tutorial began with the use of curl on the command line and, when
APIs expose their interfaces cleanly enough, a tool like curl is the best way to get started
with remote APIs, using trial and error to explore the responses you will receive, and how
you will need to format your requests.

[8a1

Chapter 3

Finally, in all this talk about remote APIs, it's worth emphasizing that this is all just
HTTP—your request doesn't know, and shouldn't care, much about what's going on in the
remote server. We could just as easily rewrite our above example to query a static file host,
and parse a dump of JSON data that was stored as a flat file. Typically, however, larger APIs
require at least some understanding of how they are implemented, and how that limits
your interactions as an APl consumer.

We touched on it just now, but one of the good things about the Twitter Search API is that
it returns results in JavaScript Object Notation format, better known as JSON (pronounced
"Jason"). JSON, as discovered and coded by JavaScript wizard Douglas Crockford, is a subset
of JavaScript's object literals used to transmit strings, numbers, Boolean values, arrays (or
ordered lists), hash tables (or dictionaries), and the null value. There are some important
differences between JSON and JS object literals that JSON producers should be aware of,
but as JSON consumers, we can ignore those for now.

JSON's elegant, lightweight syntax makes it a human-readable alternative to XML for data
transfer, and reduces the amount of network bandwidth required to transmit data. There are
JSON parsers and serializers implemented in every popular programming language. Although
we still use the XMLHt tpRequest to communicate with remote services, the majority

of web APIs nowadays offer JSON data, alongside XML or as the sole option (such as the
Facebook Graph API).

ECMAScript 5, the latest specification for the JavaScript language, defines a global Json
object that we used in the code above. The JSON object has two functions we care about:

¢ JSON.stringify: Takes aJavaScript object (including a primitive value) and
converts it to a JSON string

¢ JSON.parse: Takes a JSON string and converts it to a JavaScript object

Using the native JSON object is the safest and most predictable way to use JSON data in
your application, and the latest releases of first-class mobile platforms expose this object
to developers.

Of course, with mobile development, it's never that easy. As you might expect, older
BlackBerry devices and Symbian devices do not support the JSON object natively, but
nor do iOS devices below OS 3.2 (all first generation iPhones and iPod Touches, for
instance). A JavaScript implementation, JSON-js, is available at http://github.com/
douglascrockford/JSON-7s, and creates a JSON parser and a serializer you can use;
you'll want to include the file json2.js from that repository, and add an appropriate
<script> tag to your index.html file, to take advantage. Some PhoneGap platforms,
including the BlackBerry port, include json2.js, so you may already have it at hand.

1851

Mobile Web to Mobile Applications

However, since JSON is just a subset of the JavaScript object literal notation, you can use the
native eval function in JavaScript to convert a JSON string to JavaScript. This is the easiest
(that is, most readily available) way to parse JSON in JavaScript, but is less than optimal for a
couple of reasons:

¢ eval executes the string that is passed as JavaScript—so the call
eval ("alert ('foo') "), for instance, will display that alert box, rather than
throwing a parse error. If you don't trust the producer of the JSON you're using,
don't use eval.

¢ eval takes strings that represent JavaScript expressions: in the case of object
literals, the braces are parsed as block delimiters, rather than delimiting an object
definition. This code, for example will throw a SyntaxError, since "a":12 is not a
valid JavaScript expression:
var foo = '{"a":12}"';
var fooObj = eval (foo) ;

We need to use parentheses to indicate that the string represents an object literal:

var foo = '{"a":12}"';
var fooObj = eval(<(< + foo + <)');

Issues like these, along with more obscure scoping problems, are why eval has such a

bad reputation in JavaScript circles, and JSON-js is the best fallback when a native JSON
implementation is unavailable. But if you're really tight on resources, eval is a good fallback
to have.

Event delegation

The third approach to touch on slightly is how we bound the c1ick events to each of our list
items. Here's that code, simplified a little:

document .addEventListener ("click", function (evt) {
if (evt.target.tagName == "LI") {
var foodSubject = evt.target.innerHTML;
var foodSearch = encodeURIComponent (foodSubject) ;
var twitterUrl
foodSearch;

"http://search.twitter.com/search.json?g=" +

// query the server and process the tweets

}

}, false);

Chapter 3

The first two arguments to addEventListener should be familiar; the third specifies
whether the event should be captured (fires first on the document, then goes down to each
contained target element) or bubble (fires first on the target element, then bubbles up to
each containing element, up to the document). Event bubbling, which we specify explicitly
by passing false, is the default, and is usually what we want.

Let's contrast that with how we bound the submit event of our form on the page (again, the
code is simplified):

document .getElementById ("foodForm") .addEventListener ("submit",
function (evt) ({

evt.preventDefault () ;
var newFood = foodField.value;

//process newFood
return false;

13N

In both cases, we use the addEventListener function to listen for a particular DOM event.
For the submit event, we bind addEventListener to our foodForm element (the food
form). When the submit event is fired on foodForm, we prevent the default action (by
calling evt .preventDefault ()) of submitting the page back to the server, do what we
need to do, and then return false (so the event doesn't propagate).

For the click event, we listen on the document object, rather than on a particular DOM
element on the page. When any user clicks on the document, our event handler function
is called.

The evt object that's passed to this function, like any JavaScript Event object, includes a
target field, which refers to the particular DOM element the event was fired on. Our logic
is intended to execute for every <1i> element in the document, so we check whether the
target element matches our criteria and, if so, we perform our magic. This is known as event
delegation: listening on a higher level for events, and delegating the event handler based on
the event's target.

This approach offers a few benefits:

¢ We only need to set the handler once, for every element that we want to bind to.
This avoids duplication of code, and any mistakes we might make if bind the wrong
elements.

¢ ltisn't dependent on the DOMContentLoaded event, since we bind it to the
document object, we don't need our target elements to be initialized when we bind
the event. We can set up our event delegation whenever we want.

1811

Mobile Web to Mobile Applications

¢ It binds the same events to new elements that are added to the DOM at runtime—
it's the same pattern that's used, for instance, in the jQuery library's $.1ive and
$.delegate functions. Again, this simplifies the amount of manual management
we need to do on each element.

You can use event delegation for all events that occur on your application, but that may be a
little much to manage at this stage—a good rule of thumb is to use a delegation pattern for
similar events that need to fire on multiple, similar DOM elements, and directly bind event
handlers that only relate to a single DOM element.

Sleight: The PhoneGap development server

One last thing to note on our use of remote resources: if you're having any trouble getting
external XMLHt tpRequests to execute, you may want to look at Sleight, a tiny web server
we've developed to allow for external network requests from a single domain.

Sleight uses the Node-JS JavaScript platform to run its server, you'll want to install Node
from http://nodejs.org, and also npm, the Node package manager, from http://
npmjs.org. Once these tools are installed, you can install Sleight through npm as follows:

$ npm install -g sleight

Sleight serves static files from the directory you start it in, and also proxies remote requests
to a remote server that you specify. For our app, we would want http://search.
twitter.comto be the remote server, and we would start Sleight like so:

$ cd sites without servers
$ sleight port=4000 target=search.twitter.com
We could then navigate to http://localhost:4000 to see our index.html file, or view

it from our mobile browser (assuming our mobile device is on the same network as our
development system).

In our JavaScript file, we could then manage our XHRs as follows:
var isOnFileProtocol = window.location.href.match(/*file/)
var domain = isOnFileProtocol ? "http://search.twitter.com/" : ""
// when we have a request to make

runXhr (domain + "search.json?g=bacon")

If we're running from the file: // protocol (in a PhoneGap environment), we can do
a cross-origin request; otherwise, we use Sleight to proxy the resource through a local
web server.

You can find Sleight at http://github.com/alunny/sleight; it's not much code, but it
can be a very useful development tool.

Chapter 3

Have a go hero: Becoming more efficient

Although we looked at our three server replacements discretely, and they can be used
entirely independently, there are a number of useful convergences between the three. In
our view templating section, for instance, we cached our views in a JavaScript variable in
memory, but we could just as easily have persisted the template to 1ocalStorage.

Try rewriting our Food List application with all three approaches in mind from the start. Here
are some features you can implement:

L 4

Caching on remote requests: If there's a network connection (remember the
navigator.Network.isReachable PhoneGap call) get the latest tweet,
otherwise pull one from localStorage.

Access your view templates from a remote server, try putting your Mustache
templates on a public server, and editing them while running the app. Is it possible
to change the displayed template while the app is running? Would you want to keep
the cached templates, even if the remote ones change?

How would we go about backing up 1localStorage? Imagine our app has a
database-backed web server we can access when we have a network connection—
how would we try to sync the lists of food between both sources? How could we
resolve conflicts in content? The answer is likely to be heavily dependent on the
server implementation, but it's worth considering what the best approaches may be.

This chapter took three of the most important pieces of a server-based web application and
moved them over to a robust thick client application, which we can easily deploy to a native
mobile application with PhoneGap. Those three roles are:

*

Storing persistent data: In our example, based on user input, but as we saw, we can
easily modify our storage approach to include remote data, application views, or
anything else that's textual.

View templating: Using a library like Mustache, we can present dynamic and
responsive user interfaces that can be updated easily.

Accessing remote resources: With the power of cross-origin XHRs, we can create
complex mash-up style apps that use remote APIs from anywhere on the web to
enhance our users' experience.

Accessing remote resources from desktop browsers: Either using JSONP where
available, or the Sleight development server as a fallback.

Mobile Web to Mobile Applications

Cumulatively, these three techniques allow us to maintain a stateful and responsive
application that can take advantage of a remote server for data, but allow full user
interaction within the context of a mobile application, be that online or offline.

In the next chapter, we'll combine these skills with some robust code management
techniques to ensure our code portably and flexibly runs across all the devices we target,
and can be easily modified to take full advantage of each platform's unique strengths.

PhoneGap provides some obvious pitfalls for developers—in particular, it's
easy to write a cross-platform application that aims for the lowest common
denominator, providing a mediocre experience that's identical on each device.
Our goal, instead, should be to use the power and flexibility of PhoneGap to
tailor the same codebase to take full advantage of each platform.

In this chapter, we'll see some tactics for achieving this goal, including:
€ Using standard web development best practices, like feature detection and CSS
media queries, to modify our application's behavior at run time
€ Sniffing the platform at run time to conditionally execute or load JavaScript code

@ Pre-processing our application code to target different platforms efficiently

PhoneGap, we should never fail to stress, is not a write once, run anywhere solution for
mobile development. Like web development in general, using PhoneGap allows you to easily
get something up and running just about everywhere, but requires attention and diligence
to ensure optimal performance and functionality for each particular environment.

Managing a Cross-Platform Codebase

There are two kinds of differences between platforms: ones we can detect at run-time and
ones that require external knowledge. For example, we can feature-detect support for CSS3
transforms, but there's no way to detect if those transforms are hardware-accelerated or
purely software—that data isn't exposed to application code. At the time of writing, iOS does
accelerate those transitions (giving a much smoother experience), while all other platforms
run the animations through software, with the expected performance penalty. If we use such
animations in our applications, we need to be aware of this difference.

One distinction that straddles this divide, that is particularly important for mobile
development, is the difference between physical handsets. Android phones have a physical
back button, Apple devices just have a single Home button, Palm webQOS devices have a
swappable panel area, and so forth. Different devices have different screen sizes; some
devices, such as Apple's iPhone 4, have unusual DPIs that affect the screen resolution.

We're going to use a variety of strategies to deal with these differences, by writing a code
that is compatible across platforms.

Using a single codehase

We've seen in Chapter 2 how easy it is to copy a single application directory into multiple
different projects. We're going to take a slightly different tack here, and use a symbolic
link to have a single www directory on the file system connected to two platform-specific
projects: an iPhone app, and an Android app.

We'll be targeting iOS 4.2 and Android 2.2 in this chapter, so make sure you have the latest
versions of the SDKs at hand.

Since we'll have only one copy of the existing code on our file system, any changes we make
will be propagated to all platforms, though we'll still have to build, and maybe clean, before
seeing the changes.

There has been some work on the PhoneGap project on standardizing folder structures for
cross-platform development; core-team developer Brian Leroux has a project called Cordova,
available at http://github.com/brianleroux/Cordova, which attempts to solve some
of these concerns. However, at the time of writing, these approaches are still very much in
flux—your best bet is to manage your own file system in a manner you're comfortable with.

This technique only works for simple PhoneGap applications that do not use any of the
native PhoneGap APIs, since each platform by default will build its own phonegap. js file
into the shared www directory. We will look at more robust approaches later on.

1921

Chapter 4

Time for action - Detection and fallbacks

We're going to start a new application called Red Green Refactor! Red, Green, Refactor
is a phrase drawn from the Test-Driven Development, a development approach we will
studiously avoid throughout this book. But it does come in handy when you can use it.

1. Start by creating the www directory as usual, and three files: index.html, app.Jjs,
and style.css. Fillin index.html as follows:

<ldoctype htmls>
<html>
<head>

<title>Red Green Refactor</title>

<script src=»app.js»></script>
<link rel=»stylesheet» href=»style.css»/>

</head>
<body>
<div class=»screen»
<div class=»screen»
<div class=»screen»
</body>
</html>

id=»red»>RED</div>
id=»green»>GREEN</div>

id=»refactor»>REFACTOR</div>

2. And add the following to style.css:

.screen {
width: 320px;
height: 480px;
float: left;
color: white;
position: absolute;
font-size: 50px;
text-align: center;

top:0px;
}
.screen#ired { left: Opx; background: red; }
.screenf#igreen { left: 320px; background: green; }
.screen#irefactor { left: 640px; background: blue; }

Managing a Cross-Platform Codebase

3. Don't worry about app . js for now. Let's open what we have in Safari:

a6 Red Green Refactor

[= ‘Bred green refactor C] (Q' Google)

GREEN REFACTOR

4. Cool, we can see our three states. Now let's fix their behavior: we want to display
one state at a time, and switch between them on the user's action. Add the
following to app.js:

var screens = ['red', 'green',K 'refactor'];

document .addEventListener ('click', function (evt) {
if (evt.target.getAttribute('class') == 'screen')
var oldScreen = evt.target.id;
var newScreen;

screens. forEach (function (screenId, 1) {
if (screenId == oldScreen) ({
if ((i+1)<screens.length) {
newScreen = screens[i+1l];
} else {
newScreen = screens|[0];
}
}

document .getElementById (screenlId) .style.display =
'none';

3N

document .getElementById (newScreen) .style.display =
'block!';

[9a1

Chapter 4

5.

6.

.screenftred
block; background: red; }
.screen#green {
background: green; }
.screen#refactor {
background: blue; }

.screen {

width: 320px;
height: 480px;
float: left;

color: white;
position: absolute;
font-size: 50px;
text-align: center;
top: Opx;

left: Opx;

display: none;

Each time the user taps on the screen, the display switches to the next one in the
cycle. To keep things visible on a mobile device, let's make a couple of changes to
the stylesheet:

{ display:

You can see that we've removed the left offset from each individual screen, set the
screens to be hidden by default, and set the red screen to be initially visible. Reload
index.html in Safari and check out the changes:

anA Red Green Refactor

[+ | # file:// /Users fandrewlunny/c

G] (Q~ Google)33

REFACTOR

Managing a Cross-Platform Codebase

7.

.screenffgreen

width: 320px;
height: 480px;
float: left;

color: white;
position: absolute;
font-size: 50px;
text-align: center;
top: Opx;

left: Opx;

-webkit-transition-duration:
600ms ;

-webkit-transition-property:
translate;

-webkit-transform: translate
(-320px, Opx) ;

.screentred {

-webkit-transform:
translate (0px, Opx) ;

background: red;

{ background:

.screenfirefactor { background:

green; }
blue; }

9. And let's modify our click handler in app. i s also:

document .addEventListener ('click’',
if (evt.target.getAttribute('class')

function

var oldScreenEle = evt.target;

var oldScreen = oldScreenEle.id;

var newScreen, newScreenEle;

screens. forEach (
if (screenlId ==
oldScreen) {

function

(evt) |

(screenId,

'screen')

i) |

So that's the basic logic. Now, we want our application to look a bit snazzier, so let's
use the aforementioned CSS transforms to display each new screen. The logic here
is a bit more complicated, but you should be able to follow along: what we want is

for each new screen to force the earlier one to slide off the screen.

First, we're going to modify the CSS. Note that instead of setting the element's
display property, we're just setting CSS3 transition and transform properties
(-webkit prefixed, as is standard for beta CSS3 implementations):

.screen {

{

Chapter 4

10.

if
((i+1) <screens.length)
newScreen = screens([i+1];

} else {
newScreen = screens[0];

}

newScreenEle =
document .getElementById (newScreen) ;

}
3N

newScreenEle.style.webkitTransform
'translate (0px, Opx) ';
oldScreenEle.style.webkitTransform = 'translate(-
320px, 0px) ';

}
3N

Now to go back to Safari and start clicking—you can see a smooth back-and-forth
motion on each transition. With a little more work we could implement a sliding
motion, but the bidirectional effect is one that I'm fond of, and suits the repetitive
nature of the red-green-refactor cycle.

11. The next stage is to set up Red Green Refactor as a PhoneGap-iPhone project (we'll

12.

be setting up an Android project soon also, so you should start loading the emulator
now). Set up the iPhone project through Xcode as in the previous chapters, and
modify the project on the file-system to point to our www directory (please see
Chapters 1 and 2 if this part is unclear). Launch the app in the simulator now, and
verify that the transitions are silky smooth.

Notice that there are no transitions. It happens that there's a bug in event
delegation on the iPhone—events don't bubble up as far as the body element,

or the document, unless an explicit click handler is defined on each element that
receives the clicks. The bug itself has been described by JavaScript guru Peter-Paul
Koch athttp://www.quirksmode.org/blog/archives/2010/09/click_
event del.html; we're going to add the following JavaScript to work around it:

document .addEventListener ('DOMContentLoaded', function () {
function emptyClicker() {};

screens.forEach (function (screenId) {
document .getElementById (screenld) .
addEventListener ('click',
emptyClicker) ;

3N
3N

1971

Managing a Cross-Platform Codebase

13. Once the application is loaded, we loop through the list of screens and assign an
event handler (the emptyClicker function) to each element's click event.

14. This is quite trivial since we only have three divs, and none are dynamically created
or removed at runtime. The bug is a lot nastier when we're doing more dynamic
work, with a larger number of elements to work on—we need to keep track of every
new element that gets created, and manually add an event handler. At any rate,
here's how the patched application looks in the iPhone simulator:

Carrier = 3:21 AM

GREEN

And the transitions look pretty good themselves.

Chapter 4

15. Okay, now on to Android. Again, refer back to earlier chapters to create a new

PhoneGap-Android project using droidgap, and copy our www directory into that
app project. Now spin up the emulator and install:

5554:BasicEmulator

GREEN

@ RS R [R R Y
PP P o s e e [e e
P e P Y R Y P P
m ___l_!_l_l_'_'_l_ 1

RN [— [P — (WIS [w— [r—
ALT i ¥ ALT

16. Well... it's not great, is it? Not only are the transitions slow and jerky, but the
viewport is the wrong size (with this emulator—different Android Virtual Devices
may see different results). Not too clever at all.

17. Let's fix the viewport first, since it's an easy change to make. Add the following tag
to the <head> of our index.html:

<meta name="viewport" content="initial-scale=1.0,width=device-
width,user-scalable=no" />

Managing a Cross-Platform Codebase

That probably should've been there from the start, but never mind. Reload it in the
Android emulator, and things look a bit better:

.0 5554:BasicEmulator
M@ 431

REFACTOR

18. That's much better, but not perfect (again, on the Android Virtual Device that |
am using); since Android screen dimensions and aspect ratios vary from device,
we have to be careful when specifying absolute width and heights. Unfortunately,
CSS transitions require those values to be set, as well as absolute positions, for
animations to work correctly. We can work around this by setting those values
absolutely at runtime, when we can detect their correct values, but let's not get too
far ahead of ourselves.

19. Our next goal is to fix those wonky transitions on Android. As mentioned earlier, the
issue is that certain platforms hardware accelerate 3D transforms, while others do
not, while supporting the same CSS features and JavaScript APIs.

[100]

Chapter 4

20. Because of this, we can't feature detect the difference—we'll need to do some
browser sniffing. We need to check what the useraAgent of the browser is, attempt
(well, guess) whether or not hardware acceleration is supported, and store that as a
flag we can fork behavior on. Here's how app . js ends up looking:

var screens = ['red', 'green', 'refactor'];
var hasHardwareAcceleration = false;

document .addEventListener('click', function (evt) {
if (evt.target.getAttribute('class') == 'screen')
var oldScreenEle =
evt.target;
var oldScreen =
oldScreenEle.id;

var newScreen,
newScreenEle;

screens.forEach (function (screenId, 1) {
if (screenlId ==
oldScreen) {
if ((i+1)<screens.length) {
newScreen = screens[i+1];
} else {
newScreen = screens|[0];

newScreenEle = document.getElementById (newScreen) ;

I3F;

if (hasHardwareAcceleration) {
newScreenEle.style.webkitTransform
'translate (0px, Opx) ';

oldScreenEle.style.webkitTransform = 'translate(-
320px, 0px) ';
} else {
newScreenEle.style.display = 'block';
oldScreenEle.style.display = 'none';
}
}
1) i
document .addEventListener ('DOMContentLoaded', function () {

hasHardwareAcceleration =
!'! (navigator.userAgent.match («iPhone»)) ;

function emptyClicker() {};

1011

Managing a Cross-Platform Codebase

screens.forEach (function (screenId) ({
var screenEle = document.getElementById(screenId) ;
if (!hasHardwareAcceleration) ({
screenEle.style.webkitTransform =
'translate (0px, Opx) ';
if (screenId != 'red') {
screenEle.style.display = 'none';

}

screenkEle.addEventListener('click', emptyClicker) ;
3N
3N

21. Please note the expression ! Inavigator.userAgent .match ("iPhone") —
we're using two Boolean NOT operators (!) to coerce the result of the match
function into a Boolean value (true or false).

22. You can see what we're doing here—we check if the user agent contains iPhone,
and, if it doesn't, we fall back to our older behavior (showing and hiding divs).

23. Phew. Now rebuild for both iPhone and Android and verify that the transitions look
acceptable on both platforms. Looks good to me.

What just happened?

We took our first stab at branching our code execution based on the targeted platform, using
the least sophisticated method possible—querying navigator.userAgent for an expected
result. We'll examine why that's a bad idea in a second but first, let's go over what happened
in that last step.

The last block of code in app . js is an event listener bound to the DoMContentLoaded
event—in effect, the first thing that's executed when our application is loaded:

document .addEventListener ('DOMContentLoaded', function () {
hasHardwareAcceleration = !! (navigator.userAgent.match("iPhone")) ;

function emptyClicker() {};

screens.forEach (function (screenId) {
var screenEle = document.getElementById(screenId) ;
if (!'hasHardwareAcceleration) {

screenEle.style.webkitTransform = 'translate (0px, Opx)';
if (screenId != 'red') ({
screenEle.style.display = 'none';

11021

Chapter 4

}

screenkle.addEventListener('click', emptyClicker) ;
3N
3N

The first thing we do is query navigator.userAgent. Like JavaScript's alert and eval
functions, navigator.userAgent is an especially lo-fi tool that should be used with
extreme prejudice in most circumstances. However, mobile development has a way of
eroding those prejudices, and leaving you to pick up the least desirable tools. Here's that
value on my iPhone Simulator:

Mozilla/5.0 (iPhone Simulator; U; CPU iPhone OS 4_1 like Mac OS X; en-us)
AppleWebKit/532.9 (KHTML, like Gecko) Mobile/8B117

The reasons why this is a horrible thing to work with:

@ There's a lot of information we don't need: The WebKit build number, for instance,
or whatever 8B117 stands for.

@ There's a lot of inaccurate information: The phrases "Mozilla", "like Mac OS X", and
"like Gecko" are all misleading—it is not a Mozilla browser, it is not running on Mac
0S X, and the rendering engine is WebKit, not Gecko. If we're just looking for the
presence of those strings, we will be misled.

€ It's not very well-structured: We can't say navigator.userAgent .0S, for
instance. It's just a long string.

PhoneGap exposes an object called device that solves the above issues—you can access
device.platformto get the OS name, for instance, and device.version to get the
version—but that doesn't solve the underlying problem: when you browser sniff, you're
relying on a single variable to tell you about another, independent variable.

If you have a network connection, one option for dealing with user agent strings is to use
BrowserScope, "a community-driven project for profiling web browsers". BrowserScope
will take a user agent string you pass it and tell you the browser, operating system, version,
and much more. Although it's not suitable for our current purposes, where we need the
application to work identically offline, BrowserScope is a very useful tool. You can find more
information at http://www.browserscope.org/.

In our example, we check for a match against iPhone since that seems to work for mobile
devices—but note that we lose the transitions when viewing our page in desktop Safari,
since it doesn't match iPhone.

At any rate, if we infer that hardware acceleration is not present, we remove the transitions
styles and hide the inactive screens.

[1031

Managing a Cross-Platform Codebase

The other change is when a click event occurs—it's fairly clear what's happening:

if (hasHardwareAcceleration) {

newScreenEle.style.webkitTransform = 'translate (0px, 0px)';

oldScreenEle.style.webkitTransform = 'translate (-320px, 0px)';
} else {

newScreenEle.style.display = 'block’;

oldScreenEle.style.display = 'none';

}

That is the basic mechanism when we branch platform code based on a runtime variable—
detect the (typically unchanging) value of that variable once, at runtime, and use the result
to branch the code whenever appropriate.

Feature detection

As we've stressed, sniffing the user agent is a sub-optimal option for branching code
execution. The preferred approach, for PhoneGap and web development in general, is
feature detection: testing for the existence of a particular object, or a property on an
existing object, and forking the code on that basis.

Here's a simple example of the first kind, checking if the global webSocket object is present
in the DOM—if it's not, we can fall back to using a standard XMLHTTPRequest:

if (!!window.WebSocket) ({
var socket = new WebSocket ('ws://sample.com:111/updates') ;
// do some fun socketing
} else {
var fakeSocket = new XmlHttpRequest () ;
// do some fun fake socketing

}

If web sockets are not available in the current environment, window.WebSocket will
evaluate to undefined and ! !window.WebSocket will be false.

This approach to feature detection is very useful for seeing if new HTML5 JavaScript APIs

are present in the current environment—we can test for the presence of local storage, web
workers, and even PhoneGap APIs using this technique. For CSS3 properties, we typically
need to test for the presence of an attribute on a DOM element object. Here, for example, is
a test for the CSS3 transform property:

var ele = document.createElement ('div') ;
if (typeof ele.style.webkitTransform ==
transform == "string")

"string" || typeof ele.style.

// transforms are available
} else {

// transforms are not available
!

(1041

Chapter 4

We create a new empty div element and check its style object for either a
webkitTransform property or a transform property. If either one is present
as a string, we know that CSS3 transforms are available.

The eagle-eyed among you will have noticed that the above code will not detect
vendor-prefixed CSS transforms in Opera, Firefox, or Internet Explorer user agents,
but it would be the same basic principle (check for oTransform, mozTransform, or
msTransform respectively).

If all of this sounds like a lot of work, there are thankfully a large number of open source
JavaScript libraries that take care of feature detection. The most popular of these is
Modernizr, developed by Faruk Ates and Paul Irish, which adds CSS classes to your document
based on supported browser functionality. This allows you to take advantage of the feature
detection goodness without having to write any JavaScript to take care of it. Modernizr is
available at http://www.modernizr.com.

There is also a pure feature-detection library available called has . js, developed by Pete
Higgins and a number of other JavaScript luminaries. Has . j s is essentially a better-written
and more robust version of what we've done in our example; reading the source code to
the library gives a great overview of how feature detection works. It can be found at
http://github.com/phiggins42/has.js.

Pop quiz - Feature detection versus UA sniffing
1. For each of these examples, would you be able to use feature detection or would
you have to fall back to user agent sniffing?

a. Checking if the device has a hardware back button.
b. Finding support for a WebSQL SQLite database.
c. Finding support for multitouch events.
d. Checking the total memory available to your application.

2. When performing feature detection, when should we execute the detection code?
a. Assoon as the page renders (in an inline script tag).
b. Onthe DOMContentLoaded event.
c. Atthe time we need to access that feature.

3. What kind of code branching should you do with user agent sniffing?
a. OS level changes: one thing for Android, another for iOS.

b. Device-level: one thing for the Samsung Galaxy Tab, another for the
HTC Dream.

c. Build-level changes: one thing for WebKit builds below 532, and another
for 532+,

[1051

Managing a Cross-Platform Codebase

For certain classes of platform/device inconsistencies, CSS Media Queries can be very useful.
Seasoned web developers will be familiar with the media property on CSS link tags, which
allow different stylesheets to target different media. Here is a simple example of one CSS

file being used for on-screen rendering, and another for printing:

<link rel="stylesheet" media="screen" href="screen.css" />
<link rel="stylesheet" media="print" href="print.css" />

With CSS3 capable browsers, we can do much more interesting things with media
gueries. One thing we noticed in our above example was that the screens on our Android
emulator did not take up the full space available to the application, unlike those on the
iPhone simulator.

If you remember, we set the height and width of our screen class absolutely in order to
ensure our CSS transforms behaved correctly on all iOS devices. Since the Android version
won't have transforms anyway, let's look at how we can use the dimensions of the device
to set the width and height.

First, let's change the width and height to percentage values in our stylesheet, rather than
pixel values:
.screen {
width: 100%;
height: 100%;

}

This is going to be our default value—if we resize our Safari window, we can see this
in action:

Red Green Refactor

< | > || + [@red green refactor & | (Qr Google

[1061]

Chapter 4

Now we can add a media query to the stylesheet to check if the screen matched the iPhone
dimensions—if so, we'll resize the screens, with a nice surrounding margin:

@media all and (max-device-width:320px) and (max-device-height:480px)

{

.screen {
margin: 10px;
width: 300px;
height: 440px;

}

Let's rebuild our iPhone application and check that the changes have been persisted:

—

Carrier <=

REFACTOR

11071

Managing a Cross-Platform Codebase

Great! And if we reload in Safari, or rebuild our Android project, we can see that those have
been unaffected by the new CSS.

You can test similar media queries—max-device-width, min-device-width, max-
device-height, or min-device-height—on Android devices or virtual devices. Screen
dimensions will vary, so be sure to set values appropriate for the device you're targeting.

A word of caution: like other new HTML5 and CSS3 features, media queries have limited
support; especially the more advanced ones (for example, querying the device pixel-density
or the device orientation). Using a library like Modernizr will help detect exactly what is
available—it can be found at http://modernizr. com.

Our application has only been styled for portrait orientation—in landscape mode, it looks
less clever:

How can your media queries accommodate the landscape view appropriately? How will this
affect the CSS transforms that are applied? Will any changes need to be made to fix things
on the Android project? Can we make all the changes through CSS, or will we need to write
some JavaScript as well?

[108]

Chapter 4

Let's close the chapter with one last approach: preprocessing the JavaScript, HTML, and CSS
that constitutes your application, so it is precisely built for each platform you target.

PhoneGap has the advantage over web development of running in an essentially safe
environment—you know beforehand which platforms you will be targeting, you can
develop and test on a (relatively) broad swathe of the devices you're interested in, and you
can make several assumptions about the browser environment that developers for the Web
at large cannot.

For example, instead of having a single application. js file with sections intended for
different devices that looks like this:

if (iPhone)

doIphoneThing() ;

} else if (android) {
doAndroidThing () ;

} else if (blackberry) ({
doBBThing () ;

}

There would be an application. iphone. js file containing just doIphoneThing (), and
equivalent application.android.js and application.blackberry. js files. Some
logic at build-time would select which file gets included for each platform.

With these welcome constraints, you do have the option of munging together your code
before building to a device. There are as many approaches for this as there are PhoneGap
developers, but here are some good rules of thumb:

4 Use an environment you're familiar with: Some developers are most comfortable
writing shell scripts, some like writing Java, some like writing Ruby, and so on and so
forth. HTML, JavaScript, and CSS are all just plain-text formats, and any environment
that can write to the file system is capable of being used for pre-processing.

€ Share what you can: One common approach is to have a JavaScript file for every
platform—application.js—and separate files for platform-specific code—app.
android.js, app.iphone.js, and app.blackberry.js. This is similar to
PhoneGap itself, where the same APIs are implemented in different fashions on
different platforms, and is an easy method to get up and running.

€ Don't go overboard: On one project, | tried to take this approach a bit too far,
by storing every JavaScript, CSS, and HTML file as a Mustache template that is
generated to platform specific code at build time. This helps when you need to share
the vast majority of your code, but becomes unwieldy quickly. Try to separate out
code that is separately targeted, as far as possible.

(1091

Managing a Cross-Platform Codebase

In this chapter, we took aim at the biggest concern for PhoneGap developers: differences in
functionality between the platforms that we target. Here are the lessons we learned:

€ In many cases, we can use feature detection to safely find the presence of features/
APIs we wish to use. This is the optimal approach in situations where it is available,
and libraries like Modernizr let us take advantage of the approach painlessly.

€ For many Ul purposes, CSS3 media queries allow us to flexibly and effectively tweak
layouts based on the runtime environment.

€ Using the device's platform/OS, either through PhoneGap's device object or
through the browser's navigator.userAgent property, is a brittle and unreliable
option that we have to fall back on, too much for comfort.

There are no perfect approaches for these purposes—we're always dealing with fragile tools
that have to be backed up by manual testing and attention. Developing for the fast-moving
mobile platforms requires you to be aware of the trade-offs and considerations that you're
making with your tools. That said, we can go an awfully long way by using these techniques,
with a bit of caution.

In the following chapters, we'll dive deeper into the APIs and interfaces available, either at
the browser-level or exposed by PhoneGap, to create outstanding applications. We'll need
the techniques from this chapter to ensure graceful degradation when our applications
execute in less privileged environments.

(1101

HTMLS APIs and Mohile JavaScript

As PhoneGap fundamentally relies on the capabilities of each supported
device's native web browsing implementation, it's important to be aware

of what these capabilities are. Browser vendors have pushed each other to
increasingly support HTML5 APIs—new JavaScript interfaces that expose
powerful functionality to developers. Taking these APIs, along with some best
practices around using JavaScript on mobile devices, allows us to get the most
out of our applications.

In this chapter, we will see how to take full advantage of JavaScript on mobile devices, and
the new HTMLS5 APIs, by:

@ Utilizing the mobile-optimized XUI library to write smaller, more efficient
JavaScript code

Exploring the HTML5 media elements and their JavaScript APIs
Dynamically creating graphics with the HTML5 canvas element

L 2R 2R 2

Seeing whatever HTML5 capabilities are in the pipeline for mobile devices

A fair question arises at this point: what is mobile JavaScript, as distinct from JavaScript
qua JavaScript?

It's a tricky question to answer. In terms of syntax and semantics, except outliers like
BlackBerry devices below OS 5.0, you can expect all of the language features of the
ECMAScript language third edition (the most widespread version of JavaScript at the time

of writing, on any platform). As with desktop browsers, support for ECMAScript 5 (the latest
standardized version of the language) is inconsistent—we're going to stick to ECMAScript 3 in
this book, for this reason.

HTML5 APIs and Mobile JavaScript

Where mobile JavaScript does distinguish itself in the constraints placed on the language
runtime, due to the characteristics of the hardware itself. Even in 2011, all mobile devices are
considerably underpowered and limited compared to their desktop counterparts. This affects
the memory that is available to your application and the speed your code will execute.

Most of the time this constrains what you can do in your application, though your mobile
browser does most of what your desktop browser can do, it does it slower and less effectively.
Because of this, there's a simple rule to follow with mobile JavaScript: write less code!

XUl is a little JavaScript library originally written by Rob Ellis, one of the founding fathers
of PhoneGap, and maintained by Brian Leroux, one of the core members of the PhoneGap
team. XUl mirrors the API of the popular jQuery JavaScript library—CSS selectors playing a
central role, chained function calls, terse syntax—while jettisoning much of the feature set
and browser support of jQuery itself.

In a public-facing website, you want your code to run effectively no matter which browser
the user has at hand. Therefore, libraries such as jQuery (to their great credit) are filled
with the code designed to degrade gracefully on all major browsers, while providing a
consistent API.

In a PhoneGap application, you know at build-time which platforms your application will run
on, and what the capabilities of the web view rendering your application are. This allows XU
to take advantage of newer browser features, which reduce the overall quantity of code.

One classic example is jQuery's selector engine, Sizzle. Sizzle is a widely compatible

library that takes advanced CSS selectors and returns collection of DOM elements. Over

the past few years, web browsers have introduced a native function called document .
querySelectorAll that does essentially the same thing. XUl assumes this function will be
available (or it can be built with Sizzle included); jQuery doesn't make this assumption, and
so all clients receive Sizzle as part of the jQuery library.

Time for action — Downloading, building, and using XUl

We're going to go back to the food listing application we last touched on back in Chapter 3,
and see how we can use XUI to simplify the code and quickly add some extra functionality.
Firstly, we need to get our own copy of XUI:

1. Getyour own copy of XUl—the download is available at http://xuijs.com/
downloads.

2. Copy the new JavaScript file into your food project directory, and add a script tag to
include XUlI, just before the first, large script tag:

<script src="xuil.js"s></scripts>

[n2]

Chapter 5

Let's take some of the existing JavaScript code and use XUl's API rather than the
native DOM commands to do the same thing. One thing that XUl does, like a lot of
JavaScript libraries, is allow terse selection of DOM nodes, and event bindings. We
can change the following line:

document .getElementById ("foodForm") .addEventListener ("submit",
function (evt) {

To the following:

x$ ("#foodForm") .on ("submit", function (evt) {

This will get the same effect, with almost half of the characters removed. Instead
of calling document . getElementById, as we have done throughout the code in
the sample application, using the x3$ function allows us to utilize more complex CSS
selectors, and have more feature-rich objects returned.

Let's try to use one of these complex CSS selectors. When we add a new food, we're
going to display its name as bold, and in white. Then, after a second, we'll restore it
to the normal color.

Find the addNewFoodItem function, which looks like this:

function addNewFoodItem (foodName) {
var newFoodItem = document.createElement ('li');
newFoodItem. innerHTML = foodName;
foodList.appendChild (newFoodItem) ;) ;

aFoodDetail.foodName = foodName;
renderOurTemplate (aFoodDetail, function (markup) {
document .getElementById («foodDescription») .innerHTML =
markup; ;
1)
}

We're going to focus on the first three lines of the function for now. Firstly, we
can make the process of adding the new food item to the DOM a lot terser using
XUl—we know how the 11 element should look, so we can insert that directly,
changing those three lines to:

xS ('#foodList') .bottom('' + foodName + '</1li>');

Note the use of the bottom function: XUl has a number of helpful functions for
adding new markup relative to the selected element (you can find all of them
documented here: http://xuijs.com/docs/dom). Another useful one is
inner—we can use that in the renderOurTemplate callback:

renderOurTemplate (aFoodDetail, function (markup) {
x$ («#ffoodDescription») . inner (markup) ;

3N
131

HTML5 APIs and Mobile JavaScript

8.

The next step is to select the last element of the list, so that we can style it. We're

going to use the CSS last-child pseudo-selector to get the last item in the list of
foods. Open Web Inspector in Safari to test this out; enter the following:

x$('li:last-child') [0] .innerHTML

The selector finds all of the DOM nodes that match our query, and we then use the

array index syntax to grab the first DOM node specifically (in this case, we want to
check the innerHTML attribute to make sure the correct item has been selected).

™ Web Inspector — file:///Users /andrewlunny/dev/BOOK/chapter-5/in...

Sites Without Servers

vadiv id="main"=
<hl=List Some Food</hl=

»<forn id= display: block;

“foodForm's..</form=
bedivid=) » Metrics
foodDescription"></div> » Properties

p<ul id="foodList"s.
</div>
<script src=
"mustache.js"s</script>
»=script=.</scripts>
</body=
</html>

» Event Listeners

html

Q : body divimain divitfoodDescription

> x$('lizlast-child') [@].innerHTML
“pineapple fried rice"
>

L All] Errors Warnings Logs

Q

. =1 7 = = -
S e B ACE G
’ ij | \&J = | L r Q + | | file:// /Users /andrewlunny/dev/BC ¢ | (Qr Coogle »
Elements ' Resources Scripts Timeline Profiles Storage Console Search Ele
v<html> ¥ Styles o
» <head=..</head> Cormnuted
¥ <body=

List Some Food

Tell Us!
pineapple fried rice

pineapple fried rice is my favorite food. i
particularly enjoy it in the evening.

hot dogs

cheese

bacon

celery

cereal

steak tartare
asparagus

cabbage

pineapple fried rice

In this case the last element is pineapple fried rice—it'll differ depending on what
you've entered into your list.

10. The next step is to style that element after it's displayed. XUl gives us a syntax that,
again, is terse and easy to read. Here is our modified addNewFoodItem function

that highlights the last item in the list:

function addNewFoodItem (foodName)
x$ ('#foodList') .bottom('"
x$('1i:last-child') .css ({
'font-weight': 'bold',
'color': 'white'

)

(14l

{

+ foodName + '</1li>');

Chapter 5

aFoodDetail.foodName = foodName;
renderOurTemplate (aFoodDetail, function (markup) {
x$ («#foodDescription») . inner (markup) ;
1)
}

Let's give that a shot in Safari and see how it looks:

[
[N e M) Sites Without Servers
[+ | # file:// fUsers/andrewlunny/dev/E G] (Q' Google :l))

I s

List Some Food

r 3
Tell Us!

pineapple fried rice

pineapple fried rice is my favorite food. i
particularly enjoy it in the evening.

11. Okay, addNewFoodItem s running in a loop, and each time an item is added, it is
the last child. Also, every time we highlight the last child, we're not touching the
former last child. This is clearly not what we want.

(1151

HTML5 APIs and Mobile JavaScript

12.

13.

14.

We need to clear the styles that were previously set. The simplest way to this in XUl
is to call the css function again, this time with empty values for the fields that were
affected. We're going to create a JavaScript object called defaultStyle that holds
these empty values:
var defaultStyle = {

'font-weight': '',

'color': '!

Then, we'll apply defaultStyle to all of the 11 elements after the page has initially
been populated—add this code to the top of the addNewFoodItem function:

var storelLength = window.localStorage.length;

for (var i; i < storeLength; i++) {
storedFoodName = window.localStorage.key (i) ;
if (storedFoodName.match(/*food[.]/))
addNewFoodItem (window.localStorage.getItem(storedFoodName))

}
}

x$('1li') .css(defaultStyle) ;

Let's reload in Safari, and add a couple of foods to be sure it still works:

[GNG RG] Sites Without Servers
[+ | = file://{Users /andrewlunnydev,E G] (Q' Google _‘)}}

List Some Food

| | (el us!

short rib

short rib is my favorite food. i particularly enjoy it
in the evening.

hot dogs

cheese

bacon

celery

cereal

steak tartare
asparagus

cabbage

pineapple fried rice

(1161

Chapter 5

15. We're making progress, but adding multiple foods results in multiple foods being
highlighted, which is not what we want. That's an easy fix though—simply set the

older children to the default style every time we highlight a new one:

x$('1i:last-child') .css ({

'font-weight': 'bold',
'color': 'white'
1)
x$('li:nth-last-of-type(n+2) ') .css(defaultStyle) ;

16. Once more, we're using a fancy CSS3 selector; this time the nth-last-of -type

property allows us to select all but the last 1i element.

Now each newly entered food is highlighted:

Sites Without Servers

+ ||# file:// /Users/andrewlunny/dev, & | [Qr Google

»

-

List Some Food

' b
Tell Us!

fish

fish is my favorite food. i particularly enjoy it in

the morning.

granola

hot dogs
cheese
short rib
bacon
celery
cereal

steak tartare
asparagus
cabbage
pineapple fried rice
arugula

carrots

1111

HTML5 APIs and Mobile JavaScript

17. Things are going well, but our list is starting to get unwieldy at this point—we would
like to remove some of the items. Firstly, we're going to have to add a delete button
for every item on our list—we're going to use a CSS trick to do this. Firstly, in the
style element at the top of the page, let's define our deleter class:

.deleter:after {
color: red;
font-family: sans-serif;
font-size: 10px;
content: 'X';

18. Eagle-eyed readers will have noted that this isn't a deleter class at all, but a
deleter:after pseudo-class. Using this class gives us access to the content
property, so that text content (with no textual value) can be added just through
CSS. Now we just need to add that dummy element to each list item that we add,
changing the first line of addFoodItem to the following:
x$ ('#foodList') .bottom('' + foodName +

' </1li>"');

19. This displays little red marks next to each item. They don't do anything yet, but
we're working on that:

0006 Sites Without Servers
[+ | = file:///Users/andrewlunny/de G] (Q' Google]»

List Some Food

Tell Us!
pineapple fried rice

pineapple fried rice is my favorite food. i
particularly enjoy it in the evening.

granola x

hot dogs x
cheese x
short rib x
bacon x
celery x
cereal x

fish x

arugula x
steak tartare x
asparagus x
cabbage x
Carrots x
pineapple fried rice x

(1181

Chapter 5

20. Removing the elements from the DOM is a doddle with XUI. You'll remember there's
some event delegation code at the bottom of our index.html page, for remotely
calling to the Twitter API. Since these delete buttons are dynamically added too,
we'll need to use event delegation to ensure that they are always working.

21. The previous event delegation code was essentially one big i f statement—if the
target element is a list item, make a request to the Twitter server. We just need to
add an else clause to that statement; if the target element is a deleter, remove
its parent (the list item) from the DOM:

if (evt.target.tagName == "LI") {
// all of the LI-specific code
} else if (x$(evt.target) .hasClass('deleter')) ({

x$ (evt.target.parentNode) .remove () ;

}
I've highlighted the important line: grab the parent element and call remove.

22. Just one more thing—we'll need to remove the item from localStorage as well,
otherwise it will show up again when we reload the page. This requires a few quick
changes. Firstly, everywhere addNewFoodItem is called, we need to pass the
key that the item is stored under in 1localStorage, for easy access. This is easy
enough, since we have a uniform setup for the keys themselves.

There are two places this function is called: in the initial loop to populate the page,
and in the submit handler for the form to add a new food. We can change the loop
to pass the food key along with the item itself:
if (storedFoodName.match (/"food[.]/))
addNewFoodItem (window.localStorage.getItem (storedFoodName) ,
storedFoodName) ;
In the submit handler, we already have new key stored in
a variable, so it's even easier - just modify the call to
addFoodItem:
var newFood = foodField.value;
var foodKey = «food.» + (window.localStorage.length + 1);

addNewFoodItem (newFood, foodKey) ;

23. Now let's edit addNewFoodItem to take advantage of this new variable; all we need
to change are the function's definition and its first couple of lines:

function addNewFoodItem (foodName, foodKey) {
x$ ('#foodList!') .bottom('<li id=»' + foodKey+ '»>'
+ foodName + ' '");

Since we're not doing anything else with the id field, we can hijack it to save the
storage key.

(19l

HTML5 APIs and Mobile JavaScript

24. Now just delete the item from localStorage, using this key. It's a quick change to
the deleter event handler that we just defined:
} else if (x$(evt.target) .hasClass('deleter')) ({
var listIem = x$ (evt.target.parentNode) ;
var storageKey = listIem[0].id;

listIem.remove () ;
window.localStorage.removeltem (storageKey) ;

}

25. Let's give it a shot; delete some foods, reload the page, and we should have success!

506 Sites Without Servers
[+ | # file:///Users fandrewlunny /dev/E C] (Q' Google

-

List Some Food

(Tell us!)

carrots

carrots is my favorite food. i particularly enjoy it in
the mormning.

granola x
hot dogs x

cheese x
short rib x
cereal x
arugula x
asparagus x
cabbage x
Carrots x

1201

Chapter 5

What just happened?

We had a whirlwind tour of XU, investigating its DOM manipulation, event handling, and CSS
editing functionality.

XUl has a restricted feature set, but the features that are available are the ubiquitous ones
needed for every web-based application: those listed above, and also robust Ajax support. In
the wider world of web development, libraries such as XUl have been omnipresent for some
time now, whether Dojo, Prototype, jQuery, or any other have been in fashion. The benefits
are clear: a terse syntax allows for less application-specific code, making the application
easier to manage and extend.

Why not jQuery?

If we take it that a JavaScript library is important for your application development, why
would you not want to use the most popular one on the web? Most web developers already
have experience using jQuery in their day to day lives—why would they not use it for
PhoneGap development?

Well the first answer is yes, you could use jQuery—it runs well enough on mobile
devices—and has the advantage that there are mobile user interface libraries that
depend on it—jQTouch and jQuery Mobile, to name the two most popular.

What's important to note, though, is that jQuery, like most other JavaScript libraries, is
designed for use on the public Web, which leads to certain design decisions. XUl is essentially
jQuery designed for PhoneGap, which leads to different design decisions. In particular:

€ Uncompressed file size, on the public Internet, is less important than the size of a
compressed (gzipped) resource. Modern HTTP servers compress files before they
are transmitted, which are decompressed by the client's browser. Libraries like
jQuery are compressed in this way, by a factor of about three. With PhoneGap
applications, the important scripts are already on the local device, so this kind
of compression is irrelevant.

€ Mobile devices have limited resources, in terms of available memory and raw
performance. Because of this, uncompressed file size is very important; in a typical
desktop environment, the uncompressed file size is as good as irrelevant (within
reason), once it's passed over the network. XUl optimizes for file size: it's about
a tenth of the size of jQuery, at the time of writing.

€ Sites facing the public Internet do not know which clients they will encounter;
any good general purpose library developer will do their utmost to ensure that
things either work as expected, or fail gracefully, whichever browser requests their
scripts. With PhoneGap, we know ahead of time what kind of environment our
scripts will run in; this allows us to make a number of assumptions about the
target environment.

[1211

HTML5 APIs and Mobile JavaScript

Once these design considerations are taken into account, it's easy to see the differences
between the two libraries: jQuery favors compatibility and comprehensiveness (there are a
lot more functions available in jQuery), while XUl emphasizes file size and browser targeting.

A final note: XUl is a small, not especially stable, project, with a
handful of active developers (including the present author). jQuery
* isthe most popular JavaScript library in the world. Again, this goes
% both ways—if you have a problem with XU, it's easy to look into
the code, make a quick change, and patch things up, whereas
with jQuery, you can hop on the IRC channel and speak to a vast
community of talented developers who will be happy to help.

And of course, all of the above applies to the other excellent DOM frameworks available to
the modern web developer—it's not just about jQuery!

1. Instead of removing food items from our page, let's say we want to hide them, with
the option of bringing them back later. What would be the best way of doing this
(assume that we have selected the correct element, and hidden is a CSS class with
display:none as a property)?

a. x$(evt.target.parentNode) .hide ()
b. x$(evt.target.parentNode) .addClass ('hidden')

Cc. x$(evt.target.parentNode) .css({'display': 'none'})

2. Is XUl compatible with jQuery plugins?

a. Yes: XUl has identical syntax to jQuery. We just need to redefine the $
variable to equal x$.

b. No: XUl has a restricted feature set, and does not have identical behavior to
jQuery.
3. What's the primary advantage XUl has over other JavaScript (DOM) libraries?
a. Smaller file size
b. Faster performance

c. jQuery-compatible syntax

11221

Chapter 5

HTMLS

We've already encountered HTML5 APIs in previous chapters and above, in the use of
localStorage, so it may be worthwhile to recap exactly what HTMLS is. As its name
suggests, HTML5 is the latest specification for HTML, and the first such specification with
an emphasis on web applications, as opposed to marking up documents. The HTML5
specification process is ongoing—Ilots of new APIs are being proposed, revised, and
dropped all of the time.

HTMLS5 has received a lot of hype, particularly from Apple, as an alternative approach

to Adobe's Flash technology. Flash has been the de facto standard for rich client-side
applications on the desktop web for over a decade but, for reasons both technical and
political, Flash has attained less traction on the mobile web. Thankfully, some of the new
APIs included in HTML5—particularly support for audio and video elements, and dynamic
bitmap and vector graphics—offer developers an alternative to Flash that is well-supported
and standardized, and quickly gaining tooling and mindshare.

Unlike Flash, HTMLS is a set of generally discrete ideas and implementations—the

HTMLS5 specification is not even finalized yet. Some HTML5 technologies, such as access

to geolocation, are well-defined and well-supported across all of the first class mobile
platforms. Some are in a state of flux—the Web Sockets proposal, at the time of writing, is
currently being revised to fix security concerns with the underlying protocol. Using a tool
such as the previously mentioned Modernizr should give a good idea of which features are
accessible on each device you target—feature detection and manual testing are your
friends here.

HTMLS is especially important in PhoneGap development since the richness of its available
interfaces allows applications built on the mobile web to match, and even exceed, the quality
of native applications. Let's see how we can start to incorporate some of those.

The most prominent "killer apps" of HTML5 have been the media elements: the audio tag
and the video tag. While older browsers required a third-party plugin (most commonly
Flash) to play inline audio and video in web applications, HTML5 compliant browsers can
embed audio and video files directly, in the same way the img tag works.

This tutorial won't cover encoding video or audio for mobile devices, or the morass of codecs
and formats to be aware of. One excellent resource on this topic is Mark Pilgrim's Dive Into
HTMLS5 site—his chapter on web video, http://diveintohtml5.org/video.html,
covers this ground in superb detail. We'll be using an H.264 encoded MP4 file—H.264 is the
best supported video codec on current mobile browsers.

11231

HTML5 APIs and Mobile JavaScript

Time for action — My dinner with PhoneGap

To get a sense of how we can use the video tag and its associated JavaScript API, we're
going to extend our food application slightly—if the user enters a fruit in the form, the
normal behavior will be skipped, and we'll play the video:

1. For this example, we'll need to know whether the entry is a fruit or not. Let's write a
simple function to check the entry against our list of fruit:
function isFruit (foodName) {
var fruits = ['apple', 'orange', 'peach', 'raspberry'];

var i = 0;

for (i; i<fruits.length; i++)
if (fruits[i]==foodName) return true;

return false;

2. Now let's tweak the form's submit handler so that it doesn't write the fruit to the list
or save it to local storage. For now, we'll alert the name of the fruit with a message:

x$ ("#foodForm") .on ("submit", function (evt) {
evt.preventDefault () ;
var newFood = foodField.value;
var foodKey = «food.» + (window.localStorage.length + 1);

if (isFruit (newFood)) ({
alert (newFood + ' is a fruit! Easter egg!');
} else {

addNewFoodItem (newFood, foodKey) ;
window.localStorage.setItem(foodKey, newFood) ;

foodField.value = «»;
return false;

3N

[124]

Chapter 5

Test it in Safari to make sure things work as expected:

P e e

Sites Without Servers

[+ | = file:/{ /Users/andrewlunny/dev/B G] (Oc Google)})

JavaScript

apple is a fruit! Easter egg!

granola x
hot dogs x

cheese x
short rib x
cereal x
arugula x
asparagus x
cabbage x
Carrofs x

The next step is to include the video on the page. Ensure that you have the
phonegap-video.mp4 file in the same directory as the rest of the application—this
is available with the code samples included with this book. Firstly, we'll write out the
tag for the video element, to save as a JavaScript variable:
var videoTag = '<video id="sampleVideo" width="240" height="135""'
+

'autobuffer src=»phonegap-video.mp4» controlss></video>';

11251

HTML5 APIs and Mobile JavaScript

4. Most of that should look quite standard—it's very close to what the familiar img tag
looks like. The most important part is the controls attribute—this ensures that the
browser will render standard controls for the user to alter playback. If desired, you
could forego this attribute and handle all of the controls manually with JavaScript.

5. Now for the actual display logic. We're going to insert the video into the DOM, play
it right away, and set up a couple of event handlers. Using XUI, this is just a small
amount of code. Firstly, we'll add a div to the top of our page, to contain the video:
<div id="main">

<div id=»noVideo»></div>
<hls>List Some Food</hl>

Now here's the JavaScript function to show the video and start it playing:

function showAndPlayVideo() {
if (!x$('#sampleVideo') .length)
x$ ('#novVideo') . inner (videoTag) ;
x$ ('#sampleVideo') [0] .play () ;
x$ ('#sampleVideo') .on('click', function () {
this.pause () ;
}) .on('pause', function () {
x$ (this) .remove () ;

3N
}

6. If XUl can't find the sampleVideo element on the page, it inserts it into the
noVideo div. Using XUl's array index syntax, we can access the DOM object itself
and call play right away. We listen for the standard c1ick event and call pause
when it occurs (note that with XUI, this is bound to the DOM object for event
handling). On the pause event, we remove the samplevideo element from the
DOM. Phew!

7. Let's tie all this together and expose our easter egg to our user. Go back to the form
handler and replace the alert call with one to showAndpPlayVvideo:

if (isFruit (newFood)) {
showAndPlayVideo () ;
} else {

11261

Chapter 5

Go back to Safari and check things out:

(o N) Sites Without Servers

[+ | # file:/{/Users/andrewlunny/dev/BC & l I._Oc Google »

What is PhoneGap?

&) P o001 e 0246 o) Ry

List Some Food

r '
Tell Us!

carrots

carrots is my favorite food. i particularly enjoy it
in the morning.

granola x
hot dogs x
cheese x
short rib x
cereal x A

®|® 8 & 8 @

arugula x v

What just happened?

This was our first glimpse of the new media elements in HTML5—the interface for the audio
element is basically the same as that for video. We can notice a couple of things right off
the bat.

The video is just another DOM element on the page, so we can, theoretically at least,
manipulate it much like any other DOM element—adjust the height and width, show and
hide with CSS, bind handlers for the standard events, add and remove from the DOM.

1211

HTML5 APIs and Mobile JavaScript

Once we can grab the DOM object for the video through the JavaScript interface, some basic
programmatic controls—play and pause—are very easy to use. One other useful property
to be aware of is current Time—the, yes, current time of the video, in terms of seconds
elapsed. This is a writable property, so we could for instance, change our click handler to
restart the video instead of removing it:

x$ ('#sampleVideo') .on('click', function () {
this.pause() ;
this.currentTime = 0;
this.play () ;

|3)

The play, pause, and currentTime controls make it very easy to implement your own
controls for a video, rather than using the default ones provided by the browser.

We've seen that a pause event is fired by the video when playback has stopped, and,

as you may expect, there is also a play event. In the event of playing a video from a
network source, as opposed to the local file system, you would probably want to use the
canplay and canplaythrough events also. Both indicate how much of the video's data is
available—when canplay fires, there is enough to begin playback; when canplaythrough
fires, there is enough to play the entire video.

We could tweak our above code to only call play when canplay is fired, rather than after
the element is inserted in the DOM. In my experience, when dealing with a video from the
local file system, it is safer to call play, since canplay may fire right away. Another option is
to set the Boolean autoplay attribute on the video, like so:

<video src="myvideo.mp4" autoplay></video>

Your mileage may vary, particularly on different target platforms, so be aware that there are a
few different ways to do things. Android in particular has had some problems with the video
tag; for most success, be sure to explicitly call p1ay through the JavaScript interface. A good
reference on the subject of video on Android can be found here: http://www.broken-
links.com/2010/07/08/making-html5-video-work-on-android-phones/.

Of the attributes in our sample tag, autobuf fer ensures that the video starts downloading
as soon as the browser encounters the tag, while controls, as mentioned above, displays
the custom controls when the user activates them.

There are some other attributes that are not well supported on mobile devices, at the time
of writing: 1oop, another Boolean attribute, loops the current video, while poster can be
set to an image that is displayed until the first frame is loaded.

11281

Chapter 5

One final useful attribute is webkit-playsinline, which is just of use on iOS handheld
(that is, non-iPad) devices. Assuming that the webview supports this property (which
PhoneGap does), this attribute allows the video to be played in place, rather than switching
to a fullscreen view. This can be very useful for the design of your application.

A final note on iOS video playback: there is a bug (which, again, may be fixed by the time you
read this), which is that touch events that not fired on video elements. If your application
prevents the user scrolling the viewport by cancelling all touchmove events, as is common
with many PhoneGap applications, you will need to manually call window.scrollTo to
reset the scrolling if things get misaligned. There's nothing worse than a user just seeing the
right-hand side of your entire application.

The audio element

The media elements were designed in tandem to have similar APls, so what you've read
about the video tag should apply, for the most part, to the audio tag also.

The audio element has gotten less attention than its audiovisual cousin, and for that reason
has arguably bigger support on the major mobile platforms than the video tag. In particular,
many developers have found the buffering for audio elements to be subpar, which hinders
the use of the audio element for sound effects, or immediate aural cues. The best advice

is for careful and conscientious testing of audio in your application when you're using it, in
order to avoid some of the pitfalls of unreliable support.

An interesting side note is the audio data API, which is beginning to be implemented on
desktop browsers, although it's still quite far off for mobile developers. Using this API,
JavaScript developers can have access to raw audio feeds, allowing for programmatically
generated or manipulated audio right in the browser. This should allow for some fascinating
new games and multimedia applications in the future; it's definitely something to look
forward to.

1. Which of the following is NOT possible using the HTMLS video API, with a
30 second long video clip?

a. Looping over two seconds in the middle
b. Playing the entire video backwards

c. Starting playback 20 seconds in

11291

HTML5 APIs and Mobile JavaScript

2. What is the difference between the canplay and canplaythrough events?

a. canplay fires continuously once the video starts buffering, while
canplaythrough only fires once

b. canplay fires when the video is loaded, while canplaythrough fires
when the video is loaded and the user has pressed play

c. canplay fires when some of the file is downloaded, while
canplaythrough when the entire file is available

3. Ifavideois set to autobuffer, when does it start to download?
a. When the user presses play
b. Once the browser parses the appropriate video tag

c. When the page loads

The canvas element

We've mentioned that one of the selling points of HTMLS5, in comparison with the hated
Flash, is its support for dynamically creating graphics. There are two parts of the HTML5
specification that control dynamic graphics: the canvas element, for bitmap graphics,
and inline Scalable Vector Graphics, SVG, for, well, vector graphics.

The two APIs are quite far apart in a number of ways: most notably, SVG graphics are made
up of DOM elements, and can be manipulated easily using CSS and DOM events, a bit like the
media elements in the previous section. The canvas, by contrast, is solely controlled by your
own JavaScript; though basic touch and click events are conveyed by the canvas element,
you have to figure out which of your objects on the canvas are being touched to fire any
specific events.

Which should you use? For mobile applications, using PhoneGap or not, there isn't much of
a choice. As of the 2.3 OS release, no Android device supports SVG in the native web view (a
third-party browser, Firefox Mobile, does have support, but is not used by PhoneGap). Until
Google implements SVG on Android, mobile web development has to go with canvas.

A final note: in previous chapters we alluded to the fact that CSS3 three-dimensional
transforms are hardware accelerated on iOS devices. This is important because canvas
animations are not hardware accelerated, either on iOS or anywhere else. Our example
will deal with static graphics, so this will not be an issue, but for more intensive canvas
applications you should keep this consideration in mind, and do as much testing on actual
devices as possible.

[130]

Chapter 5

Time for action: Dinner dashhoard

We're going to set up a small dashboard next to the list of foods that will display circles to
indicate how many foods are in the list—a red circle for five foods, a yellow circle for one:

1.

The first thing we're going to do is add an empty canvas to our page. The canvas
itself is just an HTML element, so we can style it through CSS but, to ensure things
work as expected, we need to specify the width and height as attributes of the
element. Here's where our tag fits in:

<div id="noVideo"></div>

<canvas id=»myCanvas» width=»50» height=»400»></canvas>

<hlsList Some Food</hl>

And here's how we'll style it with CSS:

#myCanvas {
position: absolute;
z-index: 0;
left: 280px;
opacity: 0.8;
background: #ccf;

}

Take a quick look in Safari:

(SN aNe) Sites Without Servers

[+ | # file:// /Users/andrewlunny/dev/E G] I._Q' Google 1

List Some Food

(Tell us!)

carrots

carrots is my favorite food. i particul: 1y itin
the morming.

granola x
hot dogs x
cheese x
short rib x
cereal x
arugula x
asparagus x
cabbage x
Carrots x

11311

HTML5 APIs and Mobile JavaScript

2. The first thing we'll do is draw a yellow circle on the canvas, by writing a JavaScript
function to do so:
function drawCircle()
var canvas = x$ ('#myCanvas') [0];
var ctx = canvas.getContext ('2d');

var x = 25, y = 35, rd = 10;

ctx.beginPath() ;
ctx.arc(x, y, rd, 0, Math.PI * 2, false);
ctx.closePath() ;

ctx.fillStyle = «yellow»;
ctx.fi11 () ;

3. There's alot going on in there, which we will cover shortly. For now, add a call to
drawCircle to the DOMContentLoaded event handler

document .addEventListener ("DOMContentLoaded", function () {
drawCircle () ;

And check again in Safari:

06 Sites Without Servers

[+ ‘ # file:///Users/andrewlunny/dev/E G] IfQ.' Google)»

List Some Food

Tell Us!
carrots

carrots is my favorite food. i particul: 1y itin
the morning.

granola x
hot dogs x

cheese x
short rib x
cereal x
arugula x
asparagus x
cabbage x
CAITOLS X

11321

Chapter 5

4.

That's a good start. Now we need to draw a dashboard on our canvas, so let's start
writing out drawDashboard. It should take the quantity of foods we have, draw

a red circle for each five foods, and then a yellow circle for each of the remainder.
Here is what our function should look like:

function drawDashboard(length) {
// double-tilde forces integer division in JavaScript

var reds = ~~(length / 5);
var yellows = length % 5;
var count = 0, 1i;

for (i=0; i < reds; i++) {
drawCircle('red', count++) ;

for (i=0; i < yellows; i++) {
drawCircle('yellow',6 count++) ;

The next step is to modify our drawCircle to do the right things, given these
parameters. It should take the color, and also the offset for each circle:
function drawCircle (color, offset) ({

var canvas = x$ ('#myCanvas') [0];

var ctx = canvas.getContext ('2d');

var x = 25, y = 35 + (30 * offset), rd = 10;
ctx.beginPath() ;
ctx.arc(x, y, rd, 0, Math.PI * 2, false);

ctx.closePath() ;

ctx.fillStyle = color;
ctx.fil11 () ;

[1331

HTML5 APIs and Mobile JavaScript

6. And let's change our DOMContentLoaded call to use drawDashboard:

document .addEventListener ("DOMContentLoaded", function () {
drawDashboard (13) ;

Back to Safari to check all is well:

Sites Without Servers

+ | 7| file:///Users/andrewlunny/dev/BC & | [Qr Coogle

-

List Some Food :

(Tell ust)

carrots

carrots is my favorite food. i particul: Wy itin
the morning,.

granola x
hot dogs x

cheese x
short rib x
cereal x
arugula x
asparagus x
cabbage x
carrots x

7. Now to make that correspond to the actual display, remove the
drawDashboard (13) call and add the following after the list is populated:

x$('1li') .css(defaultStyle) ;
drawDashboard (x$('1i') .length) ;

8. That sets the initial state of the dashboard just fine, but we need it to be responsive,

based on when the number of items in the list changes. Each time that happens,
we're going to redraw the dashboard.

(1341

Chapter 5

9.

10.

11.

The number of items in the list either when one is added or one is removed: either
way, we're going to be calling drawDashboard again. A food is added through the
submit handler on the form, so we can call the function there:
if (isFruit (newFood)) ({
showAndPlayVideo () ;
} else {
addNewFoodItem (newFood, foodKey) ;
drawDashboard (x$('1i') .length) ;
window.localStorage.setItem(foodKey, newFood) ;
}

A food is removed when a deleter span is clicked on, so we can add
a call there also:

} else if (x$(evt.target) .hasClass('deleter')) {
var listIem = x$ (evt.target.parentNode) ;
var storageKey = listIem[0].id;

listIem.remove () ;
window.localStorage.removeltem (storageKey) ;
drawDashboard (x$('1i') .length) ;

This is almost there but if we look in Safari, it's not quite working—the dashboard is
just overwriting itself, not clearing correctly each time a new value is being written.

Clearing a canvas element is quite easy—you just need to write to the width
property, or the height property. Let's add that to drawDashboard:
function drawDashboard(length) {

// double-tilde forces integer division in JavaScript

var reds = ~~(length / 5);

var yellows = length % 5;

var count = 0, i;

var canvas = x$('#myCanvas') [0];
canvas.width = canvas.width;

for (i=0; i < reds; i++)
drawCircle('red', count++) ;

for (i=0; i < yellows; i++) {
drawCircle('yellow', count++);

[1351]

HTML5 APIs and Mobile JavaScript

Now if we look at Safari, we have a responsive and immediate dashboard at hand:

00 Sites Without Servers

[+ | # | file:///Users fandrewlunny/dev/E G] (Q' Google _‘).)-)-

List Some Food @

(Tell Us!)
prosciutto

prosciutto is my favorite food. i parti njoy it
in the evening.

hot dogs x
cheese x
short rib x
arugula x
CAITots x
spinach x
cabbage x

What just happened?

We took a look at the baseline functionality of the canvas element: grabbing a context and
drawing a shape directly to it. A circle (a special kind of arc) is very nice, but we could also
have drawn line paths or rectangles easily, using the canvas API. For this kind of drawing, it's
very easy to get started with the canvas, and you can play around in Web Inspector until you
find something that you like.

The canvas API

As, essentially, the major HTML5 competitor to the Flash juggernaut, the canvas has far too
broad an API to cover in full in this chapter. Indeed, there are entire books written about
the things, and an increasing number of libraries, tools, and even IDEs emerging to create
animations using the canvas. But a few points are worth touching on.

[1361

Chapter 5

Look back at the first lines of our drawCircle function:

function drawCircle (color, offset) {
var canvas = XS ('#myCanvas') [0];
var ctx = canvas.getContext ('2d');

The third line there, with the call to getContext ('2d'), is an essential part of any of
your canvas code. The canvas object exposes a context property upon which the code can
directly draw. There are functions available for 2D shapes: bookend with beginPath and
closePath, use moveTo and 1ineTo for linear paths and arc for curves.

You can also draw images and text directly to the canvas: drawImage for images and
fillText for text. drawImage is passed an image object directly, not a path; unless the
image is already on the DOM, you'll need to use the unfamiliar new Image () idiom to get
it onto the canvas:

var img= new Image() ;

img.src = "img.png";

img.onload = function()
ctx.drawImage (img, 0, 0);

bi

This new Image () technique is not used often for adding images to the DOM, but is very
useful with the canvas, which has a pure JavaScript API.

Why draw images to the canvas? Well for one thing, you could draw over them, skew them,
and rotate them (although much of that is possible with CSS3). What's nice about the canvas
is that it provides a function called get ImageData, which allows you to pull the pixel data
out of the canvas element, in order to transform it, or to save as a PNG file. We haven't

yet seen the full extent of what people can do with this technique, but there are already
some very interesting libraries coming out, such as Dave Shea's PaintbrushlS, available at
https://github.com/mezzoblue/Paintbrushds, which applies Photoshop-style
filters to images in real-time, on the client side.

The code in the prior example was designed for clarity of behavior, not for performance,
so there are one or two caveats to take note of.

First, if at all possible, only clear the section of the canvas that you have to redraw. A
clearRect function is available on the 2D context that does just this job—if you know
which area of the canvas is "dirty", it's far more performant to just clear that section.

11311

HTML5 APIs and Mobile JavaScript

Secondly, try to minimize the amount of strokes and fills you perform. This example, with
some discrete circles, is not hugely affected, but if you are drawing any especially complex
line segments to the canvas, performance suffers greatly unless you're sparing with the calls
to stroke.

Can you make the dashboard a little more interactive? How would you handle clicks or
touches on the dashboard—is there an easy way to identify which part of the canvas was
interacted with, and whether a yellow circle or a red one was touched?

If you're feeling especially heroic, you may want to try performing some animation on the
canvas: can you touch a red circle and have it expand into five yellow ones?

If you need further reference on the canvas element, check out, again, Mark Pilgrim's Dive
Into HTMLS5, at http://diveintohtml5.org/canvas.html. There's also an excellent
tutorial available from the Mozilla Developer Network, https://developer.mozilla.
org/en/Canvas_tutorial.

What else is in HTML52

One of the most popular uses of HTMLS is for location services: the navigator.
geolocation object gives a reading of where the user's current location is. Since
PhoneGap handles this a little different to vanilla web browsers, we'll cover geolocation
as a PhoneGap API.

In a similar boat is the application cache, or cache manifest. This allows web developers
to specify a list of static files that the browser should attempt to cache for future requests.
With PhoneGap applications running from the local file system, this is not applicable (and
non-existent on the £ile: // protocol, at any rate).

Two of the most exciting new features of HTML5 are Web Workers and Web Sockets, neither
of which is well-represented on mobile devices at the moment. Web Workers, a lightweight
concurrent processing approach, are a great idea, but there's no way to simulate them on
current devices in a manner that doesn't degrade performance (Web Workers use threads to
achieve concurrency, and simulating the APl in a single-threaded JavaScript runtime would
not provide true concurrency).

Web Sockets, persistent connections between a browser and a web server, are arguably
more interesting from a server perspective than a client one. At any rate, the specifications
are under heavy revision, and not stable enough for adoption on mobile platforms just yet.

11381

Chapter 5

In this chapter, we have seen the following:

€ Mobile JavaScript libraries, such as XUI, can greatly increase the efficiency and
expressiveness of the code that we write. In most cases, it's silly to attempt a new
application without a solid library in your corner.

4 The new HTML5 media elements provide an intuitive yet powerful API for improving
the responsiveness and depth of interaction for your application.

€@ The HTMLS5 canvas element makes it very easy to create cross-platform, dynamically
generated graphics, using the JavaScript skills that you are already learning.

In the next chapter, we will extend the skills we've learned about HTML5 with the help of its
little brother, little CSS3.

[1391

CSS3: Transitions, Transforms,
and Animation

Web developers will be long familiar with Cascading Style Sheets: CSS is the
standard way to style web applications and web pages. As we have seen

in earlier chapters, a good grasp of CSS is essential to design PhoneGap
applications that look beautiful on their target devices. Whether you're working
on a richly interactive canvas-based game or a straightword buttons and list
application, CSS3 features will allow your application to shine that much more.

In this chapter, we'll see some essential spots where CSS3 techniques and libraries can be
used, and also some cool effects we can add to give our applications a bit more shine. In
particular, we will:

@ Expand on our use of transitions to easily add native-style animations to
paging applications

€ Explore one of the ever-popular scrolling libraries to implement one of the holy
grails of mobile web design: a fixed position toolbar!

@ Get a taste of CSS3 explicit animations, and an idea of their power and flexibility

Translate with transitions

For a PhoneGap developer, CSS3 transitions—particular the translate and translate3d
transforms—are some of the most important and widely used features of modern browsers.
It's pretty easy to see why:

@ Your old-fashioned web application runs across multiple web pages. To change from
one state of the application to another, the old page is cleared from memory and a
new one is loaded—usually the screen goes white for a moment.

CSS3: Transitions, Transforms, and Animation

€ Your new-fangled PhoneGap application runs from a single web-page (other than in
exceptional circumstances). To change from one state of the application to another,
well, let's see...

We could, of course, just hide the old data and display some new things. That's a perfectly
viable solution when you're developing your application initially, and you just want to ensure
that all of the logic works correctly, but for a finished application you typically want a lot
more polish.

That's where transitions and transforms are most often used—to give a nice veneer to

the business of moving your application between states. As with most native mobile
applications, a PhoneGap application gains greatly in perceived responsiveness from a little
animation—a smooth slide from right-to-left looks much better than a flash of white space.

We're going to go back to our much loved Food List application and up its sheen a little.
Instead of using Web-style alert boxes, we're going to use CSS3 transforms to display
new tweets.

Time for action - The modal tweet view

We're going to make a couple of brief changes to the code from the previous chapter, in
order to simplify what's going on, and make a quick detour into debugging territory:

1. Firstly, we want a clearer divide between our HTML markup, our JavaScript code,
and our CSS rules. Cut out the contents of the style tag (there should just be one)
and paste it into a new file called style.css. Do the same, into a file called food-
list. s, for the contents of the application's two script tags.

We then need to add a couple of tags to our page to reference these external files.
Add a 1ink tag to the head of the document:

<head>

<title>Sites Without Servers</title>

<link rel=»stylesheet» href=»style.css» />
</head>

And a script tag to the end of the document (make sure our two other script
tags, referencing xui.js and mustache. js, are also moved down):

</body>

<script src=»xuil.js»></scripts>

<script src=»mustache.js»></script>

<script src=»food-list.js»></scripts>
</html>

[142]

Chapter 6

Moving the script tags to the bottom of the page helps a little with load times,
especially on public-facing websites—it doesn't make a huge difference for
PhoneGap applications, but it's a good habit to get into.

Firstly, let's test out that everything works as before—in particular, we want to edit
the behaviour when a tweet is retrieved and displayed to the user. Open index.
html in Safari and try clicking on one of the foods, in order to display the latest
tweet.

If you've been following along with the last chapter, you'll see that all is not well; in
fact, nothing at all is being displayed. Let's open up the Web Inspector and see what
error we're getting:

TypeError: Result of expression 'latestTweet' [undefined] is not an object.

We know latestTweet should be set based on the request we make to the Twitter
search API—evidently, that's not happening. Luckily, Web Inspector includes a
Resources panel—this allows us to look at all of the requests our application makes,
and all of the responses that it gets back. Open the Resources panel and look at our
request to Twitter:

™ O™ Web Inspector — file:// /Users /andrewlunny/dev/BOOK/chapter-6/in...

tzzl @@@EI’Qf

Elements = Resources Scripts Timeline Profiles Storage Console Search Resol
Doc Imag Scripts XHR Fonts Other
= USE sranarewionnyra. —
_‘ LEL S Content
ﬁﬁ?ﬁ;ﬂ%ﬁ!{m?:ﬁ;&?m Requelsl URL: http://search.twitter.com/sea
rch. json?g=Tish%20%3Cspan%2@class%3D%22d
food_detail.mustache eleter%22%3E%3C%2Fspan%3E
fUsers fandrewlunny/dev/... Request Method: GET
. Status Code: @ 200 0K
food_detail.mustache
fUsers fandrewlunny/dev/... ¥ Request Headers
Cache-Control: max—age=0
flood_detail,must;lache User-Agent: Mozilla/5.8 (Macintosh; U; I
fUsers fandrewhinnydev/ ... ntel Mac 05 X 18_6_6; en-us) AppleWebKi
et G e e t.-’533.19‘.F4 @KHTI'-‘IL, like Gecko) Version/
fUsers fandrewlunny/dev/... 5.8.3 Safarif533.19.4
¥ Response Headers
flood_detail,must;lache Age: B
JUsers fandrewlunny/dev/... .
Cache-Control: max-age=15, must-revalidat
food_detail.mustache e, max-age=300@
{Users fandrewlunny/dev/ ... Connection: close
Content-Encoding: gzip
i o e ol i
search.twitter.com v . . . v
Content-Tvpe: aoplication/ison: charset=
#/ | iZ | Sort by Response Time 3
& TypeError: Result of expression 'latestTweet' food-list.js:123
[undefined] is not an object.
>
H > & ¢ | Errors Warnings Logs a1 Y

(1431

CSS3: Transitions, Transforms, and Animation

4.

6.

Check out the Request URL—the search query that we're giving to Twitter:

http://search.twitter.com/search.json?g=fish%20%3Cspan%20class%
3D%22deleter%22%3E%3C%2Fspan%3E

It looks like we're sending the markup of our deleter button along with the
name of the food—no wonder we're not getting any results! Luckily, we can fix this
quite quickly—we just need to use the element's innerText property rather than
innerHTML. Find the relevant line in food-1ist. s, and it's an easy change:

x$ (document) .on("click", function (evt)
if (evt.target.tagName == «LI») {
var foodSubject = evt.target.innerText ||
evt.target.textContent;
var foodSearch = encodeURIComponent (foodSubject) ;
var twitterUrl =
«http://search.twitter.com/search.json?g=» + foodSearch;

That should solve it—let's fire up Safari again to make sure our problem is solved:

~ N

Sites Without Servers

[+ |'_‘ file:// /Users/andrewlunny/dev/B G] (Q' Google)»

List Some Food @

JavaScript

i rp | Latest Tweet about cheese from jctucker: Theme of
A the night: &guot;Everything's better with
cheese."

(oK)

cheese x
short rib x
arugula x
linguini x
Carrots x
fish x

J

Loading “file:// {Users/andrewlunny/d...ndex.html”, completed 13 of 14 items i

e ———

Phew! Now back to styling.

[114]

Chapter 6

If you remember, we want to set up a modal view window to display the latest
tweet. This modal window will take up all of the view, and display the tweet as
white text on a black background. The first thing to do is set up this view, with some
dummy data. Let's add the markup to index.html, just below the closing tag of the
div with ID main:
<div id="modal">

<hlsLatest Tweet about «muffins»</hls>

<blockquotesWriting a book is hard, but at least I have some

muffins</blockquote>

<p>by <strongsalunny</p>

</div>

Now we need to style that view to be in the right place, and look correct. We
want to inherit the basic styles of div#main, so we can change that selector to
div#main, #modal. Next, let's define the style of the #modal div itself:
#modal {

background-color: rgba(0,0,0,0.8);

border-radius: 0;

color: white;

font-family: helvetica, sans-serif;

left: 0;

position: absolute;

top: 0;

}

Note the background-color—we're using RGBA color, which allows us to specify an
opacity (the fourth parameter). The opacity is between 0 (fully transparent) and 1
(fully opaque). At any rate, let's load it in Safari and see how it looks:

laleke) Sites Without Servers
[+ | # file:// /Users [andrewlunny/dev/E C] (Q' Google))}

Latest Tweet about
"muffins"

Writing a book is hard, but at least |
have some muffins

by alunny

(1451

CSS3: Transitions, Transforms, and Animation

9.

11.

Let's get that to be dynamically populated. Firstly, we'll remove the dummy text, and
make each section easier to find:

<div id="modal">
<hl>Latest Tweet about «»</hl>
<blockquote id=»tweet»></blockquote>
<p>by <strong id=»author»></p>

</div>

We're also going to modify the CSS to be hidden by default:

#modal {
background-color: rgba(0,0,0,0.8);
border-radius: 0;
color: white;
display: none;
font-family: helvetica, sans-serif;
left: 0;
position: absolute;
top: 0;

Now let's modify the code that displays the tweet alert, changing its anonymous
callback function to call a new function, showTweetModal:
getXHR (twitterUrl, function (response)

var latestTweet = getLatestResult (response) ;

showTweetModal (latestTweet, foodSubject) ;

3
Then write the showTweetModal function—with XUl and our new markup, it's an
easy function to get right:

function showTweetModal (tweetObject, searchTerm) {
x$ («#modal #search term») .inner (searchTerm) ;
x$ («#modal #tweet») .inner (tweetObject.text) ;
x$ («#modal #author») .inner (tweetObject.from user) ;

xs(«#modal»).css({«display»:»block»});

(1461

Chapter 6

Give it a shot now—reload Safari and click on a tweet:

[N o) Sites Without Servers
[+ | # file:// /Usersfandrewlunny/dev/E C] (Q' Google }»

Latest Tweet about
"shortrib "

RT @bluewatergrill: New menu
items starting tonight- Charred
Octopus Salad, Short Rib Ravioli.
Then the Restaurant week prep
begins for Monday!

by andrewkoval9

12. Looks delicious! To keep things simple, we're going to hide the modal any time
somebody clicks the black space. We'll add another clause to our c1ick event
delgation (the call to addEventListener):

} else if (evt.target.id == "modal") ({
hideTweetModal () ;

}

Then write a simple hideTweetModal function:

function hideTweetModal () {
x$(«#moda1»).css({«display»:»none»});

(1411

CSS3: Transitions, Transforms, and Animation

13.

14.

Okay, so the basic functionality is in there—we now need to get the transitions
in place. Let's replace display: none in our CSS #modal rules for something
more helpful:
#modal {

background-color: rgba(0,0,0,0.8);

border-radius: 0;

color: white;

-webkit-transition-duration: 800ms;

-webkit-transform: translate3d(0,600px,0);

font-family: helvetica, sans-serif;

left: 0;

position: absolute;

top: 0;

}

When you reload the page in Safari, you'll notice it looks much the same—because
we've positioned the modal view 600 pixel lower, beneath the bottom of the
window, it appears to be hidden.

How do we rewrite showTweetModal and hideTweetModal to accommodate
for our new style? It's an easy change to make—as with our initial example,
showTweetModal changes the default style and hideTweetModal restores it:
function showTweetModal (tweetObject, searchTerm) {

x$ («#modal #search term») .inner (searchTerm) ;

x$ («#modal #tweet») .inner (tweetObject.text) ;

x$ («#modal #author») .inner (tweetObject.from user) ;

x$ («#modal») .css ({«-webkit-transform»:»translate3d(0,0,0)»});

function hideTweetModal () {

x$ («#modal») .css ({«-webkit-transform»:»translate3d (0,600
px,0)»});

(181

Chapter 6

Check things out in Safari—the following screenshot is from mid-transition. Watch
that amazing, smootbh sliding action!

Sites Without Servers

+ | |7 file:///Users/andrewlunny/dev/EC & | | Qr Coogle »

List Some Food @

(Tell Us!)

fish

Latest Tweet about
"linguini "

Linguini w/ white sauce and diced
broccoli for dinner....1 bet you wish
you were here ;)

by Word2My6Pack

What just happened?

Unlike our simple example in an earlier chapter, here we got to implement a practical use
for CSS3 transitions. In this case, we're mimicking the standard iOS modal display: a quick
display that slides up from the bottom of the screen and, when dismissed, slides back down.
These, in the present author's opinion, work well on mobile applications for displaying brief
information quickly to the user, perhaps with a couple of options for interacting with it. Alert
boxes, whether using the built-in JavaScript alert function or PhoneGap's navigator.
notification.alert function, are better suited for simple notifications: "You have a new

email message", or whatnot.

(1491

CSS3: Transitions, Transforms, and Animation

In both these examples we've used the translate (or rather, translate3d) CSS function
for our transitions. These are the simplest transformation functions to apply—each of them
moves the element and its children absolutely by the values specified, along the x, y, and

z dimensions. Translate3d is prefered to translate as 3D transitions are hardware-
accelerated on iOS devices (and similar acceleration has been promised on other platforms,
including Android). In practice, 2D translations don't look too bad on Apple devices, while
they can both be jerky on other platforms. Your best bet is to test on the devices that you're
targeting, and modify your animations appropriately.

Timing functions

Our example used CSS3 transforms as a pretty blunt instrument—we told the CSS where
our modal display should go, and how long it should take to get there, but nothing further.
However, there are other properties available in the CSS3 specifications that give finer
granularity over the behavior of these animations.

One that is very useful is -webkit-transition-timing-function, which allows you

to specify how the transition should accelerate or decelerate as it gets from a to b. We can
either give a built-in function to the transition, or use the cubic-bezier function to specify
the speed curve of the transition. Since that math is beyond a humble JavaScript developer
like myself, we're going to use the built-in functions to spice up our transitions a little:

function showTweetModal (tweetObject, searchTerm) {
x$ ("#modal #search term") .inner (searchTerm) ;
xS ("#modal #tweet") .inner (tweetObject.text) ;
x$ ("#modal #author") .inner (tweetObject.from user) ;

x$ ("#modal") .css ({
"-webkit-transform":"translate3d(0,0,0)",
"-webkit-transition-timing-function":"ease-in"

13N

function hideTweetModal () {
x$ ("#modal") .css ({
"-webkit-transform":"translate3d(0,600px,0)",
"-webkit-transition-timing-function":"ease-out"

13N
}

This small change gives a bit of weight and momentum to the transition; feel free to tweak
the timing function and transition duration properties a little more to get the movement
exactly how you would like it.

[1501

Chapter 6

There are many other transformation functions available in newer web browsers: scale,
rotate, skew, perspective, and, most generally, matrix. For your average bog-standard
lists and buttons mobile application, the translate and translate3d functions will take
you pretty far; most native applications do little more graphically than slide views into and
out of the viewport.

There are some exceptions though: scrolling libraries, which we will cover in the next section,
depend heavily on matrix transformations and timing functions to present a smooth
appearance of scrolling, as well as momentum-based scrolling, where the speed of the
scrolling is based on the speed of the touches on the screen.

The easiest way to get started with the more complex CSS transformations is to look at a
library that wraps them: the easiest one of those is probably jQTouch, http://jgtouch.
com/, created by David Kaneda and now maintained by Jonathan Stark. jQTouch allows easy
usage of complex CSS transform effects, such as cube rotation and scaling views in or out.
For a larger, but equally impressive, solution, check out the Sencha Touch framework, which
you can find at http://www. sencha.com/products/touch/: Sencha Touch can afford
a great visual sophistication to your mobile applications, although you'll have to write your
application from scratch to take advantage of the Sencha way of doing things.

Have a go hero: CSS transforms

Our example had a single modal view, with all of the markup in place, where we just had to
populate a couple of text nodes with the appropriate content.

Can you use our transitions for a more complex application? If your application had a list of
different views that would appear, each populated with different content, how would that
change your approach to CSS3 transforms? How would you combine these transforms with
a templating library, such as Mustache? Try combining these different techniques. If you can
keep your code nicely decoupled, and ensure that the animation logic is kept separate from
the rendering logic, you should be able to get some interesting things going.

The most frequent usage of CSS3 transforms on mobile devices is for implementing fixed
positioning—or, more accurately, for enabling scrolling panels within a web view, and thus
fixing the position of elements outside of the scrolling panel.

[1511

CSS3: Transitions, Transforms, and Animation

Since the debut of the iPhone, if not earlier, a few simple design patterns have emerged for
mobile user interfaces. The most prevalent, on a portrait-oriented page, is a fixed title bar
at the top of the page, a scrollable content panel in the middle section, and a fixed toolbar
at the bottom. With a few variations, this is common on most other platforms as well; on
Android devices, which have a menu button, the bottom toolbar is rarer, but you will still
often see a fixed section at the top, with or without further options present.

Why is this not possible on mobile browsers out of the box? For the answer, let's explore the
exciting world of viewports.

Viewports: Visual and otherwise

It's important to understand how mobile browsers render pages, in order to see why the
CSSposition: fixed rule fails to work as expected. A page is first rendered at roughly
the width of a desktop browser; in the iPhone's case, the default width is 980 pixel. We can
change this, as we have seen, by using the following meta tag:

<meta name="viewport" content="width=device-width,initial-scale=1.0"

/>

This is probably the best viewport setting to use for a PhoneGap application: allowing the
user to scale the entire view makes your application look more like a standard web page
than a native application. The intial scale the page is rendered at is known as the layout
viewport; this distinguishes it from the visual viewport, which contains what the user sees
(again, in most cases, when you're developing a PhoneGap application you want the two
to be equivalent).

When the user scrolls on a mobile browser, the visual viewport is moved over the page,
rather than the page moving itself. Pertinently, any elements that have been set to
position: fixed are fixed in their position on the layout viewport, not on the visual
viewport. Practicially, position: fixedisthe sameasposition: absolute.

Since this is such a common problem, there are a number of libraries and approaches to
implement something like position: fixed. It turns outit's easier to fake the scrollable
part of one of these layouts than to actually fix the position of particular elements.

Large user-interface frameworks, such as Sencha Touch, include their own scrolling code

for this purpose, but there are a number of single-purpose libraries that have just this
functionality. One of which, GloveBox, found at http://purplecabbage.github.com/
GloveBox/, is developed by Jesse Macfadyen, one of the core PhoneGap iOS developers;
it's particularly useful for layouts with multiple scrollable panels, which are well-suited for
iPad applications. We're going to use iScroll, which is the most popular one of these libraries,
developed by Matteo Spinelli. iScroll is available at http://cubiq.org/iscroll. We'll be
using iScroll later in our next tutorial, so you should download it now.

[1521

Chapter 6

All of these libraries do broadly the same thing: attach to the touchmove event on a
particular element, cancel the default behavior (native scrolling), make a calculation based
on how far the touch has moved, and move the content within the panel appropriately. The
technique probably is best known from Google's mobile Gmail web page; if you're interested
in implementing it yourself, there's an excellent article from Google's developers available
here: http://code.google.com/mobile/articles/webapp fixed ui.html.

One last note: all of these libraries depend on touch events to

perform correctly, so we'll have to view them on either a mobile

device or an emulator.

Time for action - Scrolling list of food

As hinted in the above note, we'll need to get a mobile Webkit touch-enabled device,

or at least an emulator, up and running to play with iScroll. Start a PhoneGap project for
iPhone, Android, or BlackBerry 6+, and copy the food list code we've been working on into
the www directory—make sure you can load up the app on the device or emulator before
going any further.

Also, ensure that you have Internet access on your emulator—for Android, you may need

to change some settings, as outlined in this blog post: http://www.paulmccrodden.
com/2010/12/android-emulator-internet-access/

1. First, make sure the correct viewport meta tag is on the page. The head of index.
html should look like this:

<head>
<title>Sites Without Servers</title>
<link rel=»stylesheet» href=»style.css» />

<meta name=»viewport» content=»width=device-width,
initial-scale=1.0» />
</head>

[1531

CSS3: Transitions, Transforms, and Animation

2.

Confirm that everything looks as expected—I'm using the iPhone Simulator here,
but you'll want to check using whichever platform you have at hand:

List Some Food

[] (_Tenust)

Red onions

Red onions is my favorite food. 1
particularly enjoy it in the evening.

Grapefruit x
Salad x
Squid x
Spinach x
Catfish x

Red onions x

It looks alright, but we know if keep adding food to the list, eventually it's going to
go off the screen—that's why we're using iScroll. The first thing to do is add iScroll to

our page:

<script
<script
<script
<script

src="xui.js"></scripts>
src=»mustache.js»></script>
src=»iscroll.js»></script>
src="food-list.js"></script>

(1541

Chapter 6

We need to make sure the browser's normal touchmove event doesn't interfere

with iScroll, which is going to override that event. Add the following code to food-

list.js:

document .addEventListener ('touchmove', function (e) {
e.preventDefault () ;

3N

Re-install the application on your device or emulator to confirm that regular scrolling
is disabled (note that this disabled touch scrolling on your emulator; this will be
when you hold the mouse down and drag the screen up or down).

Edit the mark-up on our page, adding a wrapper element to our list of foods:
<div id="wrapper"s>

<ul id=»foodList»>

</uls

</divs>

Now define the style rules for the wrapper element:
#wrapper {

position: relative;

z-index: 1;

width: auto;

height: 150px;

overflow: scroll;

}

The most important properties here are the position, z-index, and height.
You'll need to specify an absolute height for iScroll to work correctly.

[1551]

CSS3: Transitions, Transforms, and Animation

Here's how the page looks now; note that the list of foods is clipped slightly:

Carrier = 11:38 PM

List Some Food :

|] (Tenus!)

Seaweed

Seaweed is my favorite food. i
particularly enjoy it in the morning.

Pho
Grapefruit x
Salad x
Squid x
Beans x
Potatoes x
Sninach x

7. Now we need to initialize iScroll—add the iScroll initialization line of code to the
DOMContentLoaded event handlerin food-1ist.js:

document .addEventListener ("DOMContentLoaded", function () {

var scroller = new iScroll('foodList!');

}

[1561

Chapter 6

8. Open the application up once more to verify that everything works well:

—————a

Carrier ¥ 11:43 PM

]
List Some Food :

(| CTenust)

Seaweed

Seaweed is my favorite food. 1

particularly enjoy it in the morning.

rno x
Grapefruit x
Salad
Squid x
Beans x
Potatoes x
Spinach x
Catfish x

What just happened?

We saw how easy it is to integrate iScroll in our application—a couple of lines of JavaScript, a
few CSS rules, and a single extra element to add to our mark-up.

The ease of integration is one of the reasons iScroll is so useful as a tool for a PhoneGap
developer. As we have seen, we can take a pre-existing layout and modify it to include this
kind of scrolling with minimal effort. iScroll does a couple of interesting things as well as
the scrolling—it adds the vertical and horizontal scrollbars to the wrapper element, and can
monitor the DOM to refresh itself on any changes.

1571

CSS3: Transitions, Transforms, and Animation

Since the baseline behavior is dealt with so well in iScroll, it's easy to add extra gloss on top
of it; adding a gradient mask, for instance, can be done with CSS, in the same manner that
you would do for any other element on the page. Things can get a little tricky if your DOM
inside the scrollable panel is changing a lot, but a quick call of the refresh method on your
new iScroll object should fix things up.

If iScroll, and the kinds of layout it enables, are so useful, why isn't this behavior baked into
browsers by default?

The answer involves a lot of hand-waving, a reference back to the viewport section,

and a frustrated sigh. Essentially, it's very performance intensive to do this in a browser,
especially on the limited resources of a mobile device. Something like position: fixed,
we imagine, will make it on to these devices at some point, but until then we have to do it at
the application level, which involves a lot of messy computation that gets in the way of the
fun stuff.

The alternative to the iScroll approach—faking scrolling—is to fake the fixed position
element. Instead of having an element fixed at a certain position, the element is positioned
absolutely, and then repositioned as the user's viewport is modified. This has the neat
property of letting the browser take control of the scrolling, instead of doing it in JavaScript,
and can be less processor-intensive. The popular jQuery Mobile library uses this approach
for its fixed toolbar elements.

The downside to the repositioning approach: it doesn't look like a native application.
Whether this is an acceptable trade-off for your users depends on the application itself;
both approaches are certainly worth a shot.

1. Whydoesn'tposition: fixed work on many mobile browsers?
a. With limited screen space, all the available space has to contain fresh data

b. There's a mismatch between how pages are rendered on the visual
viewport and the layout viewport

c. Apple doesn't care about web developers

2. What does iScroll use CSS3 transforms for?
a. To arrange the content element within the wrapper element
b. To calculate how far the user has moved her finger

c. Toreproduce the momentum effects of touch scrolling

[158]

Chapter 6

3. Canlforego using a scrolling library, and just use the web view's scrolling facilities?

a. Yes: with a carefully thought-out design, you can easily manage the
complexity of most mobile applications without resorting to JavaScript
based scrolling

b. No: the standard mobile design patterns exist for a reason, and users are
trained to expect native scrolling in familiar layouts

c. All of the above

We looked at CSS3 transforms earlier in this chapter, as an example of simple, implicit
animations that can be specified quickly. CSS3 also provides a syntax for defining animations
in more detail—defining individual keyframes of an animation, and the relationships
between different keyframes. Although the syntax for defining such animations is a lot more
verbose than that for transforms, the flexibility and power of the resulting effects make
these animations a superb tool.

Essentially, we define our own animation function, and can then apply it in a similar fashion
to the built-in transformation functions, such as translate or rotate. For performing
complex manipulations of DOM elements, CSS animations are a great solution.

Time for action - Animating our headline

I'm going to switch back to Safari for this section, in order to iterate faster on development.
If you want to stick with your mobile device or emulator, be my guest.

1. We're going to animate the main header on the page, so let's set up it's starting
state to begin with. Let's first change the markup slightly:

<hl id="pageTitle">Food List</hl>

2. Then style this element a little:

hl#pageTitle {
-webkit-border-radius: 9px;
border: black 1px solid;
padding: 6px 12px;
background-color: black;
color: white;
width: 175px;

[1591]

CSS3: Transitions, Transforms, and Animation

Check it out in Safari—the title should stand out a bit more now:

(Nl Sites Without Servers
[+ | # file:/f/Users/andrewlunny/dev/E G] |.\Q' Google i»

Food List ®

(Tell Ust)

fish

fish is my favorite food. i particularly tin the
morning.

prosciutto x
cheese x
short rib x
arugula x
linguini x
CArTots x
fish x

A
e ————————————————————————————————

3. That title looks okay, but | bet we can make it a lot more garish. We're going to
define a CSS animation called throbbing that will do just that. Firstly, we need to
define the animation itself, as a set of keyframes—here's what that looks like:

@-webkit-keyframes throbbing {
0% {
background-color: black;
color: white;
-webkit-transform: scale(1.0) translate(0,0);

[160]

Chapter 6

}

-webkit-transform:

background-color:
color: black;
-webkit-transform:

-webkit-transform:

}

100% {
background-color:
color: white;
-webkit-transform:

scale(1.3)

white;

scale(1.2)

scale(1.3)

black;

scale(1.0)

translate (40px,0) ;

translate (40px, -40px) ;

translate (0, -40px) ;

translate(0,0) ;

See if you can figure out what this animation will look like—you can see we're
adopting some of the transforms we've already seen, and also switching colors.

Now apply the animation to the hi#pageTitle element:

hl#tpageTitle ({

-webkit-animation-name:

-webkit-animation-duration: 6s;

-webkit-animation-direction:
-webkit-animation-timing-function:
-webkit-animation-iteration-count:

throbbing;

alternate;

ease-in-out;
infinite;

11611

CSS3: Transitions, Transforms, and Animation

5. The duration and timing-function properties map to those that we saw
for applying built-in translations. Now reload the page in Safari to gaze on our
fresh monstrosity:

A6 Sites Without Servers
[+ | #| file:/{ /Users/andrewlunny/dev/E G] (Q' Google)))
I ™
(Tell Us!)
fish
fish is my favorite food. i particularly tin the
morning.
® prosciutio x
s cheese x
» short rib x
s arugula x
e linguini x
& Carrofs x
o fish x :
. A
4

Who says you need Flash for ugly web pages!

What just happened?

We saw the syntax for user-defined CSS3 animations—it's a slight departure from what you
may have been expecting from CSS, what with something like a function being defined and
assigned to something like a variable.

It's a welcome change, in our opinion—far better than having to assign each keyframe as a
separate class, for instance, and use JavaScript to figure out the timing function and apply
each class as appropriate.

11621

Chapter 6

Here's a simplified view of the syntax we used to defined our throbbing animation:

@-webkit-keyframes animation-name {
0% {
/* original state */
/* at some point in the middle */ {
/* properties to animate */
100% {
/* final state */

}
Easy as punch, right? We can add as many blocks between 0 and 100 as we wish (well, any
more than 99 might be pushing it) and choose whichever properties we wish to be animated.
Of course, some properites make more sense to animate than other—anything with a
continuous spectrum of values, such as a positioning offset or a color value, is better than
anything with a discrete set, such as display or text-decoration.

Now let's look at the properties we applied to hi#pageTitle:

-webkit-animation-name: throbbing;
-webkit-animation-duration: 6s;
-webkit-animation-direction: alternate;
-webkit-animation-timing-function: ease-in-out;
-webkit-animation-iteration-count: infinite;

Name and duration should both be fairly self-explanatory, while we've covered
timing-function already. Iteration-count defaults to 1, while direction defaults
to normal—Dby setting it to alternate, we make the animation go backwards on every
other iteration. It spices things up a little.

As far as syntax goes, that's more or less it—but combined with the built-in transformation
functions of CSS3, you can create some complex and beautiful custom animations.

With a feature like CSS3 animations, the best way to learn about it is to get your hands dirty
and play around with the code itself.

How would you go about applying custom animations programmatically? If you look back
at the code we wrote to display our modal tweet view, can we modify that to use a custom
animation? Is there an easy way to parameterize the animations that get applied?

11631

CSS3: Transitions, Transforms, and Animation

Try to investigate defining new animations on the fly—is this possible? What are some
effects you can create by doing this? You can look online for some exciting examples of the

possibilties; there are a number here, for instance: http://webdesignerwall.com/
trends/47-amazing-css3-animation-demos

Animations: CSS3 or HTML32

In the previous chapter we learned all about the canvas element in HTML5 browsers for
procedural drawing directly to the browser, and the flexibility of that API. We also noted
that there is support in many mobile browsers (unfortunately, not including Android at the
time of writing) for Scalable Vector Graphics, SVG. One could be forgiven for getting a little
confused; with all of these graphical APIs already in the browser, why do we need these
new CSS3 features?

That's an interesting question, and I'm glad that | thought to write it. In a lot of cases, there
are some clear divisions between what belongs to CSS and what belongs to these JavaScript
APIs. If you need to manipulate some elements on the page, such as we were doing with
our modal Tweet view, then CSS transitions are clearly the best solution. Likewise, if we
have complex drawings we wish to render on the fly, then either canvas or SVG is the best
solution; right now, there's no CSS API for drawing, as such.

There are edge cases, however, particularly for animating simpler shapes or manipulating
pre-existing images. Take our resoundingly unattractive dashboard, for instance: had we
defined our red and yellow as DOM elements, rather than paths on the canvas, it would have
been quite easy to animate them—perhaps sliding up as new foods are added, and fading
away when foods are removed. This would be possible on the canvas as well, but more
custom code would be required, either through a library or written by ourselves, to get

the animation to look just right.

In cases where there is some dispute, the two important issues are:

1. How does each APl work on your target devices?

2. How much do you like each API?

Right now, for performance, it's a bit of a wash: Apple devices have hardware-accelerated
3D transforms, and questionable performance with canvas animation; Android devices
don't hardware accelerate anything, but tend to do quite well with the canvas; and the
latest BlackBerry handsets have great SVG support, and decent performance for the other
two options.

So for most developers it will come down to personal preference: do you prefer procedural
definitions for animations and the like, or declarative ones? In my opinion, the CSS3 syntax
gives excellent support for the majority of animations you will want to perform for a mobile
application, even if the canvas offers more for flexibility and customization. But the new
HTML5 APIs are well worth learning in their own right.

11641

Chapter 6

In this chapter, we have played around with the new CSS3 features in a few interesting ways:

€ Using built-in transforms to perform a simple, modal view transition

€ Integrating the iScroll mobile scrolling library to mimic fixed positioning on a mobile
HTML page

€ Defining our custom animations using the CSS3 explicit keyframes syntax
In the next chapter, now that we have a firm grasp of the state of the art for mobile web

development, we will start to look at the custom APIs that PhoneGap provides, beginning
with access to device sensors.

11651

In this

The preceding chapters will have given you a good sense of the type of
application that PhoneGap enables you to write: stateful, native-style mobile
applications that use HTML and the latest JavaScript and CSS APIs to provide
rich functionality and a good user experience. With this grounding, we can now
start to look at the APIs that are provided by the PhoneGap framework itself.

Beginning with this look at the PhoneGap's device sensor APIs, we will start

to write code that will only work in a PhoneGap environment—that is, less of
our development process will be suitable for a desktop browser such as Safari.
While PhoneGap follows W3C specifications where available—for example, with
its geolocation API—most PhoneGap APIs are not available in any browser, so
you will need to test on a device, or at least an emulator.

chapter, we will look at the device sensor APIs in PhoneGap—those APIs that allow

developers to investigate the physical state of the device. In particular, we will learn how to:

*
*

Query the device's geolocation API to get a user's latitude and longitude

Monitor the accelerometer readings to detect device motion, and detect if the
user is shaking their phone

Use CSS media queries to tailor our layout based on device orientation

Accessing Device Sensors with PhoneGap

A device sensor is a hardware feature that may or may not be present on any given device,
which allows programmatic access to information about the device's physical surrounding.

Sensors have become increasingly important to web developers over the last few years,
as mobile devices have become increasingly prevalent among users. A user with a laptop
computer may change their computer's location quite regularly, for instance, but they're
unlikely to tilt it while they read their email, or try to point it north. Most standard
computers (until quite recently) have never had these sensors as hardware features,

let alone APIs exposed to web developers.

PhoneGap, at the time of writing, supports four sensor APl across platforms: geolocation,
accelerometer, magnetometer (or compass), and orientation. There's no hard limit on this:
more devices are beginning to ship with embedded gyroscopes, so PhoneGap will likely
expose that reading as well, but the four key sensors are pretty ubiquitous on modern
mobile devices.

With older devices, tread with caution: older BlackBerries, in particular, have limited support
for anything other than geolocation (not surprisingly—the form factor is unsuited for the
landscape orientation, for one thing).

A final note on sensors in general, before we move on to writing some code: the PhoneGap
sensor APls are quite consistent between themselves, and if you can figure one out, you'll
get the others. Here's the basic pattern:

navigator.sensor.getCurrentVariable (successCallback, errorCallback,
options)

This function asynchronously queries the sensor for the current reading. Once the reading is
made, it is passed as the first parameter to the function successCallback.

navigator.sensor.watchVariable (successCallback, errorCallback,
options)

This periodically calls getCurrentVariable, passing the result to successCallback each
time. The interval is specified in the last parameter, opt ions. The watchvariable will
return a watchid variable, which you would use for:

navigator.sensor.clearWatch (watchId)

This ceases the watch (and periodic polling) initiated by watchvariable. Let's put all this
into practice now, and try out the geolocation API.

[168]

Chapter 7

Time for action - A postcard writer

We're going to start a brand new application here: it will allow the user to write messages,
and then label those messages based on where they are from. Set up your environment
to have a new project space, copy over xui . js and mustache. js from the Food List
application, and create a new index.html file:

1.

Let's start by filling our index.html with some default markup—a text box to write
new postcards in, and a list of postcards to display:

<html>
<head>
<title>Postcards from Thumbs</title>
<link rel="stylesheet" href="style.css" />
<meta name="viewport" content="width=device-width,
initial-scale=1.0" />
</head>
<body>
<div id="main">
<hl id="pageTitle">Postcards</hl>
<form id="newPostcard">
<textarea id="postcardContents"></textarea>

<button id="postTheCard">Post It</button>

</form>
<div id="postcardsPosted">
<div class="postcard">
<blockquote id="contents">This is a sample
postcard, that I have written from sunny
Vancouver.</blockquote>
<aside>Vancouver, B.C.</aside>
</div>
</divs>
</div>
</body>

<script src="phonegap.js"></script>

<script src="xuil.js"></script>

<script src="mustache.js"></script>

<script src="app.js"></scripts>
</html>

Incidentally, note that we're using the HTML5 aside tag to mark up the address
of the postcard. It shouldn't affect the layout—in terms of style, it's a regular block
shaped element on the page—but it gives a bit of a neater semantic markup

to our application.

(1691

Accessing Device Sensors with PhoneGap

The overall layout is fairly similar to our Food List application (hey, | never said |

was a designer). One key change is that we're including phonegap.jsina script
tag—as I've mentioned, this is not essential for every PhoneGap application, but we
will be accessing the PhoneGap sensor APIs with this application, so we need the
JavaScript file included on the page. Remember that your phonegap. j s file will
automatically be generated by PhoneGap when your application is built, and will be
different for each platform you're deploying to.

The next step is to style things; here's a basic stylesheet that should give us
something to work with:

body {
background: #D9F8BA;
font-family: Helvetica, Arial, sans-serif;

}

#newPostcard {
width: 300px;

}

#postcardContents
width: 100%;
height: 100px;

}

#postTheCard {
margin: 20px;
float: right;

}

#postcardsPosted {
clear: right;

}

.postcard {
clear: both;
margin: 30px;
width: 270px;

}

.postcard aside {
font-style: italic;
float: right;

(1701

Chapter 7

Save that as style.css, and load everything in a browser:

nO0 Postcards from Thumbs
[+ | | file:// /Users /andrewlunny/dev/E C] (0\' Google)»

Postcards

(Post It)
This is a sample postcard,
that | have written from
sunny Vancouver.

Vancouver, B.C.

One error in epening the page. For mere information, choose Window > Activity. v

Now let's start to figure out the behavior. When the user submits a postcard
through our form, we want to check where it came from, and display it at the top
of the list. Let's start with the last part: what to do once we have the text of the
postcard and the location that it came from. Open a new file called app . js and
add the following:
var postcardTemplate = '<div class="postcard"><blockquote
class="contents">"' +

<{{ text }}</blockquotes<aside>{{ place }}</aside></div>"';

function postcardMarkup (text, place) ({
return Mustache.to_html (postcardTemplate, {
text: text, place: place
I3

}

function appendNewPostcard (text, place) {
x$ (<#postcards-posted') .top (postcardMarkup (text, place));
}

1l

Accessing Device Sensors with PhoneGap

You'll remember Mustache: the templating library we had been using in the
previous application. We set up a mustache template, postcardTemplate, that
contains the markup we need. Then we have a wrapper function, postcardMarkup
that takes a postcard and a location and spits out the templated markup. Finally,
appendNewPostcard wraps postcardMarkup with XUl to add the new postcard
to the DOM. Simple, no?

To test that everything works correctly, let's remove the original postcard content
from our index.html page and add it dynamically, on the DOMContentLoaded
event, in app. js:

x$ (document) .on ('DOMContentLoaded', function (e) {

var content = <This is a sample postcard, that I have written
from sunny Vancouver.',

location = <Vancouver, B.C.';

appendNewPostcard (content, location);

I3
Reload the browser; everything should look the same.

Next, we want to handle the input from the text area, by appending it to our list.
Let's write a function called handleNewPostcard to do that:

function handleNewPostcard() ({
var postcardBox = x$(<textarea#postcardContents') [0],
content = postcardBox.value;

postcardBox.blur () ;
appendNewPostcard (content, <Terra Incognita') ;
postcardBox.value = <';

}

We blur the text area to ensure the device's hardware keyboard is hidden, and then
append the contents to the list. Right now, we haven't queried the user's location,
so we just list it as Terra Incognita.

Now to add the location. As mentioned above, PhoneGap follows closely the HTML5
Geolocation API, so we can get an initial test going in our desktop browser (assuming
that the browser supports the HTML5 API). Let's modify handleNewPostcard to
make the correct API call:

function handleNewPostcard () {
var postcardBox = x$ (<textarea#postcardContents') [0],
content = postcardBox.value;

postcardBox.blur() ;
navigator.geolocation.getCurrentPosition (function (resultsObj)

[1721

Chapter 7

appendNewPostcard (content,
positionToLatLongString (resultsObj)) ;

}, function () {
appendNewPostcard (content, <Terra Incognita') ;

1)

postcardBox.value = <';
}
function positionToLatLongString (pos) {

return pos.coords.latitude + <,' + pos.coords.longitude;
}

A couple of things to note:

O We've created a wrapper function, positionToLatLongString, to
convert the position object that is returned to a human readable string

U If the geolocation call is unsuccessful, we call appendNewPostcard
anyway with the default location in place

Load Safari, enter some text in the text area, and then call handleNewPostcard
from the console:

Mol Postcards from Thumbs
‘ [+ ‘ # file:// /Usersfandrewlunny/dev/B G] (Q' Google)»

The website “file:/ /" would like to use your
current location.

[Request permission only once every 24 hours

(" DomtAllow) [Allow)

(Postit)
This is a sample postcard,
that | have written from
sunny Vancouver.

Vancouver, B.C.

One error in opening the page. For more information, choose Window > Activity. y

(1131

Accessing Device Sensors with PhoneGap

6.

7.

Whether using PhoneGap or the standard browser APls, any application that
attempts to access the Geolocation APl requires manual approval from the user. If
we click Don't Allow, the error callback is called (in our case, adding the postcard
from Terra Incognita). Otherwise, the success callback is called.

[N N Paostcards from Thumbs
[+ | #| file: /[jUsers/andrewlunny/dev/B G] I.\Q' Google »

Postcards

(Post it)
Here is my brand new
postcard.

49.263054415 -123.09983721833333
This is a sample postcard,
that | have written from
sunny Vancouver.

Vancouver, B.C.

One error in opening the page. For more information, choose Window > Activity. 4

So we've gotten a geolocation reading, but, | think you'll agree, it's not the most user-
friendly experience. Unless I've been writing postcards incorrectly all of this time, most
people don't sign off by providing their latitude and longitude coordinates.

The most common use for location readings is to draw a map centered on the
user's location. In our case, we're going to use a reverse geocode API to convert the
location reading into something more readable. We'll use the Google Geocoding
API for this, which you can read about here at http://code.google.com/apis/
maps/documentation/geocoding/.

Let's begin to do this. First, we'll write a very simple function that takes a latitude-
longitude string and converts it to a Google Geocoding URL:
function urlForLatLong(latlng) {
return <http://maps.googleapis.com/maps/api/geocode/
json?latlng=" +
latlng + <&sensor=true';
}

1l

Chapter 7

Next, we need a function to query that URL and then parse the results. Here's what |
came up with:

function getHumanLocation(latlng, callback) {
x$ () .xhr (urlForLatLong (latlng), function (e) {
var data = JSON.parse (this.responseText) ;

if (data.status != "OK") {
return callback("Terra Incognita") ;

}

var result = data.results([0],
output,
locality = «<!',
region = <',

country = <';

result.address components.forEach(function (part) {
if (part.types.indexOf (<locality') >= 0) {
locality = part.long name;
} else if

(part.types.indexOf (<administrative_area_level 1')
>= 0) {

region = part.short name;
} else if (part.types.indexOf (<country') >= 0)
country = part.long name;

3N
output = [locality, region, country].join(<, <);

callback (output) ;
3N
!

One thing to note is that Google's API returns us a top-level value called status:
if this value equals 0K, then we can proceed; otherwise, we'll halt the execution
right away.

We could use result.formatted address to get the street address—our code
goes through a few more backflips to get a nicer sign-off.

8. Finally, let's change handleNewPostcard to take advantage of our new functions:

function handleNewPostcard() ({
var postcardBox = x$ (<textarea#fpostcardContents') [0],
content = postcardBox.value;

(1151

Accessing Device Sensors with PhoneGap

postcardBox.blur () ;
navigator.geolocation.getCurrentPosition (function (resultsObj)

var latlng = positionToLatLongString(resultsObj);

getHumanLocation(latlng, function (placename) {
appendNewPostcard (content, placename) ;

RE;

}, function () {
appendNewPostcard (content, <Terra Incognita') ;

3N

postcardBox.value = <';

}

Test the round-trip once more and, ta-da! Success!

(GNGNG) Postcards from Thumbs
[+ | | file:///Users /andrewlunny/dev/E C] (Q' Coogle)))

Postcards

'l A Y
Post It

this is my brand new
postcard

Vancouver, BC, Canada
This is a sample postcard,
that | have written from
sunny Vancouver.

Vancouver, B.C.

One error in opening the page. For more information, choose Window > Activity,.

(1761

Chapter 7

What just happened?

We took some of the techniques that were familiar from earlier chapters—in particular,
templating with Mustache. js and using XUl for both DOM manipulation and event
binding—and combined those with the use of a device sensor APl to produce a more
involving experience for the user. Combined with a remote geocoding API, we were able
to add a personal touch to our, admittedly, plain looking application.

A latitude and longitude reading is not terribly interesting in and of itself, so most PhoneGap
applications will end up passing that data somewhere else. The most likely destination is a
mapping application: either rendering a map on the device, through one of the PhoneGap
map plugin, or using a JavaScript API to receive a map back. Many other remote APIs—for
example, Twitter's—can accept geolocation data, typically for reverse geocoding on their
own servers.

PhoneGap versus HTMLS

While developing in Safari, we were able to use the Geolocation APl from HTMLS5, rather
than using PhoneGap's APIs. What's the difference?

The main factor is cosmetic; using PhoneGap, we can control the prompt that is shown to the
user. Since PhoneGap, as we've covered, serves your application through a web view on the
device, queries for the location service from JavaScript are interpreted as being from file://
storage/long-complicated-uuid/index.html, rather than My Pretty App Name.

a 3

Carrier = 3:44 PM

Postcards

“sensors-demo” would like to use your
,}‘& current location.
7

| Don't ask me again

@ (DortAllow) (OK)

This is a sample postcard.

Terra Incognita
This is a sample postcard,
that | have written from
sunny Vancouver.

Vancouver, B.C.

[l

Accessing Device Sensors with PhoneGap

In terms of functionality, there is not much difference between PhoneGap and the standard
HTML5 approach; in fact, PhoneGap has targeted compatibility with this kind of APl as much as
possible. But whereas the behavior of the user-facing prompt can be unpredictable depending
on the device in use, PhoneGap standardizes what the user sees, across platforms.

Other geolocation data
In the example above, we only used the latitude and longitude properties of the position
object that we received. There are some other attributes that can be accessed:

€ Altitude: the height of the device, in meters, above sea level

@ Accuracy: accuracy level of the latitude and longitude, in meters

€ AltitudeAccuracy: you can probably figure this one out

@ Heading: direction of travel, in degrees clockwise from true north

€ Speed: current ground speed of the device, in meters per second
That said, latitude and longitude are far and away the best supported of these properties,
and the ones that will be most useful when communicated with remote APIs. The other

properties are mainly useful if you're developing an application for which geolocation is a
core component of its standard functionality.

The accuracy property is the most important of these additional features. Location
coordinates can be measured from the WiFi network the device is connected to, the cellular
towers the device is accessing, or a GPS receiver on the device itself. As an application
developer, you typically won't know which particular sensor is giving you the location

data, so it may be important to correct for low accuracy readings.

1. When is the user prompted to allow geolocation access?
a. When the application is initially loaded
b. When the application calls getCurrentPosition

¢. When the location data is passed to a remote API

2. What happens when the user refuses to allow access to their location data?
a. The error callback is called
b. The callback is called, with the error as the first parameter

c. The callback is not called, and the application continues

(1181

Chapter 7

3. How is geolocation data calculated?

a. From the user's network connection: either through WiFi or the
cellular network

b. By the GPS sensor in the device
c. All of the above

A device's accelerometer is a simple sensor that is almost ubiquitous among modern mobile
computing devices, that measures the position of the device in 3D space. It is possible to get
the X, Y, and Z coordinates for the position of a device, and then to track those coordinates
through time. If you've played a mobile racing game, or any game involving balancing or
leaning, you must have used your device's accelerometer.

While geolocation is not only in HTML5, but quite prevalent on desktop browsers these days,
access to the device accelerometer is almost exclusively a mobile concern, at present. Laptop
or desktop computers stay in one place during use, for the most part, while mobile devices
are often moved from side to side, perhaps even unwittingly.

Browser vendors are beginning to introduce accelerometer access as JavaScript APIs—in
particular, Apple's iOS devices introduced a DeviceMotionEvent in version 4.2 that
fires every time the device has been moved. However, for cross-platform development,
PhoneGap's navigator.accelerometer.getCurrentAcceleration is currently
the most predictable and reliable way to track how the device is moving.

Time for action - Detecting shakes

Unlike the geolocation API, a single reading of the device's accelerometer is not all that
interesting. In this example, we're going to poll the accelerometer for a period, to see
how the readings change as we shake the device.

You will not get very far with the accelerometer on a desktop web browser or an emulator.
This is the first APl we've encountered that really requires a device at hand to measure your
progress. You can refer back to Chapter 1 for details on how to get a PhoneGap application
loaded onto your device.

1. Let's go back to our Postcard application, and set up a watch on the accelerometer.
To do this, we'll have to listen for the deviceready event and, once it fires, call
watchAccelerometer:
x$ (document) .on ('deviceready', function () {

navigator.accelerometer.watchAcceleration (function (reading) {
if (reading.is updating) return;

(191

Accessing Device Sensors with PhoneGap

console.log("x: " + reading.x + "; y: " + reading.y +
"; z:" + reading.z);
}, null, { frequency: 300 });

3N

If the reading is updating when we poll it, we return from the function and wait
for the next run. Otherwise, we log the current measurements to the console. The
function is called every 300 milliseconds.

Here's a sample set of readings | saw when running on my device (the output is
from Android's 1ogcat logger, hence the format), holding it quite still:
D/PhoneGaplLog (32642) : file:///android asset/www/app.js: Line 121
xX: -1.334794044494629; y: 4.399372100830078; z:8.662541389465332
D/PhoneGaplLog (32642) : file:///android asset/www/app.js: Line 121
x: -0.46309182047843933; y: 4.521955490112305; z:8.580819129943848
D/PhoneGaplLog (32642) : file:///android asset/www/app.js: Line 121
x: -0.5039528608322144; y: 4.562816619873047; z:8.68978214263916
D/PhoneGaplLog (32642) : file:///android asset/www/app.js: Line 121
x: -0.46309182047843933; y: 4.521955490112305; z:8.853225708007812
D/PhoneGapLog (32642) : file:///android asset/www/app.js: Line 121
x: -0.6537767052650452; vy: 4.399372106830078; Z:8.771504402160645
D/PhoneGaplLog (32642) : file:///android asset/www/app.js: Line 121
x: -0.5311935544013977; y: 4.399372100830078; z:8.730643272399902
D/PhoneGapLog (32642) : file:///android asset/www/app.js: Line 121
x: -0.46309182047843933; vy: 4.44023325059082; Z:8.771504402160645

The particular numbers are not too important for our purposes—we're more
interested in how they change between readings.

Here's another set of readings, while I'm shaking the device:

D/PhoneGaplLog (32642) : file:///android_asset/www/app.js: Line 121
X: -2.3426997661590576; y: 4.903325080871582; z:8.662541389465332
D/PhoneGapLog (32642) : file:///android asset/www/app.js: Line 121
x: -0.46309182047843933; y: 6.047434329986572; z:8.281171798706055
D/PhoneGaplLog (32642) : file:///android_asset/www/app.js: Line 121
X: 6.973618030548096; y: 11.304888725280762; z:7.818079471588135
D/PhoneGaplLog (32642) : file:///android_asset/www/app.js:

Line 121 : x: -19.504337310791016; y: -13.375181198120117;
Z:3.296124219894409

D/PhoneGaplLog (32642) : file:///android_asset/www/app.js: Line 121
x: 18.387470245361328; y: 4.399372100830078; z:-1.5663399696350098
D/PhoneGaplLog (32642) : file:///android_asset/www/app.js:

Line 121 : x: -18.046960830688477; y: -11.876943588256836;
Z:13.715690612792969

D/PhoneGaplLog (32642) : file:///android_asset/www/app.js: Line 121
x: 1.375655174255371; y: 10.800935745239258; z:19.150209426879883

[1801]

Chapter 7

2. We can see the difference in acceleration is quite high: as much as 30 degrees

3.

difference on a single axis, in some cases.

To detect shakes, we're going to decide on a threshold, and check whether all of
axes change by that threshold between readings. Here's the code to do this:

x$ (document) .on('deviceready', function () {
var previousReading = {
x: null,
y: null,
z: null

navigator.accelerometer.watchAcceleration (function (reading) {

var changes = {},
bound = 3;
if (previousReading.x !== null) {

changes.x = Math.abs (previousReading.x, reading.x) ;
changes.y = Math.abs (previousReading.y, reading.y) ;
changes.z = Math.abs (previousReading.z, reading.z);

if (changes.x > bound && changes.y > bound && changes.z >
bound) {
console.log(<shake detected');

previousReading =
x: reading.x,
y: reading.y,
z: reading.z

}, null, { frequency: 300 });

There are a few things to note here. Firstly, we're storing the previous reading from
the accelerated as a local variable, stored in deviceready handler's function scope.
We then define a bound for each dimension (in this case, I'm setting it to three
degrees), and check that every dimension changes by that bound. If so, we log shake
detected—and once we've detected it, we can hook in more complex shake handling.

These bounds are of course, just one estimate—your own testing may suggest
higher bounds, or different conditions per dimension.

11811

Accessing Device Sensors with PhoneGap

4. Now let's write the shakeHandler function. We want the shake handler to be,
essentially, an undo button—it will prompt the user to delete their last postcard,
and then remove it from the DOM if they select it. Let's write that function now:

var canPrompt = true;

function shakeHandler () ({
var msg = <Would you like to delete your last postcard?';

if (canPrompt && confirm(msg))
xS (<div.postcard:first-child') .remove () ;
}

canPrompt = false;

window.setTimeout (function ()
canPrompt = true;
}, 5000);

}

We set up a global variable called canPrompt that checks whether or not we should
prompt the user—we don't want to show the confirm dialogue more than every five
seconds. The shake event we've set up may fire multiple times from a single shake
by the user, so five seconds is a good limit for the user's shake.

After that, it's fairly simple XUl—use a CSS3 selector to grab the topmost postcard,
and remove it from the DOM.

A 5554:BasicEmulator

0 Confirm

Would you like to delete your

?
last postcard? —rEEE R AR T

(PSR PP [P Y O

PR (U | N PR ——

T e —— — g — —
.“F =7

11821

Chapter 7

What just happened?

We were able to use PhoneGap's device accelerometer APl to detect whether the device is
shaking or not, and then alter behavior based on what we detected.

This is a fairly common use of the accelerometer API: the device axes are fairly low-level
data to work with, so you will need to write some code that translates these readings into a
higher level abstraction, whether that's a shake or a tilt or whatnot. It is likely that as these
APIs come to the fore in the browser, there will be higher-level libraries that abstract away
the detail of accessing these readings directly—until then, we can enjoy playing with the
raw data.

Device orientation and device motion events

There are two related specifications for browser-based acceleration data: the
DeviceOrientationEvent and the DeviceMotionEvent. I'll quote from the specification itself,
which can be found at http://dev.w3.org/geo/api/spec-source-orientation.
html:

This spec provides two new DOM events. The first [DeviceOrientationEvent]

is a simple, high-level source of information about the physical orientation

of a device. While the spec is agnostic to the source of information, this is
typically implemented by combining information from an accelerometer and a
magnetometer. The second event [DeviceMotionEvent] provides direct access
to motion data from an accelerometer and gyroscope and is intended for more
sophisticated applications.

At the time of writing, the DeviceOrientationEvent is supported on a few desktop browsers
such as Google Chrome (assuming the computer has the appropriate sensors to expose this
data), while the DeviceMotionEvent fires on iOS 4.2 and above devices. It is likely that all
major mobile browsers will expose both APIs in the next couple of years.

The PhoneGap acceleration APl is closer to the DeviceMotionEvent, but does not line up
exactly with the specification at the moment. It's unclear at the moment how this API will
change: the motion events fire very often in browsers that implement them, and firing these
continually in every PhoneGap application would have a considerable performance impact.

Now that we've interpreted some data from the accelerometer, can you detect other
high-level information about the device from the readings? What should the readings look
like when the device is tilted to either side, or back and forwards?

[1831]

Accessing Device Sensors with PhoneGap

A good way to play around with this is to combine the accelerometer readings with the CSS3
rotate transform: can you get an element on the screen to react based on how the device
is held?

The passage we quoted from the DeviceMotion specification highlighted that there are
simple and complex uses of device sensor data: for complex applications, you will want
low-level readings of how the device is held in 3D space, while for most applications you
will just want to do a little design tweak.

Thankfully, mobile browsers include support for CSS3 media queries on the device that
allow for powerful contextual design based on the properties of the device. iOS browsers
above version 4.0 include orientation queries, so we can directly specify how an
application should look in portrait mode and in landscape mode, while almost all modern
mobile browsers support min-width and max-width queries. If we're able to make a few
assumptions about the device itself, we can quite easily use these queries to get the same
orientation-specific styling.

Time for action - Landscape postcards

As mentioned above, there are a few slight changes between the media queries we'll need
for different platforms; we're going to get things working for iPhone, and then make the
necessary changes to have the same effect on Android:

1. First things first, let's see where we are at the start. Set up your application as an
iPhone project, and launch it on the iPhone Simulator. Hit Command and Left to
orient the device in landscape mode:

(Posth)
This is a sample postcard,
that | have written from
Vancouver, B.C.

sunny Vancouver.

(/2]
o]
=
©
(3]
]
(7]
(o)
o

It looks... like our existing interface, turned to the left. Not ideal.

(1841

Chapter 7

2. We need to enable rotation of the application: by default, iOS PhoneGap
applications have this turned off. Edit your application's plist file to ensure
that Supported Interface Orientations includes all the four options:

®O0 sensors_demo-Info.plist - sensors-demao —
] [Slmulator -4.2|D.. '] E] a a' 6 Qr String Matching
Page Overview Action Breakpoints Build and Run Tasks Info Search
B patiled [Detail | Project Find | SCM Results | Build Results |
3 sensors-demo =] -
i www - File Name : 4 A Code a A @
2| app.js = sensors_demo-Info.plist a
| index.html
2 mustache.js - |l L’;E_I w -
| phonegap.js % sensors_demo-Info.plist - | e =
sample-geo.json .
2] style.css e palue
@] xuijs Information Property List (16 items)
4 PhoneGaplib.xcodeproj Icon files (3 items)
Classes Supported interface orientations (if (4 it
Plugins Supported interface orientations (4 items)
Other Sources Item 0 Portrait (top home button)
Resources Item 1 Landscape (right home button) = +:|
splash Item 2 Portrait {bottom hoeme button)
icons Item 3 Landscape (left home button)
E| PhoneCap.plist Localization native development re English
VERSION Bundle display name ${PRODUCT_NAME}
&) sensors_demo-info.p|) Executable file S{EXECUTABLE_NAME}
4 PhoneGapBuildSetting \con file icon.png p
Frameworks B e
Bundle identifier com.yourcompany.sensors_demo
Products foDictionary version 6.0
©Targets IBnu:dha name ${PRODUCT_NAME}
Executables -
J\ Find Results Bundle OS5 Type code APPL
- Buindla crnatar AE Tima cada e
sensors-deme launched @ Succeeded Y

Now let's launch the simulator again and check how it looks:

=S

Carrier =

Postcards

oo 1 Y
(Postlt)

This is a sample postcard,
that | have written from
sunny Vancouver.

A v

That's closer to what we're after, but it would be nice to have the list of postcards
aligned to the right of the textarea. Let's do that.

(1851

Accessing Device Sensors with PhoneGap

3. Gointostyle.css and add the following:

@media all and (orientation:landscape)

#newPostcard ({
width: 200px;
float: left;

}

#postcards-posted {
clear: none;
float: left;

}

.postcard {
clear: none;
margin: 20px;
width: 220px;

}

What we're doing here is querying the orientation of the device, to see whether it's
in the landscape mode. If it is, we override some of the styles that we had defined
above. Simple, no? Fire up the iPhone Simulator again and have another look:

/ Carrier = \

Postcards

This is a sample
postcard, that |
have written from
sunny Vancouver.

Vancouver, B.C.

A »

Fantastic! The next step you might want to do is pull in iScroll, and get the list of
postcards scrolling on the right-hand side. But let's not worry about that for now.

1861

Chapter 7

4.

Now let's throw our code into an Android project and give it a shot. To rotate the
Android emulator, press CTRL-F11 (note that this is an Android emulator running
Android 2.2—older releases may not support these media queries):

-l @ 5554:BasicEmulator

Postcards

This is a sample postcard,
that I have written from
sunny Vancouver,

Vancouver, 8.C.

s i I ol Lol Lo |

e e ey Py e e e ey 7w

R R e e |

[— s
ALT

So much empty space!

As you've probably guessed, orientation queries aren't supported on Android.
Luckily, we can query the device-min-width for a similar effect; if the width is
bigger than, say, 400 pixel, we're almost certainly in landscape mode:

@media (orientation:landscape), (min-device-width: 400px)
#newPostcard {

11871

Accessing Device Sensors with PhoneGap

Note that we're using the standard CSS comma not the word "or".

Also note that this approach is more fallible than the orientation query: this
particular query would fail on a tablet, for instance. But for now, it serves our
purpose. Reinstall the application and fire it up once more:

B0 5554:BasicEmulator

%5 Al @& 8:59em

Postcards

This is a sample
postcard, that I have
written from sunny
Vancouver.

; Vancouver, B.C.

|Post It |

eI TS % TACETF (Y

l—-[“

l—1— —y —
|y | il ALT

Success! A fluid, responsive, cross-platform design.

What just happened?

We were able to use CSS3 media queries to customize the design of our application in a
simple, declarative fashion, without having to subscribe to any JavaScript events or access
any PhoneGap orientation APIs.

It may seem like a bit of an anti-climax—oh, we just write more CSS?—but that's what's
especially nice about media queries: their simplicity. Our presentation code is kept cleanly
away from our behavior, with everything in its right place. Since styling content depending
on orientation is such an essential component of mobile design, it's great that this ubiquitous
use case can be abstracted away with so little effort.

[1881]

Chapter 7

There are a whole host of other things that can be selected for, including the device's
resolution, its DPI, which is especially useful for high resolution displays, such as the iPhone 4,
it's aspect ratio, even the color output quality of the display. While not all of these options are
implemented everywhere, and some aren't implemented anywhere, it's very encouraging for
the future of mobile development and design that so many options are available.

1. What is the main benefit of CSS media queries?

a. Reduce the size of files: clients only download the styles that apply to their
device

b. Target different experiences with a high level of granularity

c. Write more CSS and less JavaScript

2. Whyisorientation preferred to min-device-width, in our example?

a. orientation can change during a user's session, while min-device-
width is fixed

b. orientation isa more precise measure, while min-device-width can
be unpredictable on different devices

C. min-device-width depends on an inference, while orientation tells us
what we want to know

3. Isit necessary to support all orientations on a device?
a. No: you can configure each platform to allow or deny certain orientations

b. Yes: if you do not explicitly support different orientations, a weak substitute
is provided instead

Magnetometer: The missing API

The adroit readers of this book will have noticed that there's another PhoneGap device
sensor we have not covered: the magnetometer, or, to give it's better known name, the
humble compass.

Truthfully, it's not terribly interesting. The PhoneGap magnetometer APl is a simple one
almost identical to the accelerometer, in fact. If you can follow the accelerometer example
above, you can certainly extend your applications to include the compass. And generally,
it's not all that useful on its own; unless you're writing a competitor to Google Maps, it's
qguestionable how much you will need the compass access. But trust me: the API is there,
it works well, and it will show you the right way home.

(1891

Accessing Device Sensors with PhoneGap

In this chapter, we have looked at the device sensor APIs available to PhoneGap
developers, including:

@ Location data, with navigator.geolocation.getCurrentPosition
€ The three-dimensional position of the device, through the accelerometer data

€ Orientation of the device, using CSS queries

Now that we've whetted your appetite with a taste of some of the native capabilities
available to PhoneGap developers, the next chapter will look at the ever-popular camera API.

[1901]

Mobile devices, almost ubiquitously, have one or two cameras mounted on
them, and the photographs associated with them are some of the most obvious
user data for applications to access. While camera access in mobile browsers

is still nascent, PhoneGap has long had support for accessing camera data

and files through applications. Although there's just a single JavaScript that
gets used—navigator.camera.getPicture—the myriad use cases for the
camera APl make it one of the more popular PhoneGap APIs.

In this chapter, we will get to grips with PhoneGap's camera APl and how it can be used; in
particular, we'll:
e Master the getPicture function, and the various options that can be passed to it

¢ Render files from the camera directly onto our page, to be integrated with the rest
of our application

¢ Grab the camera data directly, and save it to our local database

Let's get started right away, by seeing what we can do with the getPicture function.

Time for action — Hello World with the Camera API

As you may well be aware, there is no way to use anything like the camera API from
JavaScript in modern browsers (for now, at least). All the examples in this chapter will
need to run on a device, although you can get started on an emulator.

Accessing Camera Data and Files

We're going to start with the postcard application we developed in Chapter 7, and add
functionality for the user to access her camera; it will become a Picture Postcard application.

1.

Firstly, we'll set up the interaction for the user to choose to add a picture to their
postcard. When the user holds her finger down on the text of the postcard, she will
be prompted to choose a picture to add to the postcard.

Firstly, let's edit the mustache template in app . js, so we can more easily check
whether the target element is the content of a postcard:
var postcardTemplate = '<div class="postcard"><blockgquote
class="contents">"' +

"{{ text }}</blockquote><aside>{{ place }}</aside></div>";

We've added the class attribute that will help XUl confirm that the element being
touched is the one we're looking for.

If we're going to be handling long touches, we also need to ensure that the user's
action isn't interpreted as a selection action; we don't want the user to copy the
text. Thankfully, there are a couple of CSS rules we can add to ensure that these
interactions are disabled, which should have no effect on desktop browsers; add
the webkit specific rules to style.css:

body
-webkit-user-select: none;
-webkit-touch-callout: none;
background: #D9F8BA;
font-family: Helvetica, Arial, sans-serif;

The next thing we need to write is the code to handle the long touches. We're going
to watch for a touchstart event, and log the time that it was fired, along with the
element it was fired on. Then, when a touchend event fires, we're going to check
if the same element is the target, and what the duration of the touch was. If it was
above half a second, we can treat the event as a long touch.

Because the iPhone, in particular, is tricky about event delegation, we'll need to find
this individually each time we add a new postcard. There are a few things going on,
so make sure you keep up.

Here's the new code we're going to add:

var longTouch = {
element: null,
since: null

11921

Chapter 8

function longTouchHandler ()
alert ('long touch!');

var touchHandlers =
start: function (e) {
var now = +(new Date());
longTouch.element = e.target;
longTouch.since = now;
b
end: function (e) {
var now = +(new Date()), duration;
if (longTouch.element == e.target) ({
duration = now - longTouch.since;
if (duration > 500) longTouchHandler (e.target) ;
longTouch = {};

function bindLongTouchListener () {

x$ ('div.postcard:first-child'")
.on('touchstart', touchHandlers.start)
.on('touchend', touchHandlers.end) ;

Right now, of course, we're just stubbing out 1ongTouchHandler, rather than
doing anything useful. Now we just need to modify our appendNewPostcard to
call bindLongTouchListener, so it's bound for every postcard we append:
function appendNewPostcard (text, place) {
x$ ('#postcards-posted') .top (postcardMarkup (text, place)) ;
bindLongTouchListener () ;

[1931

Accessing Camera Data and Files

6.

7.

Let's fire up the code on a device or an emulator, to see what happens.

index.html

long touch!

So there's the event handling; now for the important stuff. Let's make our first call
to getPicture, with a couple of dummy handler functions:
function longTouchHandler () {
navigator.camera.getPicture (function ()
alert ('camera success!');
}, function (e) {
alert ('camera failure!');

3N

11941

Chapter 8

Now for the exciting part: load that up and see what happens.

Erm, nothing's happening on the iPhone Simulator. Ahem. Let's try looking at
the logs:

[F
OO [sensors—demo - Debugger Console —
[Slmulator -4.2] .. 'l E] -;l &' @ Wy ﬁ
Overview Breakpoints Build and Run Tasks Restart Pause Clear Log

[Session started at 2011-082-21 20:35:11 -2800.]

2011-82-21 2@:35:14.25@ sensors-demo[24237:2087] Device initialization: DeviceInfe =
{"name":"iPhone Simulator”,"uuid":"62A2BAC1-4CD4-5A75~-
BEEG-2C17A4FBSAAS" , "platform”:"iPheone
Simulator","gap":"@®.9.3","versien™":"4.2"};

2011-82-21 20:35:14.306 sensors-demo[24237:207] query string = (null)

2011-82-21 20:35:14.387 sensors-deme[24237:207] Docs Path:/Users/andrewlunny/
Library/Application Support/iPhone Simulator/4.2/Applicatiens/BOEFD369-
AGGE-4611-A315-4ATF2F3B4DB6/Documents Library Path:/Users/andrewlunny/Library/
Application Suppert/iPhone Simulater/4.2/Applications/BOEFD369-AG6E-4611~
A315-4ATF2F3BADBE/Library

2011-82-21 20:35:14.315 sensors-demo[24237:207] query string = (null)

2011-82-21 20:35:14.316 sensors-deme[24237:207] Free space is 1321879511e4

2011-82-21 2@:35:14.325 sensors-demo[24237:287] query string = {"frequency":380}

2011-82-21 20:35:17.977 sensors-demo[24237:207] query string = (null)

2011-82-21 20:35:17.978 sensors-deme[24237:207] Camera.getPicture: source type 1

| not available.

sensors—-demeo launched @ Succeeded y

The error we're getting is: Camera.getPicture: source type 1 not available.

8. We'll cover the various source types later in the chapter; for now, know that the
default is type 1, the Camera. The iPhone Simulator has no camera, so no dice on
that count (we will cover using Android later in the chapter, but the same code
should work correctly).

9. Let's modify the code accordingly. Luckily, PhoneGap defines a number of constants
containing the values for the various camera source types. We're going to look in the
Photo Library, as follows:

function longTouchHandler () {
navigator.camera.getPicture (function () {
alert ('camera success!');
}, function (e) ({
alert ('camera failure!');
b |
sourceType:
navigator.camera.PictureSourceType . PHOTOLIBRARY

13N

(1951

Accessing Camera Data and Files

That should go much better; let's try this one:

Carrier = 8:42 PM [

Photo Albums cancel |

No Photos

You can sync photos and videos onto your
IPhone using iTunes

[1961]

Chapter 8

10. Well that's simulator-based development for you—no pictures available, although
our Hello World purposes are basically served. Let's try the same code on my Nexus
One Android phone, where | have some poorly-taken photos of my parents' cat, my
girlfriend's cat, and my old roommate's eviction notice:

21 Camera

[1971

Accessing Camera Data and Files

11. Thisisn't quite perfect—as soon as | picked an image, the application crashed with
a memory warning—in most cases we need to reduce the resolution of the image
before we can bring it into our application. But for a Hello World, we're at least
getting somewhere.

And for the sake of completeness, here's the Android version running with the
camera, rather than the Photo Library as the source (with the appropriately
meta-subject of this book being written):

e e e e g 4 i

i i g I L

Easy enough, no?

What just happened?

We got a minimal proof of concept running with the camera API. With a little bit of code to
handle long presses in our application, we were able to launch some behavior to bring up
the photo chooser and nearly get something back to our application.

At any rate, the clumsy tutorial we just worked through should have been instructive in a few
key ways; we've touched on these before, but this has been the most emphatic example yet.

We've seen before that certain APIs cannot be reliably tested in a web browser, for example,
when we were testing the orientation media queries, there was no way to view the
difference between portrait and landscape orientations. The camera API is arguably

the first one we've seen that is not very useful to test on an emulator either.

[198]

Chapter 8

One thing we were able to tell quite easily was how PhoneGap responds when the source is
unavailable—in this case, the error callback was not called, although the lack of availability
was logged to the console. This will be important when we develop applications that rely on
the camera functionality.

The three major image sources PhoneGap has good support for are PHOTOLIBRARY,
CAMERA, and SAVEDPHOTOALBUM. In case the names are not obvious, here is what those
three different sources access:

4 DPHOTOLIBRARY: Images that the user has saved to her device
€ CAMERA: An image that the user will take with her device

€ SAVEDPHOTOALBUM: Images that the user has taken with her device

The distinction between PHOTOLIBRARY and SAVEDPHOTOALBUM is less important—both
contain images that were not taken within the context of your application—than the
distinction between those two and CAMERA. You should use CAMERA as the image source
when your app requires, or desires, the user to take a photograph within the context of the
application user experience. The other two are useful when you just want a general image
from the user, for example, without the Postcards application, we don't necessarily need an
image to be taken afresh.

The other major thing to be aware of is the capabilities of the devices—an older iPod Touch
or first-generation iPad will not have a camera, for example, so PHOTOLIBRARY will be the
only valid source that you can use.

Aside from sourceType, the most important option to pass to getPicture is
destinationType, whether we want to receive a file path or the image data itself.
We will cover both options later in this chapter.

quality is a numerical option that can be passed, with the encoded quality of the image
specified (between 0 and 100). This is important when dealing with raw image data—on
devices with high-resolution cameras, passing a full-quality image through the JavaScript
callback could have a significant performance impact. A setting of around 50 is usually safe,
though your mileage may vary.

Finally, allowEdit is a simple Boolean value. It is false by default, when true it gives the
user a quick simple editing screen before returning the image back to the web view. At the
time of writing, this option is only available on iOS devices, though it may well come on to
further platforms.

[199]

Accessing Camera Data and Files

Pop quiz: navigator.camera.getPicture

1. Why can we not mock navigator.camera.getPicture on a desktop browser?

a. The browser camera API has a different method signature
b. Not enough of the PhoneGap options are well enough supported

c. There's no JavaScript access to cameras on current desktop browsers

2. Which is the most robust data source for retrieving images?

a. PHOTOLIBRARY, since it's available on devices with or without an attached
camera

b. CAMERS, as it's supported on all PhoneGap platforms

c. All of them: the function will fall back on whatever is available

3. How is the user interface for the image picker defined?
a. By HTML and CSS in your www directory
b. It depends on the platform's operating system

c. It depends on the configuration of the particular device where the
code is executed

What about when we finally get an image=?

Once we get an image, whether from the library or directly from the camera, the most
common uses are to draw the image to the document directly, or to save the image data,
either locally or to a remote server. We'll look at both of these use cases, and illustrate the
two different destinationType values that we can set.

Time for action - Getting a file path to display

1. Inthis example, we're going to grab a file path and display the associated on the
DOM of the page. Let's edit our longTouchHandler from the previous chapter to
do this:

function longTouchHandler () {
navigator.camera.getPicture (function (img) ({
alert ('camera success!');
}, function (e) ({
alert ('camera failure!');
b A
quality: 50,
sourceType:

[200]

Chapter 8

navigator.camera.PictureSourceType . PHOTOLIBRARY,
destinationType: navigator.camera.DestinationType.FILE URI

3N
}

Let's grab an image and test it out:

Alert

camera success!

Great, the app didn't crash this time!

If you do not have a device at hand, you can try loading an image onto an SD card on
an Android emulator; there are many tutorials for doing this online, such as this one:
http://www.streamhead.com/android-tutorial-sd-card/.

2. Let's change the success handler to see exactly what we have passed:

function longTouchHandler () {

navigator.camera.getPicture (function (img)
alert (img) ;

}, function (e) f{
alert ('camera failure!');

b |
quality: 50,
sourceType:
navigator.camera.PictureSourceType . PHOTOLIBRARY,
destinationType: navigator.camera.DestinationType.FILE URI

2011

Accessing Camera Data and Files

Build that, try again, and see what we get:

Alert

content://media/external/
images/media/263

As we expected, a path—not one we would have easily guessed. Note that this path
is specific to my device and my OS—you will see something different on your own
device, and something very different if it's not an Android phone.

3. Solet's do the obvious thing and put this image onto the DOM. First things first,
we'll modify the 1longTouchHandler to draw the image out:

function longTouchHandler (ele)
navigator.camera.getPicture (function (img) ({
try {
x$ (ele) .top('');
} catch(e) {
alert (e) ;
}
}, function (e) ({
alert ('camera failure!');
b |
quality: 50,
sourceType:
navigator.camera.PictureSourceType.PHOTOLIBRARY,
destinationType: navigator.camera.DestinationType.FILE URI

12021

Chapter 8

Note that we've named the ele parameter that gets passed to the function. We've
been passing it all of this time, but ignoring it up until now.

Finally, we need to add a couple of short CSS rules to style the image that gets
drawn to the screen. This one should work:

.postcard img {
width: 300px;
height: 200px;

}

Build the app, reinstall it, and see how things look:

al B T 1133

| Post It |

This is a sample postcard,
that I have written from
sunny Vancouver.

Vancouver, B.C.

Looks delicious! In fact, | may prepare myself another right now.

What just happened?

Well, we managed to do something useful with the Camera API after all. By specifying the
destinationType option to be a file path, we were able to get a value returned from the
getPicture call without crashing the application, and we drew a picture to the screen

to boot.

[2031

Accessing Camera Data and Files

For simple use cases like this, the FILE URI option is clearly the superior one. All we
want is to draw an image to the screen, so we just need a path to that image. And since all
that is being passed to our callback is a simple string, we don't need to worry about any
misbehaving memory when we receive the image. Everything is tickety-boo.

Where is this image, anyway?

In the tutorial, we made a point of alerting the path of the image: content://media/
external/images/media/263. Some things to note about that path:

€ It's Android-specific: the content : //media/external bit means the image is
on the device's external storage (the SD card). Obviously this would not apply to an
iPhone, for instance, where no such storage is available. And if the user switches
their SD card, never mind deletes the image, you may be in trouble.

€ If you do test this code on an iPhone, you may receive a path starting with /tmp
when you alert the path. tmp means temporary! This file will have been created by
PhoneGap, and may only be around as long as your application is active. If you want
to persist that image data, you will have to do a bit more.

What does it all mean? Well, taking a FILE_URTI from the camera API is not the best
option if you need the image to be persisted for any significant length of time. In fact,
your application has, essentially, no control over what happens to that image.

This doesn't affect silly cases like our tutorial, or a wide swath of applications that will use an
image for some temporary purpose. If you do need to persist the image itself, however, there
is another option you can use.

We saw a quick proof of concept of the FILE_URI method, but you should really put it
through the ringer. What kind of file path is given on different operating systems? What
happens if you save the file path to 1ocalStorage, and write out the image tag again
when the application restarts?

Try storing an image path in this way and then deleting the image from your photo library—
does anything interesting happen? Can you access the same paths from multiple PhoneGap
applications—call the camera API, post the path to a remote server, and pull it down in a
different application? This will vary from platform to platform—it's a fun experiment to try.

You want something more persistent than the FILE URI, you say? You want to be able to
store your images indefinitely, and send them off to remote servers? Well, my friend, you will
want some raw image data.

12041

Chapter 8

PhoneGap gives us the option of encoding our images as base 64 data and sending those to
the browser as strings. This gives us more flexibility, since we have the image itself, rather
than just a pointer to it. Using the data: prefix for an image, source, we can do exactly
what we just did with a file path, plus much more. However, it is also risky in terms of
performance: when devices with 10 gigapixel cameras start to be released, our JavaScript
functions will have some pretty huge strings to deal with. Let's start to dip our toes.

Time for action - Saving pictures

Don't believe that we can do the same thing as above using raw image data? Okay, I'll
prove it:

1. Let's modify the longTouchHandler in a couple of key ways:

function longTouchHandler (ele) {
navigator.camera.getPicture (function (img) {
try {
alert (img) ;
x$ (ele) .top('<img src="data:image/png;base64,' + img +
th>t);
} catch(e) {
alert (e) ;
}
}, function (e) {
alert ('camera failure!');
b Ao
quality: 50,
sourceType: navigator.camera.PictureSourceType.
PHOTOLIBRARY,
destinationType: navigator.camera.DestinationType.DATA URL

3N
}

There at the bottom, we've switched our destinationType—as you will note, we
now want a DATA_URL.

The other key point is the element we inserted looks a little different: instead of
setting the src attribute of the img tag to whatever the success handler is passed,
we prefix that data with data:image/png;base64,. Makes sense, right? We've
also thrown in an alert call, to ensure we can see what we're getting passed.

[2051]

Accessing Camera Data and Files

Save it, build it, run it:

Alert

/9j/4AAQSKZJRgABAQAAAQABA
AD/2wBDABALDA4MChAODQ4
SERATGCgaGBYWGDEjJR00O]M
9PDkzODJASFXOQERXRTCAUGT
RV19iZ2hnPk1xeXBkeFxIZ2P/2
WBDARESEhgVGC8aGigjQjhCY2
NjY2NjY2NjY2NjY2NjY2NjY2NjY
2NjY2NjY2NjY2NjY2NjY2NjY2Nj
Y2NjY2NjY2P/
WAARCAYCIADASIAAREBAXEB/
8QAHWAAAQUBAQEBAQEAAAA

AAAAAAAECAWQFBgCICQoL/8Q
AtRAAAgEDAWIEAWUFBAQAAAF
9AQIDAAQRBRINMUEGE1FhBY)
xFDKBkaEIIOKxwRVSOfAkM2Jyg
gk lJicoK 30Dk

Postcards

| Post It |

This is a sample postcard,
that I have written from
sunny Vancouver.

Another delicious beverage! Well I'm a regular Ernest Hemingway.

[2061]

Chapter 8

Yes yes, very cool, but we could do that already. Let's get a bit more creative, and
save the image, so we never lose that memory.

We're going to make a few changes to handle this. First, we'll add an img tag to the
document to begin with, so we know where to put the saved one—add it into this
spot in your index.html file:
<div id="main">
<hl id="pageTitle">Postcards</hl>

<form id="newPostcard">
and modify the CSS accordingly:
#postcardIimage {
background: #CCF;
border: 1lpx solid black;
margin: auto;
width: 300px;
height: 200px;

}

This gives us a canvas (not a <canvas>, mind) to draw on:

Postcards

Post It

This is a sample postcard,
that I have written from
sunny Vancouver.

2071

Accessing Camera Data and Files

3.

Now, the functions to save and load the image:

function savelmage (data) ({
window.localStorage.setItem('andrews.drink', data);
return true;

function loadImage () ({
return window.localStorage.getItem('andrews.drink') ;

Straightforward enough, I'm sure. Now modify our getPicture call based on
these changes:

function longTouchHandler (ele) ({
navigator.camera.getPicture (function (img)
if (saveImage (img))
xS ('#postcardImage') .attr('src', 'data:image/
png;base64,' + img) ;
} else {
alert ('Oh no, something spilled!');
}
}, function (e) {
alert ('camera failure!');
b o
quality: 50,
sourceType:
navigator.camera.PictureSourceType.PHOTOLIBRARY,
destinationType: navigator.camera.DestinationType.DATA URL

3N

And then add some code in the deviceready function to populate our image if
there's one already saved:
var img;
if (img = loadImage())
x$ ('#postcardImage') .attr('src', 'data:image/png;base64, ' +
img) ;

Now let's test this out; choose an image as usual:

[208]

Chapter 8

Tul B © 12225

Postcards

Post It |

This is a sample postcard,
that I have written from
sunny Vancouver.

7. Now the scary bit—delete the image, and reopen the application.

Select All 1 item Deselect All

ﬁ]‘ Confirm Delete

@ Cancel

M Delete @ More

Reopen the application and it's still there! Amazing!

[2091]

Accessing Camera Data and Files

What just happened?

We saw the primary benefit of using the DATA_ URL destination type as opposed to the
FILE URI—Yyou get control over the image data itself. There are a number of cases where
this is obviously far superior:

€ You don't want the pesky user to delete their images. Silly user!

€ You want to send the image to a remote server. Since there's no way to dynamically
populate an <input type="file"> tagthrough JavaScript, and most mobile
devices don't support that input type anyway, sending the raw data through an
XmlHttpRequest is the best bet for most PhoneGap use cases.

€ Manipulating the image data: with the base-64 encoded data, it's easy to draw the
given image to a <canvas> tag on the page and apply some transformations. This is
possible using a file path also, but due to the vagaries of different paths on different
platforms, it's liable to hang up with strange issues.

Thanks to the data-uri support in all modern browsers, we can duplicate all of the use cases
for using a file path while also allowing us to persist the data itself.

While there are lots of great use cases for the DATA URL option, it's unlikely to be the
default in PhoneGap moving forward. From an application stability perspective, sending large
strings back and forth between native code and the JavaScript environment is very risky.

If this is something that happens multiple times in a single session, your application could
consume enough memory to crash it entirely.

The quality option is your friend; we have been setting quality to 50, so it is half the
quality of the source image. The quality is a value between 0 and 100; unfortunately, there's
no way to specify "give me the highest quality that fits in the available memory". This seems
safe for the time being; one would imagine that as devices increase their camera resolution,
they also increase their available memory. However, for the nth time, we'll remind you to
test all of your applications on real devices, with real use cases. If your application is seeing
crashes, you can try tuning the quality down a bit further.

Pop quiz: Destination types

1. Which destinationType is best suited for each of the following applications?
a. A photo-sharing application, which sends images to the user's friends

b. A high-resolution image viewer, where users can zoom into the
high-megapixel pictures taken with their camera

c. Animage manipulation application, allowing images to be stretched and
squeezed with a multitouch interface

[210]

Chapter 8

2. Why do data-uri image sources require the data:image/png;base64, prefix?
a. To stop the browser interpreting them as file paths
b. To stop the browser interpreting them as jpeg images

c. To stop the browser from reloading the page

3. Why are file paths not a good choice for persistent data?
a. The same path won't be equivalent on different devices

b. Images can be modified or deleted without the knowledge of
your application

c. Access restrictions can prevent your application from displaying the
image itself.

A lot of great applications that use the cameras on mobile devices don't use still images; they
are used to edit videos, or to access a live video stream for augmented reality, or even just
video chat. How can you do this with PhoneGap?

As of PhoneGap 1.0, a new Media Capture APl has been added to the project. The Media
Capture APl is designed as a generic interface for accessing image, audio, and video data. Image
data is accessed through a captureImage function that is very similar to the getPicture
function; similar interfaces are available for video and audio. Like navigator.camera.
getPicture, the capture functions call out to the native controls for recording data (audio
and video, as well as images), and return the captured data back to the PhoneGap application.

Unfortunately, the state of HTML5's video and audio APIs mean there's not a whole lot you
can do with the data once you receive it; you can display the data and, in the case of video,
do some CSS-based manipulation, but for more complex work, you'll need to delve into the
native code itself.

In this chapter, we have mastered the PhoneGap Camera API, by:

€ Getting familiar with navigator.camera.getPicture and it's many quirks
@ Grabbing file paths to draw images directly to our DOM
€ Accessing raw image data for persistent storage of images
Does it seem like PhoneGap APIs are getting more complicated, and less predictable in their

behavior? Are you beginning to feel the pain of mobile development pushing through our
cross-platform veneer? Then you're ready for the next chapter—the contacts API!

[21]

A slight etymological digression: the name PhoneGap derives from the term
phone, a common abbreviation used in the twentieth century to refer to

the telephone, a communications device quite popular in that era. Like the
watch, the calculator, or the book, the telephone was once a popular piece

of technology, but has been superseded by the Internet-connected mobile
computer we all carry in our pockets. A twentieth-century person would use
their phone to stay in touch with their personal contacts—nowadays, we do the
same thing with JavaScript.

PhoneGap allows us to access a user's contacts programmatically, with their permission,
to perform a host of actions. In this chapter, we will learn:

€ How to read from the contacts: to specify a filter and retrieve every contact that
matches the filter

€ The differences of access and permission available on different mobile platforms:
exactly how much access we will be granted to a user's contacts

€ How to create new contacts that can be accessed by our own application or by
others on the system

We will kick things off with an example of reading contacts from the device.

Reading and Writing to Contacts

Time for action — navigator.service.contacts.find

After the last few chapters, our postcard application has gotten a little unwieldy, so we will
start with a brand-new application. Create a new directory for this application, called Find
A Friend, and we can kick things off:

1. Let's start by creating our markup and our styles for the new application. Create a
file called index.html, with the following contents:

<html>

<head>
<title>Find A Friend</title>
<link rel="stylesheet" href="style.css" />
<meta name="viewport" content="width=device-width,initial-
scale=1.0" />

</head>

<body>

<hl>Find A Friend</hl>

<input type="text" id="friendName" placeholder="What's

your

friend's name?" />

<button id="friendSubmit">Submit</buttons>
</body>
<script src="phonegap.js"></scripts>
<script src="xui.js"></script>
<script src="mustache.js"></scripts>
<script src="app.js"></script>

</html>

2. Be sure to copy xui.js and mustache. js into your new application—we will
need those later on. The phonegap . js file will be automatically generated by each
platform, and we'll start a brand-new app . js file shortly.

Now create a style.css file with the following code:

body {
background: #69F;
font-family: Helvetica Neue, Arial;
}
hl, input, button {
-webkit-box-shadow: #03c 4px 4px 3pXx;
border-radius: 15px;
display: block;
margin: 8% auto;
padding: 3% 5%;
width: 65%;

[214]

Chapter 9

}

h1l {
background: blue;
color: white;
text-align: center;

}

input, button ({
-webkit-appearance: none;
border: transparent;
font-gize: 0.8em;

}

button {
background: #06C;
color: #9CF;
font-weight: bold;

}

button:active
background: #9CF;
color: #06C;

Open things up in Safari to check out how they look:

0006 Find A Friend
t | |7 file:///Users/alunny/Dr: & | [QF Google »

Find A Friend

What's your friend's name?

Submit

The color scheme may be a little derivative, but here we are

[215]

Reading and Writing to Contacts

5.

Now let's write the JavaScript—here's a starting point for our app.js:

var TAP = ('ontouchend' in window) ? 'touchend' : 'click';

document .addEventListener ('DOMContentLoaded', function () {

3N

x$ ('#friendSubmit') .on (TAP, function ()
var filter = x$('#friendName') [0] .value;

if (!filter)
// no contents
return;
} else {
// name entered
alert ("we're looking for " + filter);

3N

Some simple DOM stuff there—if the user has entered something to search for
when touching the Submit button, we need to find that contact. Note the TAP
variable at the top: conditionally binding the touchend event allows us to get
the best performance on mobile devices while still being able to debug in our
desktop browser.

Now we need to actually query the device's contacts. We're going to write
a separate function to handle the call to contacts.create, since it is quite
a long-winded one:

function findContactByName (name, callback) {

function onError () ({
alert ('Error: unable to read contacts');

Vi

var fields = ["displayName", "name"],
options = new ContactFindOptions() ;

options.filter = name;
options.multiple = true;

// find contacts

navigator.service.contacts.find(fields, callback, onError,
options) ;

(2161

Chapter 9

7.

8.

Don't worry about what we need to do to make the actual call—we can think about
that later on. For now, just note that we pass a name and callback function, which
will execute when we get the results back.

Here is the modified code to call findContactByName:

if (1filter) {
// no contents

return;
} else {
findContactByName (filter, function (contacts)
alert (contacts.length + ' contact(s) found matching "' +
filter + '"');

3N

Let's try this one in the iPhone Simulator first:

index.html

Error: unable to read contacts

OK

Not great: unfortunately, this is one of those cases where the simulator behavior
does now map very well to that of the device.

[2111

Reading and Writing to Contacts

9. If we test on an actual device, we can see some useful results; here is the expected
result, as seen on my iPod Touch:

m‘h‘ﬁﬁjd

Friend

index.html

1 contact(s) found matching "Hugo"

——————
OK

10. And for good measure, let's ensure | can find Hugo on my Android phone with the
same code:

Alert

2 contact(s) found matching

"hugo"

Great! Now let's do something with it.

[218]

Chapter 9

11. As before, we're going to use the Mustache templating library to easily insert some
new contents into our DOM. Let's start by adding a container into the DOM
to contain the list of matching contacts:

<body>
<hl>Find A Friend</hl>
<input type="text" id="friendName" placeholder="What's your
friend's name?" />
<button id="friendSubmit">Submit</buttons>
<ul id="friendsList">
</body>
and we'll style that list appropriately:
hl, input, button, ul {
display: block;
margin: 8% auto;
padding: 3% 5%;
width: 65%;

ul
color: #CCF;
font-weight: bold;

}

12. Now we need the template for the list item itself. Add this declaration to app. js:

var item = '{{ name }}</1li>"';
and let's modify the callback to contacts.find:
if (!filter)

// no contents

return;
} else {

findContactByName (filter, function (contacts) ({

var 1 = 0, contactItem, data;

for (i; i<contacts.length; i++)
data = { name: contacts[i] .name.formatted }
contactItem = Mustache.to_html (item, data);
xS ('#friendsList') .bottom(contactItem) ;
x$ ('#friendslList') .bottom(contacts[i] .name) ;

[219]

Reading and Writing to Contacts

13. Note that we need to modify the resulting contacts a bit—the objects that are
returned are a little complex, so we're massaging them a little before passing to
Mustache. In this case, the APIs are the same between iPhone and Android, so we
just need to get the formatted property of the name property of the each contact
object and pass it on. Phew.

Let's confirm that this looks good on our iPod:

Find A
Friend

Submit

» Hugo Lunny

And now check things on Android...

Find A
Friend

Submit

¢ hugo lunny

And now we're done!

12201

Chapter 9

What just happened?

We were able to specify a filter for the Contacts API to retrieve and access a group of
contacts. We also were able to specify which fields for the contact were returned from the
function call, and deal with the resulting object in order to display the contact information
to the user.

Earlier releases of PhoneGap have wildly divergent Contacts APIs—the developers were
essentially designing their own APIs, with the goal of providing as much of the available
native functionality to PhoneGap developers as possible, with a suitably intuitive JavaScript
API. As of PhoneGap 0.9.4, the API has begun to stabilize around that specified by the W3C's
Device API working group (DAP)—if you're curious, this specification can be viewed at
http://dev.w3.0rg/2009/dap/contacts/.

The goal of the W3C's work is to provide unified access to a single address book owned by
the user, and to do so in an appropriately secure fashion. The user, according to the spec,
should be allowed to freely specify and restrict the kinds of data that are exposed by the
Contacts API. In my opinion, this led to a fairly obtuse and unintuitive interface for accessing
the device; that said, as it's the specification that device manufacturers will likely conform
to once these APIs make it into web browsers, it's worth the investment to learn.

In practice, with PhoneGap's focus on building these APIs on existing mobile platforms,
such an interface can be a challenge to work around. For example, with the existing port of
PhoneGap to Palm's webOS 1.x platform, the only contacts that can be read are the ones
that the application has written itself—laudable from a security perspective, but next to
useless for application developers. Thankfully, on the the major platforms we have been
focusing on, there are pretty extensive facilities available to application developers.

One of the curious features of the DAP specification that we've seen is the
ContactFindOptions object. A device could possibly have hundreds or thousands of contacts
in its address book, and so narrowing down the quantity of results returned is essentially

to maintain acceptable performance in our applications.

The ContactFindOptions object, as defined by the DAP and implemented in PhoneGap,
contains three key fields:
@ filter: A string to filter the returned results by

€ multiple: A Boolean value that indicates whether multiple contact objects should be
returned (the default is true)

@ updatedSince: A JavaScript date object that limits the returned contact objects
based on when they were last updated

[221]

Reading and Writing to Contacts

At the time of writing, the updatedsince field is only supported on iOS devices. Typically,
you'll want to use the filter option to limit the particular contacts that are returned—in most
cases, you'll want multiple results, at least to give the user the choice of only selecting a
single one.

The other unusual parameter that gets passed to navigator.services.contacts.find
is the list of fields to be returned. The PhoneGap documentation lists 17 different fields that
can be requested from the device; these range from the obvious, such as name and emails,
to the imprecise, such as note and categories.

Of particular note are the fields that have the ContactField type, including phoneNumbers,
emails, categories, and urls. Each of these fields can return an array of ContactField
objects that have three properties:

@ type: Adescriptive string about this field. For example, different phone numbers for
a contact could have the types home, work, and mobile.

@ value: The value of this field. In the above example, the phone number for each of
the three objects would be the value attribute.

€@ pref: A Boolean value that indicates which of the fields is the preferred entry.
Typically, only one of all the fields would return true.

In many cases, such as phoneNumbers, all of these fields are set on the device's address
book itself. For others, such as the images field, there may be unique values: in the case of
images, the type property returns either url (for a path to the image) or base64 (where the
value property is the encoded image-data).

Ultimately, the best way to get started is to dive right in; the APIs are still in flux (and may
well have changed by the time you're reading this book) and different platforms will expose
different kinds of data to the user. That's the nice thing about using PhoneGap—it makes it
really easy to get your hands dirty.

The previous notes should have made it pretty clear that contact data can be especially
heterogeneous, and dependent on the version of PhoneGap, the version of the underlying
operating system, and the content a specific user will have saved to their device.

Can you modify our example code to get more useful data from your own device? How many
of your contacts have associated emails or phone numbers, and how easy is it to work with
those contact objects? Can you write cross-platform code that will work with richer data
than we were able to use?

12221

Chapter 9

Writing contact data

Of course, dealing with existing contact data is only half of the fun. PhoneGap also exposes
APIs for creating new contacts, and saving those to the device's global address book, as it
is exposed to applications (usually inside the device's internal storage). Let's get started
working with these APIs.

Time for action — Making friends

First, we can set up the view for our new Make A Friend action:

1. Let's modify the markup on our index.html appropriately:

<body>
<gection id="find">
<hl>Find A Friend</hl>
<input type="text" id="friendName" placeholder="What's
your
friend's name?" />
<button id="friendSubmit">Submit</buttons>
<ul id="friendsList">
Make a new friend
</section>

<gsection id="make" style="display: none">
<hlsMake A Friend</hl>
<form id="newFriend"s>
<input type="text" id="newName" placeholder="What's
your friend's name?" />
<input type="tel" id="newPhone" placeholder="What's
your friend's phone number?" />
<input type="email" id="newEmail" placeholder="What's
your friend's email?" />
</form>
<button id="newSubmit"s>Submit</buttons>
Find an old friend
</section>
</body>
Now style our new links appropriately (in style.css):
hl, input, button, ul, a {
display: block;
margin: 8% auto;
padding: 3% 5%;
width: 65%;

12231

Reading and Writing to Contacts

a {
color: #fff;
text-align: center;
text-decoration: none;
}

2. Add the JavaScript to app . js to show and hide our new view:

function showSection (sect) {
x$ ('section') .each(function () {
if (this.id == sect)
x$ (this) .setStyle('display', 'block');
else
x$ (this) .setStyle('display', 'none');
P
}

document .addEventListener ('DOMContentLoaded', function () {
/...
x$('a') .on(TAP, function () ({
if (this.target)
showSection(this.target) ;
return false;

I3F;
I3F;

3. Now check all that in Safari to make sure everything works okay:

o060 Find A Friend
+ | # file://fUsers/alunny/Dropb. & | [Qr Google »

Make A Friend

What's your friend's name?
What's your friend's phone num

What's your friend's email?

Submit

Find an old friend

[224]

Chapter 9

4. Now for the fun stuff—let's write a function that creates the new contact based on
what the user enters. Here's a first pass:

function createAndSaveContact (details, callback) ({
var friend, number, email;

try {
friend = navigator.service.contacts.create() ;

friend.displayName = details.name;
friend.nickname = details.name;

number = new ContactField('default', details.phone, true);

friend.phoneNumbers = [number];
email = new ContactField('default', details.email, true);
friend.emails = [email];

friend.save() ;

callback.call(this, friend);
} catch (e) {
alert (e) ;

}

Here is the verbose Contacts API in practice—lots of Java-ish new object creation,
along with synchronous methods (which are somewhat of an anomaly with
PhoneGap APIs).

5. Now, we just need to hook that API up to the submit button on the Make A
Friend view—as always, make sure that this event handling code is placed
in the DOMContentLoaded block of code:

x$ ('#newSubmit') .on (TAP, function () {
var name = x$('#newName') [0] .value,
email = x$('#newEmail') [0] .value,
phone = x$('#newPhone') [0] .value;

createAndSaveContact ({
name: name,
email: email,
phone: phone
}, function (newContact) ({
alert ("saved new contact " + newContact.displayName) ;

12251

Reading and Writing to Contacts

showSection('find') ;

3N

We can test that code in the iPhone Simulator, and it will succeed without error:

Friend

index.html

saved new contact Otis Redding

OK

6. Unfortunately, when we try to verify the code, we're still unable to access the
contacts through the simulator. We'll have to test again on a real device.

| tried on my iPod Touch, and it did successfully save to the device's Address Book.
Here's what was saved:

12261

Chapter 9

iPod

9)
3
=
B

L All Contacts
A -

“Otis Redding”

mobile 1 (234) 567-860

home oredding@stax.com

7. There are a couple of gotchas with getting the same code to work correctly on
Android phone:

O A newly added contact will not display by default unless it is associated with
the user's Google Account. To fix this, go to Display Options on the menu
for the Contacts application, expand the section with your Google Account,
and ensure the All Other Contacts option is selected.

O In my testing, | had to add the following permission to my Android
manifest file:

<uses-permission android:name="android.permission.GET_
ACCOUNTS" />

O This may just have been an anomaly—the READ CONTACTS and
WRITE CONTACTS permissions should be sufficient.

[2211

Reading and Writing to Contacts

Once both these are in place, you should find something like this:

HEO BEI@Q 1:13am

¢ B

oredding@stax.com

Email =
1234567890

N GEINE
Otis Redding

8. With some further debugging of the iOS build, an interesting gotcha has emerged:

O The type field for the ContactField attributes can not take an arbitrary
value—it's much happier with either home, mobile, or work

Taking account of this current quirk, my modified createAndSaveContact looks
like this:

function createAndSaveContact (details, callback) {
var friend, number, email;

try {
friend = navigator.service.contacts.create() ;

friend.displayName = details.name;
friend.nickname = details.name;

number = new ContactField('home', details.phone, true);
friend.phoneNumbers = [number];

email = new ContactField('home', details.email, true) ;
friend.emails = [email];

12281

Chapter 9

friend.save() ;

callback.call(this, friend);
} catch (e) {
alert (e) ;

}

And | even figured out how to view the Contacts application on the iPhone Simulator
(press the home button, then press the Contacts icon) like so:

“Otis Redding”

(678) 912-3450

home oredding@stax.com

Text Message Add to Favorites

What just happened?

Well, after a great deal of amateurish hemming and hawing, we managed to write some
cross-platform that successfully created a new contact on the system Address Book based
on user input. That's a real feather on our caps.

12291

Reading and Writing to Contacts

| imagine it's evident by now, but | have a real distaste for the Contacts API as it
stands—lots of verbosity and ceremony around a fairly simple concept. There are callbacks
that we can pass to contact . save, but there's no easy way to perform validation on the
contact objects that are passed to the device, or to know exactly what will be presented

to the user without manually testing on individual devices. Unfortunately, that's simply
the nature of this particular beast—since contact management is such an intrinsic part of
modern smartphones, it's no surprise that the individual implementations differ so wildly.

What if | encounter a new problem?

Because of the peculiarly difficult problems of the Contacts API—honestly, it never does
what | want it to—you may well encounter new roadblocks that have not been covered in
this chapter.

The two best resources are the PhoneGap mailing list, hosted on Google Groups and easily
found, and the PhoneGap documentation website, available at http://docs.phonegap.
com. The documentation website gives the best listing of the various API calls available,
which parameters are expected for which calls, and what arguments are passed to your
callback variables. In the case of the Contacts API, with so must exhaustive detail to work
through, it's an invaluable resource.

The mailing list, with a few thousand active PhoneGap developers, is just as useful. In
particular, the mailing list is helpful for one-off or device-specific problems that you may
encounter. The Android problem | saw above—where the contacts were definitely being
written to the device, but | could not see them without changing my Contacts settings—was
detailed on the mailing list, and your problem may well be too.

ContactFields, ContactName, and similar objects

In all of the examples above, I've used PhoneGap's JavaScript constructors to create the
contact object—new Contact and new ContactField, and so forth. This is a fairly
common idiom in statically typed languages, such as Java, but many JavaScript developers
will be more familiar with a loose, essentially duck-typing approach.

Your PhoneGap code is of course just JavaScript, so you can use the facilities of the language:
creating lightweight hashes rather than using the new operator, leaving optional arguments
out of function calls, and defining anonymous inline functions for callbacks. The main
benefit of using these constructors for the Contacts APl is that they pre-populate (with null
values) all of the myriad fields that will be expected by the native code. If you don't do this,
unexpected behavior can arise.

The safest bet, especially if you're not comfortable digging through the PhoneGap source
code yourself, is to use the tools that the framework makes available, for the most
predictable outcomes.

2301

Chapter 9

PhoneGap gives fairly unfettered read and write access to a user's address book, and it's very
easy to abuse that access. It should go without saying, but if you're aiming to build a valuable
application for your own company or for your clients, you should be very careful with any
contacts data you access.

In particular, make a point of not saving any data or sending it back to a remote server
without the explicit permission of the user, don't send any communications to any of the
user's contacts (again, unless the user accedes explicitly), and don't write new contacts
indiscriminately into the address book. It would be a good way to get your application
banished from any App Stores or App Markets in which it was listed, which will be a good
way to ensure that nobody uses the application at all.

Pop quiz: Contacts

1. Which fields need to be set before contact .save () can be called?
a. emails, phoneNumbers, and name
b. name, displayName, and nickname

c. None, strictly speaking

2. Why is it a good idea to set a filter when calling contacts.find () ?
a. Retrieving too many contacts could crash your application
b. To prevent all of the contact fields from being returned

c. To comply with the device's permissions rules

3. Why are phoneNumbers and emails set as arrays, rather than string fields?
a. To separate the field's role from its value
b. A contact can have multiple phone numbers and email addresses

c. Because that's what the W3C's DAP group suggests

2311

Reading and Writing to Contacts

With much struggle, we've gotten the hang of the PhoneGap Contacts API in this chapter, in
order to:

€ Find contacts on the device's address book, and display information about them to
the user

& Create new contacts, and persist them back to the address book
€ Understand the various contact objects and interfaces, to better make full use
of them

Had enough fun yet? If the Contacts APl seemed like a bit of a cross-browser struggle, you
ain't seen nothing yet. Yes my friend, the next chapter is full of unrestrained, no holds-barred
native code, in its entire majestic, uh, majesty. That's right, it's PhoneGap Plugins!

12321

10

Over the past few chapters, we've discussed the core PhoneGap APIs—a

set of JavaScript bridges allowing access to native functionality on mobile
devices. While PhoneGap aims to provide an extensive set of APIs to support
the most common use cases on mobile devices—accessing device sensors and
user data—there's no way it can provide an exhaustive, one-to-one mapping
for every device API. The goal is really to provide a cross-section of the most
common native functionality that will be supported on the major mobile
platforms.

When other APIs are required for your application, PhoneGap provides robust plugin
architecture, allowing developers to easily add new functionality to their applications and
integrate it with their existing PhoneGap applications. In this chapter, we will see how to:

€ Integrate an existing PhoneGap plugin into our application, to extend its
functionality

@ Write a quick battery status plugin for iOS, allowing us to see the battery level for
our device

@ Port our battery plugin to iOS and Android, using the same JavaScript API to access
the information on all devices

Let's kick things off by integrating an existing plugin.

PhoneGap Plugins

At the time of writing, the canonical place to get PhoneGap plugins is a GitHub repository—
http://github.com/phonegap/phonegap-plugins. If you go to that URL, you'll see a
directory structure like the following:

phonegap-plugins /
history
Android/ May @7, 2011 TTS Plugin [macdonst]
BlackBerry/ October 86, 2010 added dirs for other devices [purplecabbage]
Palm/ October 06, 2010 added dirs for other devices [purplecabbage]
iPhone/ 4 days ago Fixed another typo [mweimerskirch]
.gitignore August 27, 2010 Added exclusions to .gitignore [shazron]
README February @3, 2010 Added MIT License [purplecabbage]

The first important thing you should know about PhoneGap plugins is that they have to be
implemented separately for each platform they support. Although, in the best case, each of
the platforms has the same JavaScript API, the native code cannot be shared.

Use the following command to get a local copy of PhoneGap plugins on your system:
git clone https://github.com/phonegap/phonegap-plugins.git

The plugin we'll integrate is one that has been implemented across different
platforms—the ChildBrowser plugin, that allows us to display external websites
in the context of our application.

Time for action - Integrating ChildBrowser

1. Getyour Find A Friend application that we built in Chapter 9. We're going to extend
that by adding a link to the bottom of the page which explains what a friend is.

Add this link to the bottom of your body tag, just below the last section:

What is this
friendship you speak of?

12341

Chapter 10

2.

Make sure this code is in a PhoneGap iPhone project, and run the resulting code in
the iPhone simulator. Click on the link, and see what happens:

.all Carrier = 4:45 PM (==

WX/ | Friendship Q)

Tip! Click the "W" above to get access to
extra features!

Friendship

"Friend" redirects here. For other uses, see Friend

(disambiguation).

As we can see, the user has been kicked out of our application and Mobile Safari has
been opened. This is not the ideal user experience—the ChildBrowser plugin aims to
accommodate for this.

The ChildBrowser plugin for iOS, written by Jesse MacFadyen, is located under your
clone of phonegap-plugins at phonegap-plugins/iPhone/ChildBrowser.

It includes an iPhone view controller (a user interface class) and a PGPlugin
subclass—we'll cover later on how PGPlugin works. There are also some

resources for the view display, and a JavaScript file.

[2351]

PhoneGap Plugins

Due to how Xcode works, we'll have to drag the files into our Xcode project to

ensure that they're added to the project:

amn

® @ fi... + -» Running findAFriend on iPhone Simulator

Run Stop Scheme ! Project (11

[findAFriend - README

El 0

Organizer

|mm ® &4 = » B

| 4 » | | |README) No Selection

- findAFriend

ﬁg] phonegap.0.9.5.js
ﬁg] phonegap.0.9.5.min.js

MERHWE"':“LU"L

1 target, i0S SDK 4.3 M| the www folder.
v Ewww a
s app.Js
& index.html
is mustache.js 606 [ChildBrowser

ks style.css ¥ DEVICES
EE] Huijs Q Macintosh HD
v [findAFriend (%) Remote Disc arrow_ri 4

» &% PhoneGap.framework W but_refresh.png Today, 4:08 PM

¥ A Resotircesio v ':/LN?CES is ChildBrowser.js Today, 4:08 PM
ar {aw ieemst.png Loelonny [childBrowserCommand.h Today, 4:08 PM
e dsplash g KA Desktop

v [| Classes G dev

Eit;e%te:s(‘:’giﬁ}'ﬁand.h 3 Downloads
pDelegate.m

.1 7] Developer

Put the .h and .m files of your plugin here. The .js files of your plugin belong in

@ Dropbox ChildBrowserViewController. Today, 4:08 PM
compass.png Today, 4:08 PM

my. m%ﬂﬁHg\'fﬂiéfﬂ"‘lm”errmS_MRCH FOF » [FBConnectExample Today, 4:08 PM
» CofFrinewearkerViewControll8r.xib =| README.txt Today, 4:08 PM
wi_FProducts. hrg
[- .] Yalr
2} Macintosh HD »] Us » ¢} alu » [de » [ph » (] iPhone » [] ChildBrowser
N m o % 1t |findAFriend
Local 5 Q | All Qutput & (_Clear) (I JHHI (W)
GNU gdb £.3.50-28050815 (Apple version gdb-1518) (Sa
t Feb 12 82:52:12 UTC 2011) [‘
Copyright 2884 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Pub w
lic License, and you are
welcome to change it and/or distribute copies of it 7
+ OEGA S T [P i PR ¥ |

To ensure the import works correctly, check that the files are copied into your

project, and that the appropriate references are created in your project:

Chapter 10

Choose options for adding these files:

/“"—E

Destination E Copy items into destination group's folder (if needed)

Folders C Create groups for any added folders
(®) Create folder references for any added folders

Add to targets [;A findAFriend

Cancel) (Finish)

]
—l

As of PhoneGap 1.0, you will also need to edit the PhoneGap.plist file,
under the Supporting Files group of your project in Xcode. Find the Plugins
dictionary and add a new row, with the key ChildBrowserCommand and the
value ChildBrowserCommand.

It's probably a good idea at this point to do a quick build in Xcode, to ensure that
everything has been imported correctly.

You can then copy the ChildBrowser. js file directly into your www directory, and
modify index.html to ensure it's included in the page:

<script src="phonegap.js"></script>

<script src="ChildBrowser.js"></script>

<script src="xui.js"></scripts>

ChildBrowser is written to not initialize the JavaScript object automatically; we will
need to initialize the plugin ourselves to access it in our application.

Add the following code to the bottom of app.js:

document .addEventListener ('deviceready', function () {
ChildBrowser.install () ;
}, false);

2311

PhoneGap Plugins

And then let's modify our link handler code once more to call ChildBrowser, if we
have an external link:
x$('a') .on(TAP, function () {
if (this.target) {
showSection(this.target) ;
return false;
} else if (/*http/.test(this.href)) {
if (window.plugins && window.plugins.childBrowser)
window.plugins.childBrowser.showWebPage (this.href) ;
return false;

3N

7. Make sure all the latest code is in our Xcode project, clean and build again, and we
should see the link load in a child browser:

—

il Carrier =

Friendship

"Friend" redirects here. For other uses, see Friend
(disambiguation).

. s -
Friends at ease

Friendship is a form of interpersonal relationship
generally considered to be closer than association,
although there is a range of degrees of intimacy in

httpz//en.m.wikipedia. orgiwiki/Friendship

“Done L ()

[238]

Chapter 10

8.

That's all well and good, but how can we get the same experience on Android?
There is indeed an Android port of ChildBrowser, written by Bryce Curtis and
located at phonegap-plugins/Android/ChildBrowser

There is a bit more ceremony involved in installing an Android plugin, but on

the JavaScript side, we don't have to do much differently. Copy the Android
childbrowser.js file into the assets/www directory of your PhoneGap Android
project. I've renamed the file in my project to ChildBrowser.js, so |l don't need to
change the script tagin my index.html file. The Android plugin does not require
acallto childBrowser.install, however, we'll add an if statement to prevent
that call from throwing an error:

document .addEventListener ('deviceready', function () {
if (window.ChildBrowser && ChildBrowser.install)
ChildBrowser.install () ;
}, false);

Now we need to add the Java ChildBrowser class into our PhoneGap Android
project. Create a sub-directory in your project called src/com/phonegap/
plugins/childBrowser and copy ChildBrowser.java into there.

10. The final steps are to register the plugin. Add the ChildBrowser activity to

your AndroidManifest .xml file, to ensure that the OS knows about the new
plugin—the details of this are listed in the plugin's README file. Then add the
plugin's key to your app's res/xml/plugins.xml file, as follows:

<plugin name="ChildBrowser" value="com.phonegap.plugins.
childBrowser.ChildBrowser"/>

[2391]

PhoneGap Plugins

Now you can load your application in the Android simulator, and check out the link:

Ml & s5:37m
http:;’!en.m.wikipedia.or...

W |Friendship C_U

l Tip! Click the "W" above to get access to ‘

extra features!

Friendship

"Friend" redirects here. For ather uses, see Friend
(disambiguation).

Friends at ease

Friendship is a form of interpersonal relationship

11. The Android operating system's structure of activities and intents means that the
ChildBrowser plugin is arguably less useful than on iOS, but it's a good example of
how to integrate similar plugins in a cross-platform fashion. It also demonstrates
how we can import native code into our PhoneGap project just by moving around a
few files.

What just happened?

We saw the basic mechanism for importing plugins into our PhoneGap applications, on both
iOS and Android. Most of the time was spent importing and integrating the native code into
our platform-specific projects; because of PhoneGap's structure, adding the JavaScript code
to our applications is relatively easy.

[2401

Chapter 10

Differences hetween platforms

There's no reason why there should be any difference in the JavaScript APIs between
platforms, but the ChildBrowser code is a good example of why there may be differences
after all. Jesse originally implemented the code for iPhone, and it reflects his own design
choices: the file is called childBrowser. js and requires a call to ChildBrowser.
install. It was ported independently to Android by Bryce, who named his file
childbrowser.js and installed the plugin onto the window object by default. Although
we didn't cover it above, the iOS implementation is also a lot more feature-rich than the
Android one, which only provides the showWebPage functionality.

The differing user experiences on the two platforms also reflect the differing prejudices
and best practices among mobile platforms. The iOS ChildBrowser pulls itself up within the
context of the application's main view, and has its own custom chrome for displaying web
pages. In contrast, the Android port sends an Android intent containing the web URL to the
operating system, and allows the OS browser to handle displaying the page. Since Android
handsets have a back button built into the device, returning to the source application is far
easier than on iOS.

These differences are just the hazards of open source software—since there are no design
documents mandating the architecture of plugins down to the individual code monkeys,
different developers are free. Most developers are focused primarily on one platform, and
so the plugins they write are tailored to that platform.

A corollary to the above points is that, at the time of writing, discovery for PhoneGap plugins
is a bit of a mixed bag. The GitHub repository listed above is a curate collection of plugins,
mostly contributed by developers on the PhoneGap project themselves, but is far from an
exhaustive collection of everything that has been done, let alone all that will be done.

If you're interested in a plugin for a specific purpose, your best bet is to ask on the
PhoneGap mailing list to see if any other developers have attempted to solve the same
problem. If so, they may not have published or publicized their code as such, but they
may be willing to send some over email. As the PhoneGap project matures pasta 1.0
release, the team will be focusing on improving this situation, so that code can be more
easily shared by PhoneGap developers.

Of course, you could also write a plugin yourself—and that's what we're going to cover next.

[241]

PhoneGap Plugins

1. What best describes the process of adding a PhoneGap plugin to your application?

a. Runthe plugin's installer, pointing it towards the application you want
to enhance

b. Read the README for the individual plugin and follow the instructions
to the letter

c. Add the JavaScript code to your www directory, and add the native code to
each of your individual PhoneGap projects
2. Why does the ChildBrowser plugin behave differently on iOS, compared to Android?
a. Each one caters to the user expectation of the specific platform
b. The two ports were developed independently of each other
c. TheiPhone developer was more intelligent than the Android developer
3. PhoneGap plugins require native code to be written independently for each
platform. Why is this?

a. Different platforms use different programming languages for their
native APls

b. Each platform has its own particular style of API, regardless of the
programming language

c. Each platform has its own namespace, and all code that executes on the
platform must be included in that namespace

Existing PhoneGap plugins are great but, unfortunately, you're limited to whatever extra
code other developers have implemented. While the amount of open source and widely
available PhoneGap plugins is growing all of the time, the real power of PhoneGap plugins
is the ease with which you can add your own interfaces into your PhoneGap applications by
writing a little native code.

This is the point where the skeptical reader will throw this book across the room, cursing its
duplicitous author once and for all. Write native code? That's exactly what | didn't want to
do! If wanted to write native code, why would | be using PhoneGap?

[242]

Chapter 10

Hopefully the skeptical reader has picked the book back up, regained her composure, and
decided to hear me out. PhoneGap plugins are powerful because you can write lightweight
bridges to native APIs, exposing the data you're interested in to the JavaScript level. Writing
a couple dozen lines of native code is nothing anybody should be afraid code; it's certainly a
far cry from developing your entire application against these native APIs. And the PhoneGap
framework provides the plugin architecture that allows these access hooks to be quickly and
effectively implemented.

We're going to look at how this works by implementing a lightweight battery status plugin for
i0S; later, we'll port it over to Android, and to BlackBerry WebWorks.

Time for action - Battery view

By this point, you should be well familiar with the setup for creating a new PhoneGap
application:

1. Let's create an application called BatteryStatus, and fill in the index.html as
follows:

<!DOCTYPE htmls>
<html>
<head>

<meta http-equiv="content-type" content="text/html;
charset=UTF-8" />
<meta name="viewport" content="width=device-width,
initial-scale=1.0, maximum-scale=1.0, user-scalable=no;" />
<title>Battery Plugin Example</title>

<link rel="stylesheet" href="style/app.css" />

<script src="phonegap.js"></scripts>
</head>
<body>
<div id="battery"s>

<div id="capacity" class="full"></div>
</divs>
</body>
</html>

Hopefully that's all clear—make sure you get the battery.png file (and other
image assets) from the code samples available with the book.

[2431

PhoneGap Plugins

Fill out the style/app.css file also:

body {
background-color:#000000;

}

#battery {
height:182px;
margin:Opx auto;
width:341px;
position:relative;

}

img {
left:0px;
position:absolute;
top:0px;
z-index:2;

}

#capacity
height:135px;
left:28px;
position:absolute;
top:22px;
width:270px;
z-index:1;

}

#capacity.full {
background-color: #2AAF2C;

}

#capacity.low {
background-color:#af2a2a;
width:40px;

}

hi {
font-family:verdana, helvetica;
font-size:58px;
color:#1B1D20;
text-align:center;
text-shadow: #888 0px 1lpx O0px;

2. There's a bit of busy work here to get everything precise; essentially, what we want
is to display the same battery image that is shown on the iPhone lock screen, and
dynamically update it with the status of the device's battery.

[241]

Chapter 10

A quick check in Safari reveals that the full class is being applied correctly:

el ele

Battery Plugin Example

[+ | & file:///Usersfalunny/Dr

¢ (@ Google 1»

So far, so good. The next important step is to set up the code to modify the display

of the battery itself.

Firstly, we're going to write a helper file called color. js, which is able to map

between HSV (hue, saturation, and value) and RGB (red, green, and blue) colors,
along with hex values. The two functions we're using are open source ones—I've
included the URLs for their original sources:

(function (scope)

//

{

// Adapted from: http://mjijackson.com/2008/02/rgb-to-hsl-and-
rgb-to-hsv-color-model-conversion-algorithms-in-javascript

//

window.hsvToRgb

var r, d,

var
var
var
var

QO rh k-
I

var

switch (i
case
case
case

b;

360;
100;
100;

Math

h

v
v
v

*

* X X

N B O

function (h,

.floor(h * 6)

- 8);

- f * g);
- (1 - £)
=vVv, g =1t,
=4, 9 =YV,
=p, 9 =1yV,

[2451

s, v){

* 8);

b = p; break;
b = p; break;
b = t; break;

PhoneGap Plugins

case 3: ¥r = p, g = dg, b = v; break;
case 4: r = t, = p, b = v; break;
case 5: r = v, g = p, b = g; break;

wQ

return [r * 255, g * 255, b * 255];

//
// Adapted from:
http://haacked.com/archive/2009/12/29/convert-rgb-to-hex.aspx

//
window.colorToHex = function(r, g, b) {
var red = parselnt (r);
var green = parselnt(g);
var blue = parselnt(b);
var rgb = blue | (green << 8) | (red << 16);

return '#' + rgb.toString(16) ;

}i

}) (window) ;

4. Next, we're going to create an app . js file that defines a BatteryStatus
object, which uses these color methods to set the appearance of the battery
image automatically:

function BatteryStatus () {
// Max pixel width of the battery's capacity
var max = '270';

// Generate a color based on the charge percentage.
var chargeColor = function (percent) ({

// Color of a fully charged batter (green)

var hsv = { h: 121, s: 76, v: 69 };

// Scale the hue based and convert HSV to Hex
var h = hsv.h * (percent / 100);

hsvToRgb (h, hsv.s, hsv.v);

colorToHex (rgb[0], rgb[l], rgb[2]);

rgb
hex

return hex;

Vi

// Set the battery charge level
this.setCharge = function (value) {
var el = document.getElementById('capacity');

[2461

Chapter 10

el.style.width = (max * (value / 100)) + 'px';
el.style.backgroundColor = chargeColor (value) ;

}i

Add script tags for color.js and app. js to your index.html file, and test things
out in Safari—you can use the Web Inspector, as shown in the following screenshot,
to test that it works:

Battery Plugin Example M ™ M Web Inspector — file:// /Users /alunny/Dropbox...

+ | & filer///users/alunny/Dre. & | (Qr : | <5 = Y= @ o=
Elements = Resources Scripts Timeline Profiles Storage Console
¥ Styles

¥<html=

> .
<head=.</h SEEE=
ead> j ¥
¥ <body=> background-color: Eblack;
p<div
id= SR AT S—
“"hatter display: block;
y"s.</d | P margin: Bpx;
i
=/body>
</html=> P Properties

P Event Listeners

P> Metrics

Q html.) bo&y |

» var myStatus = new BatteryStatus()

tCharge(47)

Errors Warnings Logs

5. Now let's define an interface for our JavaScript calls to the plugin. We execute the
PhoneGap . exec function to call into the native code, in order to get a battery level,
which we'll define as being between 0 and 100. The actual code for doing this is quite
succinct; we'll write a plugin/battery. js file that has the following contents:

var Battery = function() {
return {
get: function (property, successCallback, errorCallback) {
PhoneGap.exec (successCallback, errorCallback,
'Battery', 'get', [property 1);

[247]

PhoneGap Plugins

PhoneGap.addConstructor (function () {
if (!window.plugins) window.plugins = {};
window.plugins.battery = new Battery() ;

3N

Hopefully that's all clear—it added window.plugins.battery as our battery
plugin object.

Ensure that this code gets loaded by inserting the correct script tag into your
index.html:

<script src="phonegap.js"><scripts>
<script src="plugins/battery.js"><scripts>

Let's add another function to our BatteryStatus object in app . js to keep polling
window.plugins.battery for the latest status:

function BatteryStatus ()

// Monitor the battery charge level... forever.
this.watchCharge = function() {
var self = this;

window.plugins.battery.get (

'Power',

function(data)
if (!data.level)

data = JSON.parse (data) ;

self.setCharge (data.level) ;
setTimeout (function() { self.watchCharge(); },
100) ;

¥
function(e)
alert ('battery watch error: ' + e);

}i

The data = JSON.parse (data) is to work around the fact that we're passing
strings, not JavaScript objects as such. It's a little ugly, but it ensures our code will
work cross-platform, once we get there.

Now for the fun part. Make sure you have an Xcode project set up for your
application, and ensure that all of the code that we've written is in place.

[2481

Chapter 10

Go into Xcode, right-click on the Projects group, and select New File.... Create a new
Objective-C class called Battery.

Save As: .[Batterv] m

Where: | [BatteryStatus £

\W

Group: | [Plugins =]

Add to targets: EI oA BatteryStatus

Cancel)

(" cancel) (previous) [Next

In the header file—Battery.h—make sure that your class inherits from PGP1lugin,
and has one method defined—get. Here's what we'll enter:

#import <Foundation/Foundation.h>
#import <PhoneGap/PGPlugin.h>

@interface Battery : PGPlugin
NSString *win;
NSString *fail;

- (void) get: (NSMutableArray*)arguments
withDict: (NSMutableDictionary*)options;

@end

Creating two instance variables for our success and failure callbacks allows us to
easily cache the callbacks we're targeting, in case we have multiple, asynchronous
function calls on the native side before we return any content to the web view.

We also need to register our plugin in our plugins.plist file. We will do this
as we did with the ChildBrowser plugin—by adding a single row to the Plugins
dictionary with the same key and value (in this case, Battery).

12491

PhoneGap Plugins

8. The next point is to get our code calling back into the web view—without worrying
about the API for getting the battery data, let's just send some value back over the
bridge. Here's the method we're going to put into Battery.m—read it over, and I'll
explain afterwards:

- (void) get: (NSMutableArray*)arguments
withDict: (NSMutableDictionary*)options {
win = [arguments objectAtIndex:0];
fail = [arguments objectAtIndex:1];
NSString* jsString = NULL;
PluginResult* result = nil;

etry {
NSUInteger status = 50;

result = [PluginResult resultWithStatus:PGCommandStatus OK
messageAsString: [NSString
stringWithFormat:
@"{\\\"level\\\":%d}", status]];
jsString = [result toSuccessCallbackString:win];
}
@catch (NSException *exception)
result = [PluginResult

resultWithStatus:PGCommandStatus ERROR
messageAsString:@"error: could not read battery!"];

jsString = [result toErrorCallbackString:faill;
}
@finally {

[[self webView]
stringByEvaluatingJavaScriptFromString:jsString] ;

}

Bizarre Objective-C syntax aside, here's what is happening: we read the first two
arguments as the success and error callbacks (win and fail). We attempt to get a
plugin result callback string including the current status (hard-coded to 50). If that
fails, we call the error callback using a stock error message. Finally, we call whatever

JavaScript string we ended up with.

[2501]

Chapter 10

Confused? Me too, but here's how it looks in the simulator:

-ull Carrier =

Finally, actually retrieving the battery status.

i0S exposes the battery level as a property on the current device (UIDevice
currentDevice, in Cocoa parlance). We can get it quite easily, but there are a
couple of gotchas:

O ThebatteryLevel property is a float between 0 and 1, and we want an
integer between 0 and integer. An easy enough fix, you'll agree.

Q If the level is unknown (as on the simulator), -1.0 is returned as the level.
In this case, we'll return a default value of 42.

Here is the code to get the battery level, in the format we want:

float rawStatus;
NSUInteger status;

rawStatus = [[UIDevice currentDevice] batteryLevell];

[2511

PhoneGap Plugins

if (rawStatus < 0)
status = 42;
else
status = rawStatus * 100.0;

Of course, remove the other assignment of status to 50, and you should be done.
Exciting battery levels abound!

What just happened?

We wrote our first iOS PhoneGap plugin—a simple one to read the device's current battery
level and display it to the user, in a graphically pleasing manner.

For a long time, PhoneGap plugins on iOS were an ad hoc affair. The iOS implementation of
PhoneGap is based on the Cocoa Touch UIWebView class that has a mealy-mouthed method
called stringByEvaluatingJavaScriptFromString to directly execute JavaScript code
in the context of the webview. We could quite easily roll our own callback mechanism on the
JavaScript side, and cut the Objective-C code down to building a JavaScript string and calling
it directly.

However, a lot of the subsequent work on standardizing plugins across the different plugins
has paid dividends for providing a standard interface for communication between native
code and JavaScript code. In particular, the PluginResult class encapsulates the ceremony
of storing references to the two callbacks (success and error) while allowing an easy method
of communicating the status of each of the native operations. Our Battery method was able
to easily map the overall structure of one of the standard PhoneGap APIs, without much
boilerplate code to achieve that aim.

Noteworthy information ahout the PhoneGap plugin with i0$S

€ Objective-C, the language of native i0S development, has a few nice object-
orientated features that facilitate easy plugin development. One of them is dynamic
object creation and method lookup, meaning we can get an instance of an object
and call one of its methods just by knowing the names of the class and the method
as strings. We can thus avoid a lot of ceremony around registering native objects
and methods, and quickly get something up and running.

@ i0S, or Cocoa Touch, is very flexible when it comes to views, or native components
of views. If there is a native user interface library you're interested in hooking up
with your application—for example, Facebook's Three20 library, which provides a
fully featured and performant image gallery—a little understanding of iOS views and
view controllers will allow you to show and hide a modal display within the context
of your PhoneGap application, as the ChildBrowser plugin does.

[2521

Chapter 10

€ Communication between native code and web code on iOS is all done through
strings, which puts practical limits on how much data can be transmitted at once. If
you're aiming to move very large amounts of data across that bridge, you may have
to look at buffering or throttling the communications somehow.

The most important thing our demo should have shown is how little native code you actually
need to write to implement a PhoneGap plugin—I had to look up a single method call, to
access the batteryLevel property of the device in Cocoa Touch, and then it was just using
the PhoneGap Plugin Result APl to communicate back to the JavaScript side. This is good

to keep in mind—writing a PhoneGap plugin does not mean learning a completely new
development environment.

The battery level was pretty good, but are there any similar quick wins you can get from
a cursory glance at the iOS documentation? What other methods are available on the
UlDevice currentDevice object? Can you write a PhoneGap plugin to determine if
the user is physically close to their device?

Porting your plugin

Writing a plugin for one platform is all well and good, but that's not why we're PhoneGap
developers. We want to have the same code run in separate environments, with minimal
changes, ideally. Luckily, we can do that quite easily, although for this particular example
the other platforms we're targeting do take a little more code. But who's worried about
that; let's dive right in!

Time for action - Android and BlackBerry

Android first—get your Android project set up through Droidgap as usual. You want to have
a bare PhoneGap Android project ready, with the contents of the www directory from our
iPhone example.

1. We will need to make one small change to our JavaScript, in plugins/battery.
js. As mentioned above, Objective-C has all sorts of metaprogramming and
reflective goodness to ensure we don't need to explicitly register our plugins.
Unfortunately, Android, a Java-based platform, has no such niceties.

We need to edit our addConstructor call appropriately:

PhoneGap.addConstructor (function () {
// add plugin to window.plugins
if (!window.plugins) window.plugins = {};
window.plugins.battery = new Battery();

[2531]

PhoneGap Plugins

// register plugin on native side
if (navigator.app && navigator.app.addService)
navigator.app.addService ('Battery', 'com.phonegap.plugins.
Battery');

3N

I've coded especially defensively in these examples to ensure cross platform
compatibility, but all PhoneGap versions 0.9.5 and above should expose
navigator.app.addService. Still, it's always worth treading with caution.

2. Android doesn't expose a single property for the battery level, so we're going
to create two separate classes for this purpose. Firstly, create the directory
src/com/phonegap/plugins in your Android project.

The first class we'll create in that directory will be called BatteryReceiver.java.
Here's the code:

package com.phonegap.plugins;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.BatteryManager;

public class BatteryReceiver extends BroadcastReceiver (
private int batteryLevel = 0;

public int getLevel() {
return batteryLevel;

@Override
public void onReceive (Context arg0, Intent intent) {

batteryLevel = intent.getIntExtra(BatteryManager.EXTRA LEVEL,
0);

}
}

BatteryReceiver is a subclass of BroadcastReceiver; it's a class that receives
messages from the operating system. Android will periodically tell us what the
battery level of the device is—often enough it's not noticeably slower than a
property access on iOS. Each time we receive one of these messages, we're

going to cache that as an instance variable.

12541

Chapter 10

This is all well and good, but it's not communicating with the web view at all. The
other class we'll create is called Battery, just like the iOS PGP1ugin subclass.
Battery inherits from com.phonegap.api.Plugin, and looks like so:

package com.phonegap.plugins;

import org.json.*;

import com.phonegap.api.PhonegapActivity;
import com.phonegap.api.Plugin;

import com.phonegap.api.PluginResult;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;
import android.os.BatteryManager;

public class Battery extends Plugin
private BatteryReceiver bReceiver;

public void setContext (PhonegapActivity ctx)
super.setContext (ctx) ;

IntentFilter batteryLevelFilter = new
IntentFilter (Intent .ACTION BATTERY CHANGED) ;

bReceiver = new BatteryReceiver() ;
ctx.registerReceiver (bReceiver, batteryLevelFilter) ;

public PluginResult execute(String action, JSONArray args,
String callinglbackId) ({

int level = bReceiver.getLevel() ;
try {

return new PluginResult (PluginResult.Status.OK,
"{\"level\":" + level + "}");

} catch(Exception e) ({
return new
PluginResult (PluginResult.Status.INVALID ACTION,
"error: could not read battery!");

[2551]

PhoneGap Plugins

It's a lot more verbose than the iOS version (perhaps because I'm less well-versed in
the Android APIs), and it's doing a few more interesting things.

The plugin interface is much the same as on iOS. The Android Plugin interface,
however, has a method you can override called setContext, which essentially acts
as a constructor, with a link back to the main PhoneGapActivity object (that s,
the web view, and associated context).

In our setContext method, we initialize a BatteryReceiver object, and assign it
to listen for Intents (messages to you and I) about the battery level. All intents that
pass through that filter are received by the BatteryReceiver.

All calls to the plugin from JavaScript pass through the execute method. This is a
crucial difference from iOS: instead of JavaScript APIs having access to any method
on your class, all plugin calls on Android go through a single method, with the exact
call (the JavaScript function, usually), passed as the first parameter, action. In this
case, we only have a single action we're interested in, so we ignore that parameter.
We just grab the most recent battery level reading from our BatteryReceiver and
return it back as a PluginResult object. PhoneGap Android handles the rest.

Finally, as with ChildBrowser, we need to register the battery plugin in our
res/xml/plugins.xml file:

<plugin name="Battery" value="com. phonegap.plugins.Battery" />

There's a lot going on there, but if all goes well, the resulting user experience should
be much the same as on iOS:

gﬁ E’@M]'Q‘ 5:41 am

[2561]

Chapter 10

And so finally, we come to BlackBerry WebWorks. Thankfully, on BlackBerry 6.0 and
above devices, we won't have to make any changes to our JavaScript code. Phew!

The native Java code for BlackBerry WebWorks is very similar to that on Android—a
Plugin class to inherit from and a PluginResult to return from methods. The
subclass of Plugin has an important execute method, that is passed an initial
parameter, action, that tells the plugin which action to perform.

I'm indebted to my coworker Michael Brooks for his implementation of the Battery
level plugin on BlackBerry (and doing much of the styling for view of the app). Like

Android, there are two classes for the BlackBerry implementation: a Battery class
that handles most of the PhoneGap plugin boilerplate, and a GetAction class that
interacts with the device's battery APlIs.

Here is the Battery class—you can see how similar it is to the Android
implementation:

package com.phonegap.plugins;
import org.json.me.JSONArray;

import com.phonegap.api.Plugin;
import com.phonegap.api.PluginResult;

public class Battery extends Plugin
protected static final String ACTION GET = "get";

public PluginResult execute(String action, JSONArray args,
String callbackId) ({

PluginResult result = null;
action = (action == null) ? "" : action.toLowerCase() ;

if (action.equals(ACTION GET)) {
result = GetAction.execute (args) ;

}

else {
result = new
PluginResult (PluginResult.Status.INVALIDACTION,
"Battery: invalid action " + action);

return result;

}

All quite straightforward, | hope, if you followed along with the Android example.

2571

PhoneGap Plugins

5.

Here is the GetAction class, which is more like the iOS plugin—a simple
property access:

package com.phonegap.plugins;

import
import
import
import

import

public

com.phonegap.api.PluginResult;
org.json.me.JSONArray;
org.json.me.JSONException;
org.json.me.JSONObject;

net.rim.device.api.system.DeviceInfo;

class GetAction {

private static final String
PROPERTY_ POWER = "power";

public static PluginResult
execute (JSONArray args)

}

PluginResult result
null;

String property
getPropertyName (args) ;

if (property.equals (PROPERTY POWER)) {
result = getPower () ;
}

else {
result = new
PluginResult (PluginResult.Status.INVALIDACTION,
"Unknown property: " +
property) ;

return result;

private static String
getPropertyName (JSONArray
args) {

try {
return

args.getString (0)
.toLowerCase () ;

}

catch (JSONException e) {
return "";

[2581]

Chapter 10

private static PluginResult

getPower () {
JSONObject json = new
JSONObject () ;
try {
json.put ("level",
DeviceInfo.

getBatteryLevel ()) ;

}

catch (JSONException e) {

}

return new PluginResult (PluginResult.Status.OK, json);

}

There is a bit more boilerplate here for stylistic purposes—by using the Java JSON
libraries, the objects are passed back to the callback as JavaScript objects, rather
than as JSON strings to be parsed. But essentially, it's a very similar process to the
iOS and Android roundtrip.

As of PhoneGap 1.0, your BlackBerry project will have a plugins.xml file in the
www directory; as with Android, register the Battery plugin in that file:

<plugin name="Battery" value="com. phonegap.plugins.Battery" />

Load that up in your BlackBerry emulator and check out the results:

——

llackBerry

[2591]

PhoneGap Plugins

6. And as a nice bonus for all of your hard work, the BlackBerry emulator evens lets
you futz around with the virtual device's battery power (unfortunately, the other
platforms do not provide this), so you can enjoy the fruits of your work to your
heart's content:

llackBerry

[Battery Properties ﬁﬂ

Level

Full
@ Low
~) Very Low

| Dead

Other 15 -

USE Power Source

@) Normal charge Law-rate charge

Close | | Help

What just happened?

We took a bit of extra functionality that we had added to our application on iOS, and quickly
ported it over to Android and BlackBerry, to extend PhoneGap with additional capabilities.

Although some of the intricacies of the PhoneGap plugin and PluginResult APIs take a

little bit of getting used to, the net result is that you need to write very little JavaScript of
native code to add functionality to your existing applications. The Android platform was an
interesting example of a platform with a little bit of added complexity—there was a message
based system for getting battery level, rather than a direct property access from the
device—but this did not greatly impact the code that we had written.

PhoneGap plugins do not completely shield you from the intricacies of coding for a native
platform—in the case of Android, some rudimentary knowledge of how Activities, Intents,
Services, and BroadcastReceivers interact is very useful—but they do allow you to focus on
finding quick solutions for important APls, and integrate those quickly into your applications.

[260]

Chapter 10

I've shown how to take a simple plugin and port it across three separate platforms, but
there may be a valid concern over how worthwhile that exercise is. Typically, if a feature is
something that would be useful for developers on all major platforms, it should be included
in PhoneGap core.

One of the main selling points of the plugin infrastructure is to allow developers to quickly
bridge native, single platforms features—iAds on iOS, cloud to device messaging on
Android—into their regular PhoneGap applications, rather than waiting on the framework
as a whole to integrate those capabilities. In most cases, if the feature does not work well
cross-platform, it won't make it anywhere near standard PhoneGap. In the case of heavily
demanded features, you may be able to find somebody on the mailing list or IRC who has
had the same issue and worked towards fixing it, but there's no guarantee.

Once you start writing native code, you may realize that you can write anything you want.
And you would be absolutely right—the plugin architecture of PhoneGap gives some light
guidelines for developers, but any native code you want can be executed in the context of
a PhoneGap application.

If your goal is to write cross-platform applications, | would be careful about which
features you write as plugins and which ones you write using HTML5 and JavaScript. Web
technologies, if all else fail, can run on the Web, and the Web runs just about everywhere.
For simple device data, like our battery example, it's trivial to port between platforms, but
any kind of involved plugin work, especially that involving user interface or view elements,
quickly adds up when it has to be ported to multiple platforms. A good rule of thumb is

to write something that works well using the tools available with web technologies, and
optimize with native code if you encounter any bottlenecks in your approach.

1. Why should you start with a single JavaScript API for a plugin, and write your native
implementations after that?

a. Having a standard JavaScript APl across all platforms increases code reuse
b. Native code takes longer to write, and you don't want to get sidetracked

c. If the native APIs change, you won't need to change your PhoneGap code

12611

PhoneGap Plugins

2. What is the main difference between plugins on Android and BlackBerry WebWorks?

a. BlackBerry WebWorks requires all PluginResult objects to be
JSON-based

b. BlackBerry runs on stock Java, while Android is based on the Dalvik VM

c. The underlying platform APIs are very different

3. Can you write native code for your application without using plugins?

a. No: A PhoneGap application can only access the native side through the
plugin interface

b. Yes: Just use the same bridging techniques as the main PhoneGap APIs
are implemented with

We managed to have a whirlwind tour around PhoneGap plugins, and taking our PhoneGap
applications outside of the PhoneGap APIs. In particular, we learned to:

€ Integrate existing plugins into our application, to extend the functionality presented
by the framework

€ Write a simple plugin for iOS, sending data back to our webview

€ Port that plugin to the Java-based PhoneGap platforms, for cross-platform
battery action

We're winding down our trip around the PhoneGap, uh, software; it's time to look at one of
the major challenges facing developers of mobile applications. How do you effectively sync
your application, so it can receive new data from the web, and still work smoothly offline?

12621

11

Up to this point, we've mostly looked at PhoneGap applications in isolation,

as relatively simple and self-contained units of functionality, interacting with
native APIs. While this is certainly a feasible approach, mobile applications gain
a great deal in expressiveness and capability when combined with remote web
services. Whether it's an existing service (such as the Twitter API, which we've
touched on in passing), or one developed alongside your application, tying
your work on mobile devices to a remote service allows for vast possibilities in
application development.

In this final chapter, we will look at some of the approaches for working with a remote web
service. In particular, we will see how to:

€ \Write a simple service to tie with a mobile application
@ Cache updates from the remote server, and sync those with new updates to keep

users up to date

We're going to start off by writing a tiny little web service to work with our application—a
citizen news site called, imaginatively, New Stories.

Ruby and Sinatra

Many front-end web developers may not have implemented a web service before, leaving
that boring stuff to the neckbeards and the sysadmins. The truth is, however, that it's an
incredibly simple process, especially with the tools available to a modern web developer.

Working Offline: Sync and Caching

There are many different tools available for writing web services, but our example will use
the Sinatra web framework, written in the Ruby programming language. Sinatra allows for
clean, expressive definitions of responses to web requests, and allows us to write our proof
of concept web service code with a minimum of boilerplate. It's often described as domain-
specific language for writing web services—closer to writing declarations with imperative
programming. | highly recommend it for any of your lightweight web processing needs.

If you're running on Mac OS X or Linux, you'll already have Ruby installed; if you're running
Windows, visit http: //www.ruby-lang.org to get the Ruby installer, and the RubyGems
package manager.

To install Sinatra, and the JSON library we will use in our example, run the following command:
gem install sinatra json

If you're on Windows, the regular command prompt should work fine, rather than
using Cygwin.

For more information on Sinatra, you can find extensive documentation and details at
http://www.sinatrarb.com.

Time for action - A news site, with an API

1. Let's get something started as quickly as possible with Sinatra—create a new file
called server.rb, and enter the following:
require 'rubygems'

require 'sinatra'

get '/' do
"Hello World"
end

The first two lines ensure we have access to Ruby's package manager, RubyGemes,
and the Sinatra library. The rest of file says that, when our server receives a GET
request for the path /, we should respond with the string Hello World.

2. Run this file by the command ruby server.rb. You should see the following
output:

== Sinatra/l1.2.6 has taken the stage on 4567 for development with
backup from Thin

>> Thin web server (v1l.2.7 codename No Hup)
>> Maximum connections set to 1024

>> Listening on 0.0.0.0:4567, CTRL+C to stop

12641

Chapter 11

Navigate your web browser to the URL at the bottom to see your very first web
service in action:

ana http://localhost: 4567
[b | | >] [+ |ﬂhttp:,’f|ocalhost:456?f G] I._C?l;'r Google p|
Hello World

There's not much there now, but let's give it some time. We're going to update our
server to generate some dynamic views, rather than always returning the string
Hello World. What we want is to display a list of news stories.

Here's how we'll change the server. rbfile:
require 'rubygems'
require 'sinatra'

require 'erb'

@@stories = [
:time => Time.now.to_i,
:title => "Outbreak in Europe",

:body => "There has been a terrifying outbreak in Europe. Be
forewarned!"

get '/' do
erb :index, :locals => { :stories => @@stories }
end

At the top, we're calling require for another library, the templating library erb,
or embedded Ruby. Next, we're defining a class variable (with that curious @@
syntax) to hold all of our news stories, with a sample story to flesh it out. We've
then changed the handler for the / request to render, with erb, the index template
(which we have to write), passing the e@estories class variable as a local variable.

One thing to note is that, for the sake of brevity and simplicity, all of our stories are
being saved in an array in memory. Were this a serious application, those stories
would of course be backed up to a persistent database.

12651

Working Offline: Sync and Caching

4.

Now for that index template. Create a directory called views, and then a file in
there called index. erb, and fill it with the following:

<hl>News Stories</hl>

<% stories.each do |story| %>
<h2><%= storyl[:title] %$></h2>
<p><%= storyl[:body] %$></p>
<p><small>Reported at <%= story[:time] $%$></small></p>

<% end %>

<h3 style="margin-top: 50px">Submit your own story:</h3>

This should look similar to the Mustache templates we've been writing throughout
the last few chapters; we're iterating through the list of stories and printing each
one out as HTML. Restart the server (typically, press CTRL-C to end the process and
then the up arrow to call the last command again), and reload your browser.

oYMy http://localhost: 4567
[«|» |[+ [@nup:/iocaihostase7y ¢ | (Qr Google

News Stories

Outbreak in Europe

There has been a terrifying outbreak in Europe. Be forewarned!

Reported at 1307086510

Submit your own story:

It's pretty ugly, sure, but it gets the job done.

12661

Chapter 11

We next need a mechanism for posting new stories to the site—sure, an outbreak
in Europe is big news, but do we have anything else? Let's write the front-end code
first, and add the following to views/index.erb:

<form action="/story" method="post">
<p>Title
<input type="text" name="title" /></p>

<p>Body
<textarea name="body"></textarea></p>

<input type="submit"s>
</form>

We can see from the action and method attributes of the form that we're posting
to the path /story; let's add the appropriate Sinatra code in server.rb to handle
that:

post '/story' do
new _story = {
:time => Time.now.to i,
:title => params[:title],
:body => params[:body]

@estories.unshift new story

redirect '/
end

If it's not clear, this method reads the parameters from the form, builds a suitable
story object, and adds it to the list of stories. It then redirects the user back to the
home page, which will be updated with the new story.

Caveat lector: this is very bad code for anything approaching the public Internet.
Don't take user input and put it directly in your page's markup! Since you will be the
only person accessing this web service, it's not a big deal, but this code should never
be used on a production website.

12671

Working Offline: Sync and Caching

Restart the server, and try entering a few stories from your browser to test out

the service:
afna http://localhost: 4567/
[«[» | [+ [htp://localhost4567/ ¢ | (@ Google

News Stories

Brand New Console

Nintendo of Japan have announced a brand new console. It sounds really good!

Reported at 1307086855

Outbreak in Europe

There has been a terrifying outbreak in Europe. Be forewarned!

Reported at 1307086802

Submit your own story:

Title

Body z

P Y
| Submit |

So far so good—we've buried the depressing Outbreak in Europe story with a far
more exciting Brand New Console one.

6. For the final point, we want to be able to access the news stories in a format that we
can easily process. For best results, we'll take JSON.

To get our server serving up JSON, we'll need to first of all require the JSON library,
by adding this line to the top of our server. rb:

require 'json'

7. Then, add a route handler to present our stories as a JSON formatted list. To keep
things easy to handle, we'll limit this to the first five stories:
get '/json' do
content type :json
@@stories[0,5] .to_json
end

[268]

Chapter 11

Note how easy it is to set the content -type header using Sinatra—it looks more
like a declaration than a function call. Now, navigate to http://localhost:4567/
json in your browser to confirm that everything looks okay.

(o N) http://localhost:4567/json

[4 | [3] [+ |@http:,-’,flocalhost:456?,fj50n C] (Oc Google \1
[{"body":"It does not sound like a wvery serious injury. Still, he should be
careful.” , "time":1307087132,"title":"The Sportsman Is Injured"}, {"body":"I
have bought some new silver shorts. They look

amazing.","time" 1307087106, "title":"Silver Shorts"},{"body":"Nintendo of
Japan have announced a brand new console. It sounds really

good! ", "time" : 1307087091, "title": "Brand Mew Console"},{"body":"There has

been a terrifying outbreak in Europe. Be
forewarned!","time":1307087079,"title" :"Outbreak in Europe"}]

8. Now for our mobile application. If you've followed the preceding chapters, this
should be simple enough—create a new www directory, and copy in xui.js and
mustache. js. Create an index.html and add the following:

<html>

<head>
<title>News From The Internet</titles>
<link rel="stylesheet" href="style.css" />
<meta name="viewport" content="width=device-width,initial-
scale=1.0" />

</head>

<body>
<hl>News From The Internet</hl>
<div id="news-container"s>
</divs>

</body>

<script src="phonegap.js"></scripts>

<script src="xui.js"></script>

<script src="mustache.js"></scripts>

<script src="app.js"></script>
</html>

12691

Working Offline: Sync and Caching

Now create a style.css file, and add the styles:
body {

background: #56F;

color: white;

font-family: Helvetica Neue;

color: #FF5;
text-align: center;

p {
color: black;

}

Finally, app.js:
var newsStory = "<h2>{{ title }}</h2><p>{{ body }}</p>";

x$ (document) .on ('DOMContentLoaded', function ()
x$ () .xhr ("http://localhost:4567/json", function () {
var storiesArray = JSON.parse(this.responseText),
storiesMarkup = "",
storyHtml;

storiesArray.forEach (function (story) {
storyHtml = Mustache.to_html (newsStory, story);
storiesMarkup += storyHtml;

3N

x$ ('#news-container') .inner (storiesMarkup) ;
P
P

9. Everything should be clear: we wait for the DOM to be ready, query our web service

for the latest stories, and then render those to the DOM, using Mustache for
templating.

12101

Chapter 11

Check things in Safari—you're now a full-stack web developer!

maO0 News From The Internet
| =+ | file:///Users/alunny/Drop- & | Google

News From The Internet
The Sportsman Is Injured

Silver Shorts

Brand New Console

Outbreak in Europe

What just happened?

We were able to use the Ruby programming language and the Sinatra web framework to
write a simple web service, that enables applications to query a list of timestamped news
stories and display them in a mobile-optimized format, in only a couple of dozen lines of
codes. We were then able to use our existing client-side skills to connect to this web service,
and display the data appropriately.

With a little more effort, we could easily modify our application to handle requests for a
single news story, for a paginated set of news stories, or to delete news stories from the
server. But for now, this simple service suits our purposes.

2nl

Working Offline: Sync and Caching

Sinatra has been called the most cloned of all open source projects; its syntax of defining
behavior through HTTP methods and route paths has proved immensely popular. We're great
fans of using it for this kind of purpose, although you may want a more comprehensive web
framework if your goals are suitably complex.

If you want to work with JavaScript on the whole stack, and use node.. js for writing your
server, the Express framework offers a Sintra-style syntax in JavaScript. For PHP developers,
the Limonade framework has proven to be a popular option for lightweight web services,
and if you're using Python, you can try web. py. Most other languages or runtimes will offer
similar solutions.

Lightweight web services like this one may seem useful for tutorials, but the purpose of
writing them in your day-to-day work may be a bit more elusive. If you're a front-end web
developer working on a large project, you typically won't have a great deal of control over
what technology stack the server uses, or how the individual requests are formatted

and processed.

In this scenario though, it's often useful to whip together a small web service for your
development needs, especially if the stability and availability of the remote service is in
guestion. Once you have an idea of the format of the responses you'll be dependent on, you
can use a lightweight framework like Sinatra to stub out these responses, allowing you to
continue working whether the external service, or your own environment, is offline at that
time. It's an extremely powerful option to have in your toolchain.

1. Why does the service offer the news stories in JSON format, as well as HTML?
a. JSON is easier for applications to parse and process than HTML.

b. JSON representations are typically smaller than their HTML counterparts, so
less bandwidth is required to transfer them.

c. The HTML may contain content that is unnecessary for a consuming
application, such as the HTML form in our example.
2. Is our News Stories web service ready for a production deployment?
a. Yes: it serves its purpose of displaying news stories and accepting new ones.

b. No: it has a number of glaring security flaws, as well as no persistent storage
for stories.

[2121

Chapter 11

3. What is the best approach for loading our news stories from our service?
a. Using an XmlHttpRequest, as in the example above.
b. Using script tags, also known as JSONP.

c. Rendering the service's HTML files directly in our application.

Caching new stories

Way back in Chapter 3, Mobile Web to Mobile Applications we briefly covered the two feasible
options for offline storage on mobile devices: localStorage and Web SQL. For lightweight data
storage, things like user preferences or application state, localStorage is more than sufficient.
However, when dealing with remote web service, you often have a more complex data model
to deal with. In this case, it's a good idea to take a look at Web SQL.

Note that WebSQL is not supported on Firefox—make sure you're using a WebKit-based
browser when testing this code.

Once we set up a small database for our mobile news client, we can see how easy it is to
cache data from the web service, enabling our application to successfully run offline.

Time for action - Caching stories in a local databhase

Since the interface for using Web SQL is quite verbose, we're going to create a separate
JavaScript file to hold all of our database specific code.

1. Create afile called database.js and add a reference to it in your index.html:

<script src="phonegap.js"></script>
<script src="xui.js"></scripts>
<script src="mustache.js"></script>
<script src="database.js"></script>
<script src="app.js"></scripts>

The first thing we need to do when using Web SQL is get a reference to our
database, using the openDatabase function:
// open the database
function initializeDB()
var localDatabase = openDatabase (

"internetNews", // short name

"l.on, // version

"News From The Internet", // long name

5000000 // maximum size in bytes

)i

return localDatabase;

[2131

Working Offline: Sync and Caching

You can call window . openDatabase on most platforms to emphasize that you're
calling a global function; unfortunately, this doesn't behave predictably in all
mobile environments. Calling openDatabase as openDatabase does, even

if it's a little gross.

Most of the Web SQL APl is quite unintuitive—lots of ordered and required
parameters. I've commented the ones we're using—a short name, a verison , a
long name, and a maximum size for the database. I've specified five megabytes (or
thereabouts) for our database's maximum size—this is the most we can reliably get
in most environments.

Can you believe this API is deprecated (refer back to Chapter 3, Mobile Web to
Mobile Applications for more details on this)?

To test that our function works correctly, open index.html in Safari and run the
initializeDB () function from Web Inspector. If you switch to the Storage tab in
Web Inspector, you should see your newly created database available:

M M M Web Inspector — file:///Users/alunny/Dropbox/phonegap-book/code/chapter-11/clie...
—1 3= = "‘—.-\\ = -
£ =) e (O 2
Elements Resources Scripts Timeline Profiles Storage Consocle Search Storage
DATABASES > |
LOCAL STORAGE
SESSION STORAGE
COOKIES
[=]
Lccal Files
mi
> initializeDB()
» Database
>
BH = ® =) | Errors Warnings Logs A

Anyone familiar with SQL will know that our next step is to create a table to store
our records. To do this, we'll need to start a transaction on our localDatabase,
and execute the SQL query asynchronously. Here's how this looks:

function createStoryTable (db) {

var query = "CREATE TABLE IF NOT EXISTS stories " +
"(title NVARCHAR (25), time DATETIME PRIMARY KEY, body
TEXT) ; "

[2:]

Chapter 11

db.transaction (function (trxn) {
trxn.executeSql (
query, // the query to execute
[1, // parameters for the query

function (transaction, resultSet) { // success
callback

console.log('success') ;

|

function (transaction, error) { //error callback
console.log(error) ;

)i
3N
}

We have to write the query (CREATE TABLE. . .) manually, knowing before hand
the data types for each of the columns in our table. There's no programmatic way
to get most of this information (for example, which data types are supported by
the database); you'll have to look at the documentation for the particular release
of SQLite that is embedded in the particular web view you're working with. We're
setting the t ime field to be our primary key, for simplicity's sake; in a production
application, you may well have an id field to uniquely identify records in the table.

The database. transaction function works asynchronously, taking a callback
function that is passed a transaction object which you can execute SQL on
asynchronously. I've omitted passing an error callback to this initial transaction call,
in the interest of maintaining some semblance of sanity.

The executeSqgl function takes four parameters: a query, optionally parameterized;
the parameters for that query, if it is parameterized; and two callbacks, for success
or error. Each of the final two callbacks is also passed the transaction as an initial
parameter, allowing for an unending stream of callbacks to spread across the screen
with every increasing indentation. We're not interested right now in hooking into
these callbacks—we just want to fire and forget, essentially.

Reload this page in Safari and try running the following code from Web Inspector
(you need tocall initializeDB again to grab a reference to the database):
myDB = initializeDB()

createStoryTable (myDB)

[215]

Working Offline: Sync and Caching

Looking in the Storage pane once more, you should see the table appear:

M ™ ™ Web Inspector — file:/[/Users/alunny/Dropbox/phonegap-book/code/chapter-11/cli...

Elements Resources Scripts Timeline Profiles Console Search Storage

DATABASES

¥ :: ; internetNews
e

LOCAL 5STORAGE
SES5I0N STORAGE
COOKIES

]
Local Files
Cig)

» myDB = initializeDB()
» Database

» createStoryTable{myDBE)
undefined

SUCCESS database.js:22

— TR "
B = G | Errors Warnings Logs A

4. The next step is to make some inserts into the table. We're going to write a simple
function that takes the JSON-parsed story objects we receive from the server, and
insert those into our stories table:

function insertNewStory(db, story) ({
var query = "INSERT OR REPLACE INTO stories (title, time,
body) " +
"VALUES (?,?,?);"

db.transaction (function (trxn) {
trxn.executeSql (

query,

[story.title, story.time, story.bodyl],

function (transaction, resultSet) ({
console.log('success') ;

b

function (transaction, error)
console.log(error) ;

12161

Chapter 11

3N
}

The format is very similar to the transaction/executesql calls for our
createStoryTable function. We pass in a reference to our database object, along
with the story object we have received from the server, and then build a query for

inserting it into our database.

5. To see the writing in action, we're going to modify our app . js file to create the
table, if it's not present, and then insert all of the stories we get from the server.

Here's our modified DOMContentLoaded handler:

x$ (document) .on ('DOMContentLoaded', function () {
var myDB = initializeDB() ;
createStoryTable (myDB, function () {
xS () .xhr ("http://localhost:4567/json", function () {
var storiesArray = JSON.parse(this.responseText),
storiesMarkup = "",
storyHtml;

storiesArray.forEach (function (story) {

insertNewStory (myDB, story) ;
storyHtml = Mustache.to html (newsStory, story);

storiesMarkup += storyHtml;

I3F;

x$ ('#news-container') .inner (storiesMarkup) ;
3N
I3
I3
Note that we're now passing a callback function to createStoryTable, so we'll
need to modify that function in a couple of places:

function createStoryTable(db, callback) {

var query = "CREATE TABLE IF NOT EXISTS stories " +
"(title NVARCHAR(25), time DATETIME PRIMARY KEY, body
TEXT) ; "

db.transaction (function (trxn) {
trxn.executeSql (
query, // the query to execute
[1, // parameters for the query
callback,

[2m1

Working Offline: Sync and Caching

function (transaction, error) { //error callback
console.log(error) ;

3N

6. Reload the page in Safari, and you should be able to see the table automatically
populated in the Web Inspector:

™ ™ ™ Web Inspector — file:///Users falunny/Dropbox/phonegap-book/code/chapter-11/cli..

<2 @ g@@%ce Q

-

Elements Resources Scripts Timeline Profiles Search Storage
DATABASES title time | body
= The Sportsman ... | 130... | It does not scund like a very serious injury. Still, he shao...
v t. i internethews Silver Shorts 130... | | have bought some new silver shorts. They look amazing.
Brand Mew Con... | 130... | Nintendo of Japan hawe announced a brand new console...

Qutbreak in Eur... | 130... | There has been a terrifying cutbreak in Europe. Be forew ...
LOCAL STORAGE

SESSION STORAGE
COOKIES

=
Local Files
Tz

>

H>x & &l | Errors Warnings Logs

7. The final thing we need to do is ensure that rendering works just as well with or
without online access. If you're still running our Sinatra service in a terminal, you
should kill the process now, and reload Safari. Everything looks a bit blank, even
though the records are still present in our local database:

12181

Chapter 11

=y

™ ™ Web Inspector — file:// /Users/alunny/Dropbox/phonegap-... | & O M MNews From The Internet

E@ @ & @ @ a ¢ | (Qr Google

+ | & file:///Users/alunny/Dro
Elements Resources Scripts Timeline Profiles ' Storage Ceonsole
News From The Internet

DATARBASES title ti... | body

- The Sport... | 1... | It does not scund like a very serious i...

v E i internetNews Silver Shorts | 1... | | have bought some new silver shorts. ..
— 1
1

Brand Ne... . | Nintendo of Japan have announced a b...
Outbreak | There has been a terrifying outbreak i...
LOCAL STORAGE
SESSION STORAGE
COOKIES

Local Files

¢

@ Failed to load resource: The reguested URL was notphonegap.is
found on this server.

@ NETWORK_ERR: XMLHttpRequest Exception 181: A %¥ui.js:1@54
network error occcured in synchronous requests.

»

H = 0 ml Errors Warnings Logs @z

Obviously this is unfortunate; in this case, we need to retrieve the records from the
local database and render those directly. Firstly, let's write a function that gets all
of the stories out of the local database, and returns them in the array format we're
familiar with:

function getLastStories(db, callback) {
var query = "SELECT * FROM stories LIMIT 5;"

db.transaction (function (trxn) {
trxn.executeSql (
query, // the query to execute
[1, // parameters for the query
function (transaction, resultSet) {

var i = 0,
currentRow,
stories = [];

for (i; i1 < resultSet.rows.length; i++) {
currentRow = resultSet.rows.item (i) ;
stories.push (currentRow) ;

[219]

Working Offline: Sync and Caching

callback(stories) ;

|

function (transaction, error) { //error callback
console.log(error) ;

3N
}

This is similar to the last two SQL querying functions that we've written—the major
change is in the success callback function. This time, we actually are interested in
the contents of the resultSet parameter, which is a little bit of a strange object.
Unlike most JavaScript objects, the members are accessed in iterator-style—we use
the item function to pull out each row individually. We then pass an array of these
rows back to our callback function, allowing these to be rendered in the same way
content from the server is.

Finally, let's refactor our app . js code a little more to accommodate this use case.
We're going to pull the rendering code out into a separate function, and then call
either the online or offline code to get the list of stories, depending on whether we
get back a useful response from the server:

x$ (document) .on ('DOMContentLoaded', function () {
var myDB = initializeDB() ;

function renderStories (stories)
var storiesMarkup = "",
storyHtml;

stories.forEach(function (story) {
storyHtml = Mustache.to html (newsStory, story);
storiesMarkup += storyHtml;

I3F;

x$ ('#news-container') .inner (storiesMarkup) ;

createStoryTable (myDB, function () {
x$ () .xhr ("http://localhost:4567/json", {
async: true,
callback: function () {
try {
var storiesArray =
JSON.parse (this.responseText) ;

[2801]

Chapter 11

storiesArray.forEach (function (story) {
insertNewStory (myDB, story);

3N

renderStories (storiesArray)
} catch (e) {
// failed to retrieve data
getLastStories (myDB, function (stories) {
renderStories (stories) ;

3]

Note that we did have to modify our x$. xhr call a fair bit—the behavior is a little
different depending on what kind of external connection you're expecting.

Reload in Safari and you should see our news stories right back on the screen, where
they belong.

What just happened?

Frankly, not an awful lot. WebSQL's incredibly verbose interface made getting even basic
caching in place quite an ordeal.

There's also much that we did not cover, even for the simple caching workflow. How should
your application handle schema migrations on the remote server, if there are extra fields

to take care of? Should you seed your application with initial data, or download everything
at runtime? How should you manage compacting the database, to remove old data? These
are all interesting problems that aren't amenable to a one-size-fits-all solution—you will
need to assess what the best approaches are for your particular application, and how much
additional complexity you're willing to put up with, on the server and on the client.

Managing application initialization

One important consideration when building this kind of application is how much work should
be done at initial runtime. Even with our sample application, we're beginning to stretch the
bounds of how much logic can be performed on application initialization.

2811

Working Offline: Sync and Caching

Roughly speaking, there are three events that we're concerned about on application
initialization:

€ Script loading: This isn't an event you can subscribe to, but I'm referring to the
time when the web view parses and executes your JavaScript files. Throughout the
book, I've mostly used this event to define functions and subscribe to other events.
However, you may wish to experiment with calling more of your application logic at
this time.

€ DOMContenLoaded: This means the document has been rendered, and you can
start modifying the contents with some confidence. Typically, any rendering you
have to do should have to wait until this point, for safety's sake.

€ deviceready: As we've seen in previous chapters, this means that PhoneGap specific
APIs are now available. For example, if we wanted to use navigator.network.
isReachable to see if we could reach our remote server, rather than just putting
an error handler on our callback function, we would have to wait for deviceready.

Once you integrate your application closely with a remote service, it's worth doing some
benchmarking to see exactly how much work you should be doing at each of these stages. In
a complex sync scenario, you could be doing any or all of the following:

Check for a remote service's availability

Query the remote service for any new updates

Save new updates to a local database

Save new media files to the local filesystem, using PhoneGap's File APl or a
custom plugin

Read updated data from the local database

Read updated media from the local filesystem

® 06 600

Update the remote service with the state of the mobile application

And so forth. Add to this the fact that the SQLite interface (and also the forthcoming
indexedDB interface) is controlled chiefly by asynchronous function calls, as will be the
XHRs to remote servers and the PhoneGap calls you're making, and you could have quite
a complex mess to deal with.

The best strategy is good old-fashioned diligence: keep an eye on how your application
performs in every different scenario, and focus on providing responsiveness for the user
at all times.

12821

Chapter 11

If the preceding examples were not complex enough for you, it might be worth looking at
extending our little server to allow for writes from our mobile application also. How do you
handle potential conflicts? Can you ensure the timestamp matches on both the server and
the client? When should your application update the remote server, and how should it know
whether the server has received a given update or not?

sSummary

We made a good first pass at integrating our mobile application with a remote service. We
were able to:

¢ Write a simple web service, and populate our mobile application entirely from
that content

@ Cache the content to a local database, and then render the same content without
a network connection available

That concludes our chapter on offline strategies, and our initial trip through PhoneGap.
Hopefully you've enjoyed reading about PhoneGap, and are itching to get started writing
some PhoneGap applications of your own. Good luck!

[2831]

For various political reasons, the iOS platform requires a bit of effort to get our application
from a running simulator onto an actual device. It's the sort of busywork that is neither
exciting nor valuable, but it can be a major sticking point for a lot of developers.

Note: deploying to a device requires a $99 Developer Certificate from Apple. If you wish to
sell any applications, you will need to complete this as well.

Time for action-teploying to a device

1. First, you'll need to generate a Certificate Signing Request. Open Keychain Access
(inyour /Applications/Utilities directory) and start the Certificate Request
wizard (see the following screenshot). Your developer name will be based on the
one you registered your account with.

| & WOTIETWN File Edit View Window Help

About Keychain Access

Preferences... S

Keychain First Aid LA
Open...
Ticket Viewer LK Create a Certificate With "Andrew Lunny"...
. Create a Certificate Authority With “Andrew Lunny”...
pevices L Create a Certificate For Someone Else as a Certificate Authority...
Hide Keychain Access 3H
Hide Others < H Set the default Certificate Authority...
Show All Evaluate a Certificate...

Quit Keychain Access ®Q

Deploying to iOS

2. Fill out the e-mail you used to register for the Developer Program, and save the
Certificate Signing Request (CSR) to disk. If prompted, set the key size to 2048 bits
and the algorithm to RSA.

A A Certificate Assistant

Certificate Information

Enter information for the certificate you are requesting.
Click Continue to request a certificate from the CA.

User Email Address: l:mdrew.lunny@nilobi.com| L]

Common Name: Andrew Lunny

CA Email Address:

Request is: () Emailed to the CA
() saved to disk

e : N
[Continue)

3. Login to the iOS Provisioning Portal at https://developer.apple.com/ios/
my/overview/index.action to upload your CSR, and then download the signed
certificate once it appears (you may need to reload the page).

4. Once the certificate is downloaded, double-click it to install. You should see the
certificate present in Keychain Access as shown in the following screenshot:

[2861]

Appendix A

? Keys
=] Certi

Category
% Allltems
A.. Passwords
Secure Notes
E] My Certificates

ficates

=] Apple Worldwi.. tification Authority certificate
¥ 5] iPhone Develo...nny (MI7PSNA426) certificate

ame Keychain Access
dﬂ Click to lock the login keychain. Q
Keychains
& login - Andrew Lunny
a X K L Kind: private key, RSA, 2048-hit
Priva...tedData IL Usage: Any
& System
System Roots
Name Kind A Expires Keychain

? Andrew Lunny private key -

2016-02-14 1... login
2010-12-07 1... login

login

(][] [copv] 2 items

v

The next step is to register a device with the iOS Provisioning Profile—you'll need an
iPhone, iPod Touch, or iPad here. Plug your device into your Mac's USB port, and
open the Organizer in Xcode. You should see your device name with a green light

next to it—in my case, I've connected my palo alto pod iPod touch. Your own device
will have a name that you have specified.

eNals)

S O

Build Clean Run

Action

PROJECTS & SOURCES

DEVICES

s iFone iFone iFone
. DorianPad
' iPod touch

10S DEVELOPMENT

4 Archived Applications
L Developer Profile

Device Logs

[5] Provisioning Profiles

% Screenshots

= # Software Images

iPod

Provisioning

Organizer

Name: pale alto pod
Capacity: 6.97 GB

Model: iPod touch (4th generation)

Serial Number: C3LDCYYCDCP7
ECID: 830908468724

Identifier: 80eBe33a0fel60d896d12bd22a5f3e0bd2fect30

Software Version: [4.1 {88117)

i) ResworeiPod |

Xcode cannot find the software image to install this version

(+ 1 -]

Applications

12871

Deploying to iOS

6. Copy the Identifier, then head back to the iOS Provisioning Portal, and hit the Add
Devices button on the top right. Enter an identifiable name and the device ID.

7. The next step is to set up some App IDs, from the conveniently named App IDs link
on the left-hand side of the iOS Portal.

Create App ID

Description

Enter a common name or description of your App D using alphanumeric characters. The description you specify will be used
throughout the Provisioning Portal to identify this App ID.

Beginner’s Demo You cannot use special characters as @, &, *, " in your description.

Bundle Seed ID (App ID Prefix)

Generate a new or select an existing Bundle Seed 1D for your App ID.

'.Generate New | &] If you are creating a suite of applications that will share the same Keychain access, use the same bundle Seed ID for each of your
applicaticn's App |Ds.

Bundle Identifier (App ID Suffix)

Enter a unigue identifier for your App ID. The recommended practice is to use a reverse-domain name style string for the Bundle
Identifier portion of the App ID.

‘com.beginners.*] Example: com.domainname.appname

8. The form is pretty straightforward, but we want to make sure we can install multiple
applications with the same provisioning profile, so be sure to use a wildcard name
for the bundle identifier field. This will allow us to install, say, com.beginners.
appone, com.beginners.apptwo, and so on. These identifiers are not related
to Java packages, nor are they used for importing code—they're just for identifying
your applications.

[2881]

Appendix A

9. The final step is to tie the Developer Certificate, Device ID, and App ID together with
a provisioning profile. Again, this is a simple form—choose a unique name, select
the certificates you wish to use, the application identifiers, and all devices, as shown
in the following screenshot:

Development Distribution History How To

Create iOS Development Provisioning Profile

Generate provisioning profiles here. To learn more, visit the How To section.

Profile Name Beginner's Profile

Certificates Select All

M Andrew Lunny

App ID Beginner's Demo ?

Devices Select All
Palo Alto Pad

10. Download the Beginners Profile.mobileprovision file and double-click
on it. As long as your device is still connected, the profile will be installed on it
as expected.

[2891]

Deploying to iOS

11. Go back to our FirstApp Xcode project (sure seems like a long time since we've
been there). We'll need to edit the FirstApp-Info.plist file so that the App ID
matches the one in the provisioning profile:

Groups & Files 1 File Name
Y FirstApp B . Firstdpp-Info.plist

» [] Classes
P[] Other Sources
¥ | Resources
FirstAppViewControlle
MainWindow.xib
. FirstApp-Info.plist
» [| Frameworks
» [] Products
Y@ Targets
> n_r,% FirstApp
¥ ¢ Executables
< FirstApp
4, Find Results
¥ 1] Bookmarks
vEiscm
- Project Symbols
w (@ Implementation Files
@ FirstAppAppDelegate.m
@ FirstAppViewController.n
@ main.m
(] NIE Files
FirstAppViewController.x
MainWindow.xib

< | » | B FirstApp-Info.plist %

Key

Value

¥ Information Property List
Localization native development re
Bundle display name
Executable file
lcon file

(12 items)

English
S{PRODUCT_NAME}
S{EXECUTABLE_MAME}

Bundle identifier

com.beginners.firstapp

InfaDictionary version

Bundle name

Bundle 05 Type code

Bundle creator O5 Type code
Bundle version

Application requires iPhone enviror
Main nib file base name

6.0
${PRODUCT_NAME}
APPL

1.0

™

MainWindow

Appendix A

12. Set your Code Signing Identity for the application; double-click on the blue FirstApp
Xcode project icon on the top left, and then change the Code Signing Identity field.

If all has gone well, your name and ID should be in the pop-up list.

806

Project "FirstApp” Info

[General | Build | Configurations

Comments |

Configuration: [all Configurations

}#d (@~ search in Build Settings

show: | All Settings I—G-]
Setting Value
Debug Information Format DWARF with dSYM File .
Enable OpenMP Support O
Generate Profiling Code O E]
Precompiled Header Uses Files From Build Di...]
Run Static Analyzer O
Scan All Source Files for Includes O
Validate Built Product O
¥ Code Signing
Code Signing Entitlements
¥ Code Signing Identity -
Code Signing Resource Rules Path
Other Code Signing Flags
¥ Compiler Version
C/C++ Compiler Version GCC 4.2 5
¥ Deployment
Additional Strip Flags
Alternate Install Group staff
Alternate Install Owner andrewlunmy M
Alternate Install Permissions u+w,go-w,a+rxX v
The name (*common name”} of a valid code-signing certificate in a keychain within your keychain path.
A missing or invalid certificate will cause a build error. [CODE_SIGN_IDENTITY]

Based On: | Nothing

2911

Deploying to iOS

13. Ensure the target in the top left is set to Device, and the correct device is selected:

®@6 0

[Simulator

Active Configuration
¥ Debug
Release

Active Target

¥ ol FirstApp

Active Executable

v FirstApp - palo alto pod
Active Architecture

v armvb
armwv7

¥ [Bookmarks
A=
Wl Project Symbols

v W Implementation Files
@ FirstAppAppDelegate.m
E| FirstAppViewCaontroller.n
@ main.m

¥ [E NIB Files
@ FirstAppViewController.x
] MainWindow.xib

Bundle display name
Executable file

lcon file

Bundle identifier

- _ FirstApp-Info.plist - FirstApp —
Eemong (=) (=] & @ @O (s vacing
AT Breakpoints Build andRun Tasks Info Search
| File Name 4 < Code a A @
ﬁ CoreGraphics.framework o E]
. FirstApp-Info.plist |
Cj, FirstApp.app (SRS
E FirstApp_Prefix.pch
<« » [FirstApp-Info.plist & D™ (Ce| #+ -1
Key Value
¥ Information Property List (12 items)
Localization native development re English

S{PRODUCT_NAME}
S{EXECUTABLE_MAME}

dev.nitobi.whatever

InfoDictionary version s B0 +]
Bundle name S{PRODUCT_MNAME}

Bundle 05 Type code APPL

Bundle creator OS5 Type code wn

Bundle version Lo

Application requires iPhone enviror @

Main nib file base name MainWindow

14. Bask in the glow of your beautiful grey screen application.

What just happened?

Well for one thing, we became a lot more familiar with the pain and bureaucracy that is iOS
development. Whatever you think of the iOS development cycle (and personally, I'm a big
fan of the SDK itself), there's an awful lot of ceremony involved in getting a viable setup up

and running.

12921

Appendix A

Thankfully, these steps do not need to be repeated often— that is, they only need to be
done once for each Mac you wish to use for development. Here are some good guidelines
for maintaining your sanity:

@ Use wildcard App IDs for your provisioning profile—some developers even go as
far as using the simple "+" application identifier, to allow them to set arbitrary
application identifiers, and install those on provisioned devices. If you wish to use
Apple's push notifications, however, you will not be able to use wildcards—it's
Apple's policy that the provisioning profile has to match the application identifier
exactly, in this case.

@ Ensure you have all of your development devices on every provisioning profile that
you use regularly. This will avoid confusing errors when you want to test a new
project on an older device that you have.

@ Asfar as possible, ensure that the Mac you use for development is the same one
you'll use to develop your release build and submit your application. For single
developers, this is not often an issue, but if you're working on a team (and using
your company's development certificate), this is liable to catch you out at an
inopportune time, and your application will not be submitted to Apple's App Store.

€ One more point to note—the iOS Provisioning Portal currently allows for a maximum
of 100 devices to be registered per account. This may sound like a lot for a single
developer, but if you have a larger company or set of clients, it may get a bit
tight—you'll want to look into Apple's Ad Hoc distribution methods. However,
this won't be a concern during your initial development.

Thankfully, while using PhoneGap we can work on much of the functionality of our
applications using desktop web browsers, which means we do not need to deploy
to devices until late in the process.

Have a go hero-i0S hasics

Although we won't be using the standard iOS development tools—namely, coding with
Objective-C and designing with Interface Builder—it's good to get a firm grasp of the nuts
and bolts of iOS development.

You might want to see if you can change the name of FirstApp; perhaps rename it to App
The First. Are you able to change the icon? Can you create an application—The First
Lite project, and install it on your simulator and device alongside App The First?

12931

Chapter1

Where are your PhoneGap assets (HTML, JavaScript, and CSS) located in an Xcode project?
Answer#3— In the www folder. www is the standard folder for all PhoneGap platforms.

How do you rename a PhoneGap iOS application?

Answer##3— Edit the Application-Info.plist file, like any other native iOS app.
What function is called by the alert('Hello PhoneGap!') code?

Answer#f1— The standard alert function in the iOS WebView. PhoneGap uses native
JavaScript calls wherever feasible.

Chanter 2

Let's say we wanted to add a second page to our application, with the same CSS and
JavaScript code. What would be the best approach?

Answer#2 is the most manageable and maintainable.

Answer #1 introduces more work, while #3 is fantasy.

Pop Quiz Answers

You Are The Best has proved so popular that the users are demanding a tablet application
release to go with their smartphone application. How should we edit the CSS?

There's no absolute right answer here— For an application this simple, a combination of
#1 and #2 would be okay. For a larger project, something like #3 is essential, probably using
CSS3 media queries.

The other demand we've received from users is for a second button, that says Tell my cat
she's great too. This button should present a different message to the user. How should we
best implement this code?

All three examples would work answer #1 is the cleanest way to set things up, and the most
idiomatic JavaScript.

Templating with Mustache Answers

What advantages does Mustache have over simple string interpolation?

| hate to do this to you but, even though the appearances are a little contradictory, the
correct answer is all of the above. In terms of technical facility, there's nothing Mustache
does that any determined programmer couldn't do, but the benefit of having it already done,
and done right, is the major benefit for web developers.

When is the best time to render a template for display?

Well answer #2 is out of the question—detecting when the user is idle is an especially
quixotic goal, made all the complicated by resource-constrained mobile devices. There are
certain circumstances when answer #1 is suitable—for example, with a modal view (such as
a Lightbox) that could appear at any stage in the application. In most cases, answer #3 is
correct, but if the view rendering takes a long time, make sure you give some response to
the user right away.

[2961]

Appendix B

Chanter 4

For each of these examples, would you be able to use feature detection or would you have to
fall back to user agent sniffing?

Checking if the device has a hardware back button.

User agent sniffing: No browser currently exposes the amount of hardware buttons
in any meaningful way. Thankfully, this is a good case for UA sniffing: the quantity of
hardware buttons is not something that will change with an OS upgrade, only with
new hardware or platforms.

Finding support for a WebSQL SQLite database.

Feature detection: if WebSQL is supported, a top-level openDatabase function is
attached to the window object.

¢ Finding support for multitouch events: This is a tricky one: we can simulate a touch
event and check for a touches array in the resulting event object. If multitouch
is supported the touches array contains a set of points corresponding to each
touch. However, on Android, at the time of writing, the touches array is only ever
populated with a single touch, though multitouch is supported for pinching and
zooming web pages as a whole. As with hardware accelerated transforms, this
multitouch support requires either inaccurate feature detection or brittle user
agent sniffing.
Checking the total memory available to your application: Neither—this data is not
exposed by the user agent, and is not available to the DOM. If this is a pressing
concern for your application, you probably have bigger problems to worry about for
the moment.

When performing feature detection, when should we execute the detection code?

Answer #3 is correct, with the caveat that the result should be cached for future access, not
recalculated every time the feature is accessed. As mobile developers, we should emphasize
quick start-up times, and defer as much as possible until later in the application's life-cycle
(this is one argument against using a library like Modernizr, instead of performing your own
ad hoc feature detection while the application is running).

What kind of code branching should you do with user agent sniffing?

Go as broad as possible—answer #1 is the best bet. Since user agent sniffing is such a brittle
technique, you don't want to use it for anything that's especially variable, such as different
build versions of the browser engine, or even different devices on a single platform.

2971

Pop Quiz Answers

The exception to this would be platforms that have drastic differences between devices—for
example, the PhoneGap BlackBerry widgets project supports both BlackBerry OS 5.0,

with RIM's proprietary browser in place, and BlackBerry OS 6.0, which uses a far more
capable WebKit browser. However, the differences between these versions of the OS are

so pronounced that feature detection will take you most of the way.

Instead of removing food items from our page, let's say we wanted to hide them, with the
option of bringing them back later. What would be the best way of doing this (assume we
have selected the correct element, and hidden is a CSS class with display:none as a property)?

Answer #2. hide () is not a function in XUl (although it's easy enough to add as a
convenience function, as it exists in jQuery). Answers #2 and #3 are functionally identical,
but answer #2 has the benefit of being able to easily retrieve the hidden items (by x$('.
hidden)).

Is XUl compatible with jQuery plugins?

Answer #2 is correct. It is possible that some jQuery plugins use a subset of jQuery's
functionality that coincide with XUI, but there are no guarantees that the semantics of
functions with the same name would be compatible. Many would be compatible with
a few tweaks—if the plugin has a test suite, it's worth having a look.

What's the primary advantage XUI has over other JavaScript (DOM) libraries?

The correct answer is #1. Answer #2 is generally true—XUI tends to use native DOM
methods under the hood, which are faster than other libraries' custom code (for CSS
selectors, say— but it's not to the extent that one would drop any other library). If jQuery
compatible syntax is the priority, then jQuery is your best bet.

Media Elements Pop Quiz Answers

Which of the following is NOT possible using the HTML5 video API, with a thirty-second long
video clip?

The correct answer is #2. Answer #1 can be achieved through a judicious use of the
currentTime attribute and setTimeout. #3 works just by using currentTime and play.

[298]

Appendix B

What is the difference between the canplay and canplaythrough events?
Answer #3
If a video is set to autobuffer, when does it start to download?

Answer #2. Answer #1 occurs when autobuf fer is not set (it buffers manually). Answer #3
is a special case of #2—if the video tag is in the DOM when the page loads, the video will
start buffering. If, as in our example, the video tag is not in the DOM, then it will not buffer
until it is.

Why doesn't position: fixed work on many mobile browsers?

Answer #2 is correct—see the viewport section above. With scrolling and with user scaling
of the page, it would be difficult for position: fixed to make sense at it does on desktop
browsers.

What does iScroll use CSS3 transforms for?

Answer #3. The other two answers are important parts of iScroll's functionality, but do not
need CSS3 to behave correctly.

Can | forego using a scrolling library, and just use the web view's scrolling facilities?

Answer #3—that is, yes and no. It will depend on the demands of your particular application
and its users. In many cases, using a scrolling library is a necessary evil, but it's by no
means mandatory.

Chanter7

Geolocation Answers

When is the user prompted to allow geolocation access?

Answer #2—when the user calls getCurrentPosition. Because of this, you should ensure
that the user is aware they will be prompted for location data, so the prompt does not
disturb their experience of your application.

[299]

Pop Quiz Answers

What happens when the user refuses to allow access to their location data?

Answer #1—when the error callback is called. Because of this, it is especially important
to pass an error callback to getCurrentPosition, so there's no unexpected behavior
regardless of the user's action.

How is geolocation data calculated?

Answer #3—as an application developer, you just do not know. If the quality of the reading
is a key component of your application's functionality, always ensure that you check the
accuracy property of the location object.

Orientation and Media Queries Answers

What is the main benefit of CSS media queries?

Answer #2— Answer #1 is possible, but there have been mixed reports about whether
browsers respect the media attribute when choosing which stylesheets to download. In
the case of device orientation, the user would need both sets of styles at any rate.

Why is orientation preferred to min-device-width, in our example?

Answer #3— Using min-device-width is a lot like user agent sniffing in this regard, and
has many of the same drawbacks.

Is it necessary to support all orientations on a device?

No. As we have seen, it is the default behavior on iPhone PhoneGap applications to only
support portrait orientation. You can configure Android applications similarly.

navigator.camera.getPicture Answers

Why can we not mock navigator.camera.getPicture on a desktop browser?

Answer #3—there is no access to device cameras. This will change in the future ; there is
a Media Capture specification being worked on—but that interface will be more like the
<input type="file"> tagthanthe PhoneGap camera API.

Which is the most robust data source for retrieving images?

Answer #1—this will bring up some interface on any PhoneGap platform that supports the
camera API.

Appendix B

How is the user interface for the image picker defined?

Answer #3 is correct—this is especially thorny on Android. Different device manufacturers or
carriers can override the default image pickers, and users are able to as well. Test on devices!

Destination Types Answers

Select which destinationType is best suited for each of the following applications:

1. A photo-sharing application, which sends images to the user's friends—DATA URL—
we can't post FILE_URIS to a remote server.

2. A high-resolution image viewer, where users can zoom into the high-megapixel
pictures taken with their camera—FILE_URI—DATA URL can be unstable with
large image data.

3. Animage manipulation application, allowing images to be stretched and squeezed
with a multitouch interface—This one is debatable — you might want a higher
image quality and favour FILE URI, while DATA URL can be possibly easier to
manipulate. In most cases, DATA URL would be better.

Why do data-uri image sources require the data: image/png;base64, prefix?

Answers #1 and #2 are both correct— We need to ensure the data is parsed as image
data, not a file path, and we also need to ensure that it is parsed as a . png image, not
any other kind.

Why are file paths not a good choice for persistent data?

Answer#2—If the data is important to our application, we want to have control over it. Answer
#1 is true but irrelevant; the same images won't be on different devices anyway. Answer #3 is
wrong because PhoneGap won't return a path that your application cannot access.

Which fields need to be set before contact .save () can be called?

Answer #3, but that wouldn't be much use. A good rule of thumb is to follow answer #2, to
ensure that on every platform where the contact is created, the user can identify it (to edit/
augment the contact, or to delete it).

[3011

Pop Quiz Answers

Why is it a good idea to set a filter when calling contacts.find () ?

Answer #1 is the best reason, since a crash is the worst thing that can happen to your
application It's also true that, in most cases, returning all of the user's contacts is a bit
of a pointless exercise.

Why are phoneNumbers and emails set as arrays, rather than string fields?

Answer #2. But partial credit if you said #3.

Chapter 10

What best describes the process of adding a PhoneGap plugin to your application?

Sadly, answer #2 is currently the most reliable option. There isn't a strongly enforced
standard for PhoneGap plugins right now (though that may have changed somewhat by
the time you read this). Answer #3 is the goal once the plugins standardize a bit; #1 is
technically possible, but no plugins adopt that strategy right now.

Why does the ChildBrowser plugin behave differently on iOS, compared to Android?

The most accurate answer is #1—While on Android it's acceptable for an application to use
an Intent and open a new view, on iPhone users expect that such links will open in the
context of the current application. #2 is also true, but both ports have the same aim (show
an external web page without disrupting the user's in-app experience).

PhoneGap plugins require native code to be written independently for each platform.
Why is this?

Answer #2. Answer #1 is accurate, in the case of Android and iOS, but it fails to account for
platforms that have the same programming language, but different underlying APIs (for
example, Android and BlackBerry). You could theoretically build a cross-compatible plugin for
these platforms (a pure math library, perhaps), but most PhoneGap plugins are interested in
the native APIs, which will be platform-specific.

Why should you start with a single JavaScript API for a plugin, and write your native
implementations after that?

Answer #1, code reuse. In addition, having a settled JavaScript API gives you less to worry
about when writing native code—you simply need to get the native code interacting to the
same high-level interface.

3021

Appendix B

What is the main difference between plugins on Android and BlackBerry WebWorks?

The underlying platform APIs, as demonstrated in the Battery plugin example. There may
well be differences between the Java VM and the Dalvik VM, but they have not hugely
affected PhoneGap developers in any noticeable way.

Can you write native code for your application without using plugins?

Answer #2, absolutely. If you find the ceremony of the P1ugin and PluginResult
classes too much to bear, it's straightforward to borrow the PhoneGap techniques for your
own ends. The plugin interface is just convenient and helps you to do this in a stable and
easy-to-follow fashion.

Chapter 11

Why does the service offer the news stories in JSON format, as well as HTML?

All of the answers are correct—as a data transfer format, JSON is more easily processed
than HTML, is generally lighter in terms of bandwidth, and does not contain extraneous
presentational information. It's also trivial to implement, at least in our example, so there's
no good reason in this case to send rendered HTML over the wire.

Is our News Stories web service ready for a production deployment?

Well, probably not, due to the reasons stated in answer #2. For any application you would
deploy to the public internet, you would minimally need to sanitize any user input that
comes in before displaying it back to the user. In our case, it's not a real concern: we don't
have a database that's vulnerable to SQL injection, nor do we have any user data that is
vulnerable to a cross-site scripting exploit. But the service could conceivably (bear with me
here) grow to the extent that it would have sensitive content; you would want to take these
issues into consideration as early as possible.

What is the best approach for loading our news stories from our service?

This one is interesting because the best answer for PhoneGap applications is #1— Loading
through an xmlHttpRequest—is not applicable for mobile websites in general, which
cannot access external resources in this way, due to the same-origin policy on websites. If
we were writing a service for general consumption, it would be worth the extra effort to
implement JSON support.

Symbols

@@stories class variable 265
-webkit-border-radius 42

A

accelerometer
about 168, 179
DeviceMotionEvent 183
DeviceOrientationEvent 183
shakes, detecting 179-183
addEventListener function
features 44, 45
Adobe Flash technology 123
alertCompliment() function 40
Android
about 17
development environments 18
PhoneGap Android 22
PhoneGap plugin, porting on 253-256
AndroidManifest.xml file 239
Android SDK. See SDK
ant 8
appendNewPostcard 172
app.js code 280
application
deploying, to device 285-292
deploying, to i0OS 285
application initialization
deviceready 282
DOMContenLoaded 282

Index

managing 281, 282
script loading 282
audio element 129

batteryLevel property 253
BatteryReceiver subclass 254
BatteryStatus application

creating 243
BatteryStatus object 248
bike-shedding 69
BlackBerry

code signing 33

PhoneGap plugin, porting on 257-260
BlackBerry JDE Component Pack 26
BlackBerry simulator 29
BlackBerry web works 26
BlackBerry Web Works SDK 26
BroadcastReceiver class 254
BrowserScope 103

C

cache manifest 138
caching
stories 273
CAMERA 199
camera API
about 191
file path, grabbing to display 200-203
live data, accessing 211

live data, editing 211

Picture Postcard application, creating 191-198

raw image data 204
canplay event 128
canplaythrough event 128
canPrompt 182
canvas APl 136
canvas element

about 130

dashboard, setting up 131-135
capturelmage function 211
Certificate Signing Request (CSR) 286
ChildBrowserCommand 237
ChildBrowser plugin

about 234

integrating 234-240
ChildBrowser plugin for iOS

URL 235
Cocoa Touch UlWebView class 252
contact data

friends, making 223-229

issues 230

writing 223
ContactField attributes 228
ContactFields

about 222

categories field 222

emails field 222

pref property 222

type property 222

urls field 222

value property 222
ContactFindOptions object

about 221

filter field 221

key fields 221

multiple field 221

updatedSince field 221
contacts.create 216
controls attribute 126
createStoryTable function 277
cross-platform codebase

code, preprocessing 109

feature detection 104, 105

media queries 106-108

single codebase, using 92

user agent sniffing 102, 103

CSS3 animations

about 159

headline, animating 159-162
CSS3 techniques

about 141

animations 159

transforms 151

transitions 141
CSS3 transitions

about 141

features 141, 142

modal tweet view 142-150

timing functions 150

transformation functions 151
CSS Media Queries 106
CSS position:fixed rule 152
CSS transforms

about 151, 152

iScroll 152

layout viewport 152

scrolling 151

visual viewport 152
CSS, You Are The Best application

-webkit-border-radius 42, 43

about 41

unobtrusiveness 41

width and height 42
cubic-bezier function 150
Cygwin 77

D

DAP specification

URL 221
database.js file 273
dependencies, PhoneGap

about 8

ant 8

git 8

Ruby 8
desktop browsers

designing, with PhoneGap 36
destinationType 199
development environments, Android 18
DeviceMotionEvent 183
DeviceOrientationEvent 183
deviceready event 179
deviceready function 208

[238]

device sensor

about 168

features 168

postcard writer application, creating 169-177
DOMContentLoaded block 225
DOMContentLoaded event 45, 102, 172
DOMContentLoaded event handler 132
DOMContentLoaded handler 277
drawCircle function 137
Droidgap 22

E

Eclipse IDE 18
ECMAScript 5 85

event delegation 82
execute method 256
Express framework 272

F

feature detection 104, 105
FILE_URI method 204

Find A Friend application 214
FireFox 36

Food List application 169

G

Geocoding APl 174
geolocation 168
geolocation data
attributes 178
GetAction class 257
getCurrentVariable 168
getPicture function 191, 208
git 8
Git Bash 77
GitHub repository
URL 234
GloveBox
URL 152
Google Chrome 36

H

H.264 encoded MP4 file 123
handleNewPostcard function 172

has.js 105
hideTweetModal function 147
HTML5
about 123
canvas APl 136
canvas element 130
features 138
media elements 123
HTML5 APIs 164

image sources, PhoneGap
CAMERA 199
PHOTOLIBRARY 199
SAVEDPHOTOALBUM 199
Indexed DB 68
index.erb file 266
initializeDB() function 274
Interface Builder 293
Internet Explorer (IE) 36
i0S 9
iOS application
running 9-11
iOS PGPlugin subclass 255
iOS PhoneGap plugin
important notes 252
lightweight battery status, implementing 243-
245
writing 243-251
iOS Provisioning Portal
URL 286
iPhone
You Are The Best application 52-55
iPhone simulator 235
iScroll
about 152
food list, scrolling 153-157
URL 152

J

Java ChildBrowser class 239
jQTouch

about 151

URL 151
jQuery

limitations 121

[239]

jQuery Mobile library 158 orientation

JSON object about 168, 184
JSON.parse 85 landscape postcards application, creating 184-
JSON.stringify 85 188
L P
Lawnchair 69 PaintbrushlJS
Limonade framework 272 URL 137
localStorage 204, 273 pause event 128
LocalStorage PGPlugin subclass 235
exploring 69 PhoneGap
implementing 62-66 about 7
alerts 231
M application, deploying to device 285-292
application, deploying to iOS 285
magnetometer 168, 189 camera APl 191
Media Capture API 211 ChildBrowser plugin, integrating 234-240
media elements, HTML5 contact data, writing 223
about 123 ContactFields 222
attributes 128, 129 ContactName 230
audio element 129 contacts, reading from device 214-220
events 128,129 CSS3 techniques 141
Mobile Data System Connection Server (MDSCS) dependencies 8
29 desktop browsers, designing with 36
Mobile JavaScript device sensor APIs 167
about 111,112 differences between platforms, inherenting 91,
XUl 112 92
modal tweet view, CSS3 transitions 142-150 emails field 222
Modernizr Find A Friend application 214
about 105 food application, extending 124-128
URL 105 HTML5 123
Mustache 172 HTMLS5, differences 177, 178
Mustache.js 70 image sources 199
Mustache templating language 70 Mobile JavaScript 111, 112
name field 222
N navigator.service.contacts.find 214

operating systems 7

other options 199

stories, caching in local database 273-281
web inspector, using 46

navigator.service.contacts.find 214
new Image() technique 137
Node-JS JavaScript platform 88

(o) Webkit, using 36

web server roles, implementing 61, 62
Objective-C 293 XUl 112
openDatabase function 273 You Are The Best application, developing 36
Opera 36 PhoneGap Android

about 22-26

[240]

building 23

Droidgap 22

installing 24

PhoneGap Library 22
PhoneGap Android project 239
PhoneGap BlackBerry app

about 27

generating 28-32

SDK, downloading 27
PhoneGap development server 88
PhoneGap documentation website

URL 230
PhoneGap.exec function 247
PhoneGap-iPhone

installing 12, 13

running 14, 15

working 16, 17
phonegap.js file 17,170, 214
PhoneGap Library 22
PhoneGap platform 7
PhoneGap plugins

about 234

cross-platform plugins 261

directory structure 234

discovery 241

platforms, differences 241

porting 253

porting, on Androids 253-256

porting, on BlackBerry 257-260

writing 242, 243
PhoneGap plugin, writing

about 242, 243

battery view 243, 245
PHOTOLIBRARY 199
Picture Postcard application

creating 191-198
PluginResult class 252

positionToLatLongString function 173

postcardMarkup function 172

postcardTemplate 172

postcard writer application
creating 169-177

Q

quality 199
quality option 210

R

raw image data
about 205
pictures, saving 205-209
quality option, setting 210
Red Green Refactor application
developing 93-102
remote data
parsing 85
remote resources access
about 76
API 84
authentication 84
cross-origin policy 76, 77
event delegation 86-88
ownership 84
PhoneGap development server 88
reliability 84
remote data, parsing 85, 86
reverse geocode APl 174
Ruby 8, 264
RubyGems package manager 264
ruby server.rb command 264

S

Safari 36
sampleVideo element 126
SAVEDPHOTOALBUM 199
Scalable Vector Graphics (SVG) 164
scripts, You Are The Best application
about 43
addEventListener 44
DOMContentLoaded 45
unobtrusiveness 44
SDK
about 18
downloading 18, 19
installing 19, 20
Sencha Touch framework
about 151
URL 151
server.rb 264
setContext method 256
shakeHandler function 182

[241]

showTweetModal function 146
simple web service

writing, Sinatra and Ruby used 264-271
Sinatra

about 264

installing 264

URL 264
Sizzle 112
Sleight 88
sourceType 199
SQLite 68
stories

caching, in local database 273-281
successCallback function 168

T

timing functions, CSS3 transitions 150
touchend event 216
touchmove event 129, 153
touchstart event 192
transformation functions

matrix 151

perspective 151

rotate 151

scale 151

skew 151
Translate3d 150
translate3d function 151
translate function 151
Twitter 77
Twitter search API 84

\"

view templating
about 69, 75
food detail view 70-73
food, listing 77-82
remote resources, accessing 76

W

W3C’s Device API 221
watchVariable 168

web inspector
accessing 46, 47
error checking 47-51
simple logging 47-51
using 46
working with 52
WebKit 36
web server roles
implementing 61, 62
LocalStorage, implementing 62-66
storage options 68
Web Sockets 138
Web SQL 68, 273
Web Workers 138
window.localStorage.key function 67

X

Xcode 236
Xcode project 16
XmlHttpRequest 210
XMLHttpRequest 75
XUl
about 112,172
building 113-120
downloading 112
using 121

Y

You Are The Best application
Cascading Style Sheets (CSS) 41
developing 36
for iPhone 52-56
functionality 37-40
initial design 37, 38
scripts 43
workflow 41

You Are The Best application, for iPhone
about 52
deviceready 58
phonegap.js file 57
viewport 57

[242]

open source

community experience distilled

PUBLISHING

Thank you for buying
PhoneGap Beginner's Guide

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're

using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Android 3.0 Application
Development Cookbook

Android 3.0 Application Development Cookhook
ISBN: 978-1-849512-94-7 Paperback: 272 pages

Over 70 working recipes covering every aspect of
Android development

1. Written for Android 3.0 but also applicable to lower
versions

2. Quickly develop applications that take advantage of
the very latest mobile technologies, including web
apps, sensors, and touch screens

3. Part of Packt's Cookbook series: Discover tips and
tricks for varied and imaginative uses of the latest
Android features

Android User
Interface Development

Android User Interface Development
Beginner's Guide

ISBN: 978-1-849514-48-4 Paperback: 304 pages

Quickly design and develop compelling user
interfaces for your Android applications with this
book and eBook

1. Leverage the Android platform's flexibility and
power to design impactful user-interfaces

2. Build compelling, user-friendly applications that will
look great on any Android device

3. Make your application stand out from the rest with
styles and themes

4. A practical Beginner's Guide to take you step-
by-step through the process of developing user
interfaces to get your applications noticed

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Cacti 0.8 Beginner's Guide
ISBN: 978-1-849513-92-0 Paperback: 348 pages

Learn Cacti and design a robust Network Operations
Center

1. A complete Cacti book that focuses on the basics as
well as the advanced concepts you need to know for
implementing a Network Operations Center

2. A step-by-step Beginner's Guide with detailed
instructions on how to create and implement
custom plugins

3. Real-world examples, which you can explore and
make modifications to as you go

4. Written by Thomas Urban — creator of the "Network
Management Inventory Database" plugins for Cacti

MeeGo 1.0 Mobile Application
Development Cookbook

MeeGo 1.0 Mohile Application Development
Cookhook

ISBN: 978-1-849690-32-4 Paperback: 300 pages

Simple and effective recipes for professional MeeGo
mobile applications supporting calls, SMS, Ul, display,
GPS, multimedia, and much more

1. A step-by-step guide to creating feature-rich,
powerful Qt mobile applications in Python rapidly

2. Quick recipes for building professional Smartphone
applications for Ul, display, GPS, multimedia, and
games

3. Plenty of code examples to help you develop your
own applications

4. The only book to cover common MeeGo mobile
application development problems and smart
solutions

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing PhoneGap
	Operating systems
	Dependencies
	Getting started with iOS
	Time for action – Getting an app running on the simulator
	Installing PhoneGap-iPhone
	Time for action – Hello World with PhoneGap-iPhone
	Getting started with Android
	A note on development environments

	Time for action – Getting the SDK running
	PhoneGap Android

	Time for action – Hello World on PhoneGap Android
	What's in a PhoneGap Android application, anyway?

	Getting started with BlackBerry web works
	Time for action – Your first PhoneGap BlackBerry app
	Code signing for BlackBerry

	Summary

	Chapter 2: Building and Debugging on Multiple Platforms
	Designing with desktop browsers
	WebKit

	Developing our first application: You Are The Best
	Time for action – Initial design and functionality
	Our workflow
	Our styles
	Unobtrusiveness
	Width and height
	-webkit-border-radius

	Our scripts
	Unobtrusiveness
	addEventListener
	DOMContentLoaded

	Using the web inspector
	Accessing web inspector

	Time for action – Simple logging and error checking
	Moving to native platforms
	Time for action – You Are The Best for iPhone
	<meta name="viewport">
	phonegap.js
	deviceready

	Summary

	Chapter 3: Mobile Web to Mobile Applications
	Implementing web server roles
	Time for action – Implementing LocalStorage
	Other storage options
	Web SQL
	Indexed DB

	View templating
	Time for action – Food detail view
	Accessing remote resources
	Cross-origin policy

	Time for action – Talking about food
	Accessing remote resources
	Parsing remote data
	Event delegation
	Sleight: The PhoneGap development server

	Summary

	Chapter 4: Managing a Cross-Platform Codebase
	Inherent differences between platforms
	Using a single codebase

	Time for action - Detection and fallbacks
	User agent sniffing
	Feature detection
	Media queries
	Preprocessing code

	Summary

	Chapter 5: HTML5 APIs and Mobile JavaScript
	Mobile JavaScript
	XUI

	Time for action – Downloading, building, and using XUI
	Why not jQuery?

	HTML5
	Media elements

	Time for action – My dinner with PhoneGap
	Media events and attributes
	The audio element

	The canvas element

	Time for action: Dinner dashboard
	The canvas API
	A note on performance
	What else is in HTML5?

	Summary

	Chapter 6: CSS3: Transitions, Transforms,
and Animation
	Translate with transitions
	Time for action – The modal tweet view
	Timing functions
	Other transformations

	Scrolling
	Viewports: Visual and otherwise
	iScroll

	Time for action – Scrolling list of food
	Other approaches

	Explicit animations
	Time for action – Animating our headline
	Animations: CSS3 or HTML5?

	Summary

	Chapter 7: Accessing Device Sensors with PhoneGap
	What are device sensors?
	Time for action – A postcard writer
	PhoneGap versus HTML5
	Other geolocation data

	Accelerometer data
	Time for action – Detecting shakes
	Device orientation and device motion events

	Orientation media queries
	Time for action – Landscape postcards
	Other media queries
	Magnetometer: The missing API

	Summary

	Chapter 8: Accessing Camera Data and Files
	Time for action – Hello World with the Camera API
	Browsers are not emulators or devices
	Image sources
	Other options

	What about when we finally get an image?
	Time for action – Getting a file path to display
	Where is this image, anyway?
	Raw image data

	Time for action – Saving pictures
	Ensure quality is set
	Editing or accessing live data

	Summary

	Chapter 9: Reading and Writing to Contacts
	Time for action – navigator.service.contacts.find
	ContactFields
	Writing contact data

	Time for action – Making friends
	What if I encounter a new problem?
	ContactFields, ContactName, and similar objects
	Be responsible

	Summary

	Chapter 10: PhoneGap Plugins
	Getting PhoneGap plugins
	Time for action – Integrating ChildBrowser
	Differences between platforms
	Plugin discovery

	Writing a PhoneGap plugin

	Time for action – Battery view
	Noteworthy information about the PhoneGap plugin with iOS

	Porting your plugin
	Time for action – Android and BlackBerry
	Do you need cross-platform plugins?
	No limits

	Summary

	Chapter 11: Working Offline: Sync and Caching
	Ruby and Sinatra
	Time for action – A news site, with an API
	Alternatives to Sinatra
	Caching new stories

	Time for action – Caching stories in a local database
	Managing application initialization

	Summary

	Appendix A: Deploying to iOS
	Time for action–deploying to a device

	Appendix B: Pop Quiz Answers
	Chapter 1
	PhoneGap iPhone Basics Answers

	Chapter 2
	Initial Design Answers

	Chapter 3
	Templating with Mustache Answers

	Chapter 4
	Feature Detection vs UA Sniffing Answers

	Chapter 5
	XUI Answers
	Media Elements Pop Quiz Answers

	Chapter 6
	Scrolling Answers

	Chapter 7
	Geolocation Answers
	Orientation and Media Queries Answers

	Chapter 8
	navigator.camera.getPicture Answers
	Destination Types Answers

	Chapter 9
	Contacts Answers

	Chapter 10
	Using PhoneGap Plugins Answers
	Writing PhoneGap Plugins Answers

	Chapter 11
	A Simple Web Service Answers

	Index

